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© Set-up: A frictionless market consisting of a risky asset with price
process S;: Q — R, t > 0, and a risk-free asset with price process B;,
t>0,st By=1.
® Goal:
Allocate a given initial wealth wy so that to maximize the agent’s expected
final “utility" during a finite time horizon [0, T].
@ State-dependent utility: U(w,w) : Ry x Q — R s.t.
e Increasing and concave in the wealth w, for each state of nature w € Q.
o Differentiable in [0, H(w)) and flat for wealths w above certain threshold
H(w) : Ry — Ry.
@ Problem:
Find a self-financing portfolio strategy such that the corresponding
portfolio’s value process { V;}:<r maximizes E {U(V,,w)} subject to
Vo < w (budget constraint) and V. > 0 (solvency or admissibility

condition).



Some financial background



Some financial background

© Typical set-up:
« The discounted price process {B; ' Si}t>o is @ semimartingale.
e The class M of Equivalent Martingale Measures (EMM) is non-empty.



Some financial background

© Typical set-up:

« The discounted price process {B; ' Si}t>o is @ semimartingale.

e The class M of Equivalent Martingale Measures (EMM) is non-empty.
® The Fundamental Theorem of Finance:

e The market is complete if and only if M = {Q}.
e “Any" T-claim H is reachable with the initial endowment w = E, {B;"'H}.
« Each EMM Q induces an arbitrage-free pricing procedure: E, {B;'H}.



Some financial background

© Typical set-up:

« The discounted price process {B; ' Si}t>o is @ semimartingale.

e The class M of Equivalent Martingale Measures (EMM) is non-empty.
® The Fundamental Theorem of Finance:

e The market is complete if and only if M = {Q}.

e “Any" T-claim H is reachable with the initial endowment w = E, {B;"'H}.

« Each EMM Q induces an arbitrage-free pricing procedure: E, {B;'H}.
® The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is W := supg. o, E, [B;'H]



Some financial background

© Typical set-up:
« The discounted price process {B; ' Si}t>o is @ semimartingale.
e The class M of Equivalent Martingale Measures (EMM) is non-empty.

® The Fundamental Theorem of Finance:

e The market is complete if and only if M = {Q}.
e “Any" T-claim H is reachable with the initial endowment w = E, {B;"'H}.
« Each EMM Q induces an arbitrage-free pricing procedure: E, {B;'H}.

® The Super-Replication Theorem: [Kramkov 97]
The cost of super-replication is W := supg. o, E, [B;'H]
@ There exists an admissible portfolio { V;}:< 7 such that
Vo=w and V,>H, as.

if and only if w > w.
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p* :=max f(x)
s.t. h(x)<O0
e Construction of the dual problem:
L(x,\)
o f(x)<f(x)—Ah(x), A>0
e p* < L(N):=maxyL(x,)), Convex
o p*<d :=minL()) .

A>0

Dual Problem

e We say that strong duality holds if p* = d*.
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Karatzas et. al. 91, Cvitani¢ & Karatzas 92-93, Kramkov & Schachermayer 99

© The primal problem:

p(w) := supE {U(V,,w)}
suchthat Vo <w and V. >0,

@ Assumption: w < W := sUpger E,
® The dual domain T
Nonnegative supermartingales {¢;}+>0 such that (i) 0 < & < 1 and (ii)
{&Bt‘1 Vi}i>0 is a supermaringale for all admissible { V;}+>o.
@ The dual problem:

[BT_1H] < o0.

d*(\) := inf E {D(AgTB;1 , w)} :

ger

where

U\ w) :=sup{U(v,w) —Av}.

v>0



Motivation behind the dual problem



Motivation behind the dual problem

o E {&B7V, ) <By ' Vo<w if Vo< w.



Motivation behind the dual problem

o E {&B7V, ) <By ' Vo<w if Vo< w.

e Forany ¢ €T, A > 0, and admissible V. with V, < w:

E{U(V;,w)}<E{U(V;,w)} = A (E{&, BTV, | —w)
=E{U(V,,w) = A&B TV, ) +aw

< E{sup{U(v,w) —AgTBTW}} + Aw

v>0

- E{E(AgTB;‘,w)} .



Motivation behind the dual problem
o E {¢BV,} <&By'Vo<w if Vo <w.
e Forany ¢ €T, A > 0, and admissible V. with V, < w:
E{U(V,,w)}<E{U(V;,w)} = A(E{¢, BV, } —w)
=E{U(V,,w) = A&B TV, ) +aw
<E {sup {U(v,w)—X¢ B! v}} + Aw
v>0

- E{E(AgTB;‘,w)} .

« For any subclass of I C T:

p*(w)=supE {U(V,,w)} < 5ir€1fr1E{D(AgTB;uw)} aw.
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Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FlimLkrt, 2000]
@ Weak duality:

p*(w) < d*(A)+Aw, forallA>0,andl C T.
@® Strong duality:
p(w) = d*(A\") + A*w, for some A* > 0.
@® Dual characterization of the optimal final wealth:
The primal problem is attainable at an admissible portfolio V* s.t.

Vi=1(x € B,

where I(-,w) is the “inverse" of U'(-,w), and A" is the dual solution of d.

V.
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© Let W be a Wiener process and let N be an independent Poisson jump
measure associated with a Lévy process Z with Lévy measure v:

N((0,7] x (a,b]) .= #{t < 7: AZ € (a,b]} ~ Poisson(rv((a, b])).
® The stock price process {S;}+>o follows the dynamics:
dS; = 5 {/u dt + o dW; +/ v(t,z) (N(dt,dz) — dtV(dZ))},
Rd

where v(t,0) =0, and v(t,z) > —1.
® Interpretation: (Finite-jump activity »(R) < co)
e Between jump times the stock follows a Black-Scholes model with
instantaneous mean rate of return u; — [ v(t, z)v(dz) and volatility o:.
e S jumps at the jump times of Z such that, if AZ; # 0, the stock price jumps a
“fraction" v(t, AZ;) of its level:
St — S
Si-

= V(t., AZ[) > —1.
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Merton’s problem in Lévy markets

A natural problem:
For a specific market model (say Lévy one) and a given utility function,

Can one narrow down the dual domain T C T where to search ¢* ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]

For the previous Lévy market and for unbounded Inada type utility functions,
the Dual Theorem holds and the dual solution ¢* is the stochastic exponential
E(X*) of a local martingale

X = /Ot G*(s)dWs—s—/Ot/F*(s,z)(N(ds, dz) — dsv(dz)),

for a process G* and for a field F* > —1.




Key tool

Representation Theorems:  [Kunita-Watanabe (1967)]

Let F; be the information process generated by {W; : s < t} and by
{Zs: s < t}.

e ¢ is a positive local martingale with respect to {F;}+>o iff & = £E(X) with
t t
X = / G(s)dWs +/ /F(& 2) (N(dt, 0z) — dti(dz)), F>—1.
0 0

e ¢ is a positive supermartingale iff & = £o€(X — A) where X is as above
and A is increasing predictable s.t. the jump AA < 1.
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A closer look into the dual theorem

©® WLG assume B; = 1. Let I be a convex subclass of T st.
(i) W :=sup.rE{{H} < o0
(i) T is closed under “Fatou convergence”.
Then, for each 0 < w < W, there exist \* > 0and £* €T s.t.
o d*(\*) = infecr B { U(Ne,, w)} is attainable at ¢*
o E{&1 (N &)} = w, where [is the inverse of U’
o pr(wW) <E[U(I(N )]
® Furthermore, if
(iii) T contains & :=E [92|7] for any EMM Q € M
then
o /(A" &) is super-replicable by an admissible V* s.t. Vi = w. Hence,

7
V* solves the primal problem.
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Construction of the dual class I in Lévy markets
F-L & Ma, 2008
@ Let
.t S "
S:={X ::/ G(s)dWS+/ /F(s,z)N(ds, dz): F > -1},
J0O JO .
T:={¢:=&E(X - A): X € S, Aincreasing, and ¢ > 0},
where N(dt, dz) := N(dt, dz) — dtv(dz). Then,
r=rn F,

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.
® There exist A* > 0, X* € S and increasing A* such that

X = I(NE(XT — AY)),
is super-replicable by an admissible portfolio V* with Vj < w and

EU(VT) <EU(VT), ¥V V st W<w.
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Characterization of the dual class

Question: Under what conditions { = £E(X — A) € TisinT?
@ There exists predictable increasing AP s.t. £ = & E(X — AP).
® {&:St}t is a supermartingale iff

c
he = b+ o1 G(1) +/V(t, 2)F(t,z)v(dz) < a; := d;t

forany t < 7(w) :=sup, inf{t: & < 1/n}.

@ &V is supermartingale for any admissible V," := Vo + [; 3, %% iff

htﬁt <a, ae t<rT.
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An example

Model: v is atomic with atoms {z;};:
dSi =5 {m ot + o dW, + > v, z,)(t)dN,(’)},
i

N is homogeneous Poisson with intensity v(z;).
© A predictable §; : Q — R is admissible iff

1 1
- < ——
max; v(t,z) V0 ~ b= min; v(t,z;) A O
® ¢ cTiff
7 ht h[
hh=——m——————1 — 1 < ay.
! max; v(t,z) v 0 (<0 {h>0} = &t

min; v(t,z) A O

@ There exists X € Ssuch that £ := & E(X) eTand & < €.

O {£(t)V/} <7 is alocal martingale for all admissible (.
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Conclusions

e The method here is more explicit in the sense that the dual domain
enjoys an explicit parametrization.

e Such a parametrization could potentially lead to numerical approximation
schemes of the solution.

e The approach can be applied to more general jump-diffusion models
driven by Lévy processes such as

dS'(t) = S'(t-){bidt + 7, ol dW/ + [, h(t, 2)N(dt, dz), }

for a general Poisson random measure and Wiener process.
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Utility function and its convex dual function

State-Dependent Utility Function Convex Dual Function

S

uTILITY

e U w):= sup {Uw,w)—Aw},

0<w<H

o I(\) :==inf{w>0:U(w) <A =-U(N).
[ < Fotun 1 ]



Lévy processes with jumps

—
T2 i
: e
— i
1 L]
T1 : — g T

£ of Jumps-Poisson

Compound Poisson Process
= S = ’ m\r"\m [ [

Examples of Lévy processes: compound Poisson process (left)

and Lévy jump-diffusion
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