Reference

[1] H. Braak, E. Ghebremedhin, U. Rüb, H. Bratzke, and K. D. Tredici, “Stages in the development of Parkinson’s disease-related pathology,” Cell Tissue Res Cell and Tissue Research, vol. 318, no. 1, pp. 121–134, 2004.

[2] M. E. Morris, F. Huxham, J. Mcginley, K. Dodd, and R. Iansek, “The biomechanics and motor control of gait in Parkinson disease,” Clinical Biomechanics, vol. 16, no. 6, pp. 459–470, 2001.

[3] O. Moore, C. Peretz, and N. Giladi, “Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait,” Movement Disorders Mov Disord., vol. 22, no. 15, pp. 2192–2195, 2007.

[4] C. Ramaker, J. Marinus, A. M. Stiggelbout, and B. J. V. Hilten, “Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease,” Movement Disorders Mov Disord., vol. 17, no. 5, pp. 867–876, 2002.

[5]   S. Katz, “Assessing Self-maintenance: Activities of Daily Living, Mobility, and Instrumental Activities of Daily Living,” Journal of the American Geriatrics Society, vol. 31, no. 12, pp. 721–727, 1983.

[6] S. T. Moore, H. G. MacDougall, and W. G. Ondo, “Ambulatory monitoring of freezing of gait in Parkinson’s disease,” Journal of Neuroscience Methods, vol. 167, pp. 340–348, 2008.

[7] S. T. Moore, D. A. Yungher, T. R. Morris, V. Dilda, H. G. Macdougall, J. M. Shine, S. L. Naismith, and S. J. Lewis, “Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry,” Journal of NeuroEngineering and Rehabilitation J NeuroEngineering Rehabil, vol. 10, no. 1, p. 19, 2013.

[8] E. E. Tripoliti, A. T. Tzallas, M. G. Tsipouras, G. Rigas, P. Bougia, M. Leontiou, S. Konitsiotis, M. Chondrogiorgi, S. Tsouli, and D. I. Fotiadis, “Automatic detection of freezing of gait events in patients with Parkinson’s disease,” Computer Methods and Programs in Biomedicine, vol. 110, no. 1, pp. 12–26, 2013.

[9]   C. Ahlrichs, A. Samà, M. Lawo, J. Cabestany, D. Rodríguez-Martín, C. Pérez-López, D. Sweeney, L. R. Quinlan, G. Ò. Laighin, T. Counihan, P. Browne, L. Hadas, G. Vainstein, A. Costa, R. Annicchiarico, S. Alcaine, B. Mestre, P. Quispe, À. Bayes, and A. Rodríguez-Molinero, “Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients,” Med Biol Eng Comput Medical & Biological Engineering & Computing, vol. 54, no. 1, pp. 223–233, Jan. 2015.

[10] J.-O. Nilsson, A. K. Gupta, and P. Handel, “Foot-mounted inertial navigation made easy,” 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014.

[11] G.V. Prateek, I. Skog, J. Nilsson, G. Earhart, A. Nehorai. “Detecting Freezing of Gait in Parkinson’s Disease using Inertial Sensors”. To be submitted.

[12] S. Mazilu, A. Calatroni, E. Gazit, A. Mirelman, J. M. Hausdorff, and G. Troster, “Prediction of Freezing of Gait in Parkinson’s From Physiological Wearables: An Exploratory Study,” IEEE Journal of Biomedical and Health Informatics IEEE J. Biomed. Health Inform., vol. 19, no. 6, pp. 1843–1854, 2015.

[13] K. Hari, “Foot-mounted inertial navigation system for indoor positioning”, Anniversary Symposium on Cyber Physical SystemsRobert Bosch Center for Cyber Physical Systems, 2012.

[14] G. Louppe, L. Wehenkel, A. Sutera, P. Geurts. “Understanding variable importances in forests of randomized trees,” University of Liege.

[15] R.O. Duda, P.E.N. Hart, D.G. Stork. “Pattern Classification,” John Wiley & Sons, Canada, 2011.

[16] L. Breiman. “Random forests,” Machine Learning 45 (1) (2001) 5-32.

[17] “Multiclass Support Vector Machines,” Support Vector Machines for Pattern Classification Advances in Pattern Recognition, pp. 83–128.

[18] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm