Optimal portfolios and admissible strategies in a Lévy market

José Enrique Figueroa-López¹
(Joint work with Jin Ma)

¹Department of Statistics Purdue University

Stochastic Analysis at Purdue Workshop 2009

Outline

Introduction
 Merton's portfolio optimization problem
 Financial background

2 The convex duality method Semimartingale market model A non-Markovian Lévy market Characterization of the dual solution

3 An example

4 Conclusions

- **1** Set-up: A frictionless market consisting of a risky asset with price process $S_t: \Omega \to \mathbb{R}_+$, $t \geq 0$, and a risk-free asset with price process B_t , $t \geq 0$, s.t. $B_0 = 1$.
- 2 Goal:

Allocate a given initial wealth w_0 so that to maximize the agent's expected final "utility" during a finite time horizon [0, T].

- **3** State-dependent utility: $U(w, \omega) : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ s.t.
 - Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
 - Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_+ \to \bar{\mathbb{R}}_+$
- 4 Problem:

- **1** Set-up: A frictionless market consisting of a risky asset with price process S_t : Ω → \mathbb{R}_+ , $t \ge 0$, and a risk-free asset with price process B_t , $t \ge 0$, s.t. $B_0 = 1$.
- 2 Goal:

Allocate a given initial wealth w_0 so that to maximize the agent's expected final "utility" during a finite time horizon [0, T].

- ③ State-dependent utility: $U(w,\omega): \mathbb{R}_+ \times \Omega \to \mathbb{R}$ s.t.
 - Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
 - Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_+ \to \bar{\mathbb{R}}_+$.
- 4 Problem:

- **1** Set-up: A frictionless market consisting of a risky asset with price process $S_t: \Omega \to \mathbb{R}_+$, $t \geq 0$, and a risk-free asset with price process B_t , $t \geq 0$, s.t. $B_0 = 1$.
- 2 Goal:

Allocate a given initial wealth w_0 so that to maximize the agent's expected final "utility" during a finite time horizon [0, T].

- ③ State-dependent utility: $U(w,\omega): \mathbb{R}_+ \times \Omega \to \mathbb{R}$ s.t
 - Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
 - Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_+ \to \bar{\mathbb{R}}_+$.
- 4 Problem:

- **1** Set-up: A frictionless market consisting of a risky asset with price process $S_t: \Omega \to \mathbb{R}_+$, $t \ge 0$, and a risk-free asset with price process B_t , $t \ge 0$, s.t. $B_0 = 1$.
- 2 Goal:

Allocate a given initial wealth w_0 so that to maximize the agent's expected final "utility" during a finite time horizon [0, T].

- **3** State-dependent utility: $U(w, \omega) : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ s.t.
 - Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
 - Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_+ \to \bar{\mathbb{R}}_+$.
- 4 Problem:

- **1** Set-up: A frictionless market consisting of a risky asset with price process $S_t: \Omega \to \mathbb{R}_+$, $t \ge 0$, and a risk-free asset with price process B_t , $t \ge 0$, s.t. $B_0 = 1$.
- 2 Goal:

Allocate a given initial wealth w_0 so that to maximize the agent's expected final "utility" during a finite time horizon [0, T].

- **3** State-dependent utility: $U(w, \omega) : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ s.t.
 - Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
 - Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_+ \to \bar{\mathbb{R}}_+$.
- 4 Problem:

- Typical set-up:
 - The discounted price process $\{B_t^{-1}S_t\}_{t>0}$ is a *semimartingale*.
 - The class $\mathcal M$ of Equivalent Martingale Measures (EMM) is non-empty.
- 2 The Fundamental Theorem of Finance
 - The market is complete if and only if $\mathcal{M} = \{\mathbb{Q}\}.$
 - "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathbb{Q}}\left\{B_{\tau}^{-1}H\right\}$.
 - Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}}\left\{B_{\mathsf{T}}^{-1}H\right\}$.
- **3** The Super-Replication Theorem: [Kramkov 97] The cost of super-replication is $\bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[B_{\tau}^{-1} H \right]$
- @ There exists an admissible portfolio $\{V_t\}_{t \leq T}$ such that

$$V_0 = w$$
 and $V_\tau \ge H$, $a.s.$

if and only if $w \ge \bar{w}$.

- 1 Typical set-up:
 - The discounted price process $\{B_t^{-1}S_t\}_{t>0}$ is a *semimartingale*.
 - The class ${\mathcal M}$ of Equivalent Martingale Measures (EMM) is non-empty.
- 2 The Fundamental Theorem of Finance:
 - The market is complete if and only if $\mathcal{M} = \{\mathbb{Q}\}.$
 - "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathbb{Q}}\left\{B_{\tau}^{-1}H\right\}$.
 - Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{0} \{B_{\tau}^{-1}H\}$.
- **3** The Super-Replication Theorem: [Kramkov 97] The cost of super-replication is $\bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[B_{\tau}^{-1} H \right]$
- @ There exists an admissible portfolio $\set{V_t}_{t \leq \mathcal{T}}$ such that

$$V_0 = w$$
 and $V_\tau \ge H$, $a.s.$

if and only if $w \geq \bar{w}$.

- 1 Typical set-up:
 - The discounted price process $\{B_t^{-1}S_t\}_{t>0}$ is a *semimartingale*.
 - The class ${\mathcal M}$ of Equivalent Martingale Measures (EMM) is non-empty.
- 2 The Fundamental Theorem of Finance:
 - The market is complete if and only if $\mathcal{M} = \{\mathbb{Q}\}.$
 - "Any" T-claim H is reachable with the initial endowment $w = \mathbb{E}_{\mathbb{Q}}\left\{B_{\tau}^{-1}H\right\}$.
 - Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}} \{B_{\tau}^{-1}H\}$.
- **3** The Super-Replication Theorem: [Kramkov 97] The cost of super-replication is $\bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[B_{\tau}^{-1} H \right]$
- @ There exists an admissible portfolio $\{V_t\}_{t \leq T}$ such that

 $V_0 = w$ and $V_\tau \ge H$, a.s.

if and only if $w > \bar{w}$.

- 1 Typical set-up:
 - The discounted price process $\{B_t^{-1}S_t\}_{t>0}$ is a *semimartingale*.
 - The class ${\mathcal M}$ of Equivalent Martingale Measures (EMM) is non-empty.
- 2 The Fundamental Theorem of Finance:
 - The market is complete if and only if $\mathcal{M} = \{\mathbb{Q}\}.$
 - "Any" T-claim H is reachable with the initial endowment $w = \mathbb{E}_{\mathbb{Q}} \left\{ B_{\tau}^{-1} H \right\}$.
 - Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}} \{B_{\tau}^{-1}H\}$.
- 3 The Super-Replication Theorem: [Kramkov 97]

 The cost of super-replication is $\bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[\mathcal{B}_{\tau}^{-1} \mathcal{H} \right]$
- **4** There exists an admissible portfolio $\{V_t\}_{t \leq T}$ such that

$$V_0 = w$$
 and $V_{\tau} \geq H$, a.s.

if and only if $w \geq \bar{w}$.

- 1 Typical set-up:
 - The discounted price process $\{B_t^{-1}S_t\}_{t>0}$ is a *semimartingale*.
 - The class $\mathcal M$ of Equivalent Martingale Measures (EMM) is non-empty.
- 2 The Fundamental Theorem of Finance:
 - The market is complete if and only if $\mathcal{M} = \{\mathbb{Q}\}.$
 - "Any" T-claim H is reachable with the initial endowment $w = \mathbb{E}_{\mathbb{Q}} \left\{ B_{\tau}^{-1} H \right\}$.
 - Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}} \{B_{\tau}^{-1}H\}$.
- **3** The Super-Replication Theorem: [Kramkov 97]

 The cost of super-replication is $\bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[\mathcal{B}_{\tau}^{-1} \mathcal{H} \right]$
- **4** There exists an admissible portfolio $\{V_t\}_{t \leq T}$ such that

$$V_0 = w$$
 and $V_{\tau} \geq H$, a.s.

if and only if $w \geq \bar{w}$.

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
 - Primal problem:

$$p^* := \max f(x)$$

s.t. $h(x) \le 0$

Construction of the dual problem:

$$f(x) \leq \overbrace{f(x) - \lambda h(x)}^{\mathcal{L}(x,\lambda)}, \quad \lambda \geq 0$$

$$p^* \leq \widetilde{\mathcal{L}}(\lambda) := \max_{\lambda \geq 0} \mathcal{L}(x,\lambda), \quad \text{Convex}$$

$$p^* \leq \underbrace{d^* := \min_{\lambda \geq 0} \widetilde{\mathcal{L}}(\lambda)}_{\text{Dual Problem}} .$$

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
 - · Primal problem:

$$p^* := \max f(x)$$
s.t. $h(x) \le 0$

Construction of the dual problem:

$$f(x) \leq \overbrace{f(x) - \lambda h(x)}^{\mathcal{L}(x,\lambda)}, \quad \lambda \geq 0$$

$$p^* \leq \widetilde{\mathcal{L}}(\lambda) := \max_{x} \mathcal{L}(x,\lambda), \quad \text{Convex}$$

$$p^* \leq \underbrace{d^* := \min_{\lambda \geq 0} \widetilde{\mathcal{L}}(\lambda)}_{\text{Dual Problem}}.$$

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
 - Primal problem:

$$p^* := \max f(x)$$

s.t. $h(x) \le 0$

Construction of the dual problem:

•
$$f(x) \leq \overbrace{f(x) - \lambda h(x)}^{\mathcal{L}(x,\lambda)}$$
, $\lambda \geq 0$
• $p^* \leq \widetilde{\mathcal{L}}(\lambda) := \max_{x} \mathcal{L}(x,\lambda)$, Convex
• $p^* \leq \underbrace{d^* := \min_{\lambda \geq 0} \widetilde{\mathcal{L}}(\lambda)}_{\text{Dual Problem}}$.

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
 - Primal problem:

$$p^* := \max f(x)$$

s.t. $h(x) \le 0$

Construction of the dual problem:

•
$$f(x) \le f(x) - \lambda h(x)$$
, $\lambda \ge 0$
• $p^* \le \widetilde{\mathcal{L}}(\lambda) := \max_{x \in \mathcal{L}} \mathcal{L}(x, \lambda)$, Convex
• $p^* \le d^* := \min_{\lambda \ge 0} \widetilde{\mathcal{L}}(\lambda)$.

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
 - · Primal problem:

$$p^* := \max f(x)$$
s.t. $h(x) \le 0$

Construction of the dual problem:

•
$$f(x) \le f(x) - \lambda h(x)$$
, $\lambda \ge 0$
• $p^* \le \widetilde{\mathcal{L}}(\lambda) := \max_{x} \mathcal{L}(x, \lambda)$, Convex
• $p^* \le d^* := \min_{\lambda \ge 0} \widetilde{\mathcal{L}}(\lambda)$.

Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

The primal problem:

$$\left\{ \begin{array}{l} p^*(w) := \sup \mathbb{E} \left\{ U(V_\tau, \omega) \right\} \\ \text{such that} \quad V_0 \leq w \quad \text{and} \quad V_\cdot \geq 0, \end{array} \right.$$

- **2** Assumption: $w < \bar{w} := \sup_{0 \in \mathcal{M}} \mathbb{E}_0 \left[B_{\tau}^{-1} H \right] < \infty$.
- Nonnegative supermartingales $\{\xi_t\}_{t\geq 0}$ such that (i) $0 \leq \xi_0 \leq 1$ and (ii) $\{\xi_tB_t^{-1}V_t\}_{t\geq 0}$ is a supermaringale for all admissible $\{V_t\}_{t\geq 0}$.
- 4 The dual problem:

$$d^*(\lambda) := \inf_{\xi \in \widetilde{\Gamma}} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\},$$

$$\widetilde{U}(\lambda,\omega) := \sup_{v>0} \{U(v,\omega) - \lambda v\}$$

Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

1 The primal problem:

$$\left\{ \begin{array}{l} p^*(w) := \sup \mathbb{E} \left\{ U(V_\tau, \omega) \right\} \\ \text{ such that } V_0 \leq w \quad \text{and} \quad V_\cdot \geq 0, \end{array} \right.$$

- **2** Assumption: $w < \bar{w} := \sup_{0 \in \mathcal{M}} \mathbb{E}_0 \left[B_{\tau}^{-1} H \right] < \infty$.
- Nonnegative supermartingales $\{\xi_t\}_{t\geq 0}$ such that (i) $0 \leq \xi_0 \leq 1$ and (ii) $\{\xi_t B_t^{-1} V_t\}_{t\geq 0}$ is a supermaringale for all admissible $\{V_t\}_{t\geq 0}$.
- 4 The dual problem:

$$d^*(\lambda) := \inf_{\xi \in \widetilde{\Gamma}} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\},\,$$

$$\widetilde{U}(\lambda,\omega) := \sup_{v>0} \{U(v,\omega) - \lambda v\}$$

Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

The primal problem:

$$\left\{ \begin{array}{l} p^*(w) := \sup \mathbb{E} \left\{ U(V_\tau, \omega) \right\} \\ \text{ such that } V_0 \leq w \quad \text{and} \quad V_\cdot \geq 0, \end{array} \right.$$

- **2** Assumption: $w < \bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[B_{\tau}^{-1} H \right] < \infty$.
- 1 The dual domain I:

 Nonnegative supermartingales $\{\xi_t\}_{t\geq 0}$ such that (i) $0\leq \xi_0\leq 1$ and (ii) $\{\xi_t\}_{t\geq 0}$ is a supermaringale for all admissible $\{V_t\}_{t\geq 0}$
- 4 The dual problem:

$$d^*(\lambda) := \inf_{\xi \in \widetilde{\Gamma}} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\},\,$$

$$\widetilde{U}(\lambda,\omega) := \sup_{v>0} \{U(v,\omega) - \lambda v\}.$$

Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

The primal problem:

$$\left\{ \begin{array}{l} p^*(w) := \sup \mathbb{E} \left\{ U(V_\tau, \omega) \right\} \\ \text{ such that } V_0 \leq w \quad \text{and} \quad V_0 \geq 0, \end{array} \right.$$

- **2** Assumption: $w < \bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[B_{\tau}^{-1} H \right] < \infty$.
- 3 The dual domain $\widetilde{\Gamma}$:

Nonnegative supermartingales $\{\xi_t\}_{t\geq 0}$ such that (i) $0 \leq \xi_0 \leq 1$ and (ii) $\{\xi_t B_t^{-1} V_t\}_{t\geq 0}$ is a supermaringale for all admissible $\{V_t\}_{t\geq 0}$.

4 The dual problem:

$$d^*(\lambda) := \inf_{\xi \in \widetilde{\Gamma}} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\},\,$$

$$\widetilde{U}(\lambda,\omega) := \sup_{v>0} \{U(v,\omega) - \lambda v\}.$$

Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

The primal problem:

$$\left\{ \begin{array}{l} p^*(w) := \sup \mathbb{E} \left\{ U(V_\tau, \omega) \right\} \\ \text{ such that } V_0 \leq w \quad \text{and} \quad V_0 \geq 0, \end{array} \right.$$

- **2** Assumption: $w < \bar{w} := \sup_{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \left[B_{\tau}^{-1} H \right] < \infty$.
- 3 The dual domain $\widetilde{\Gamma}$:

Nonnegative supermartingales $\{\xi_t\}_{t\geq 0}$ such that (i) $0 \leq \xi_0 \leq 1$ and (ii) $\{\xi_t B_t^{-1} V_t\}_{t\geq 0}$ is a supermaringale for all admissible $\{V_t\}_{t\geq 0}$.

4 The dual problem:

$$d^*(\lambda) := \inf_{\xi \in \widetilde{\Gamma}} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\},$$

$$\widetilde{U}(\lambda,\omega) := \sup_{v>0} \{U(v,\omega) - \lambda v\}.$$

- $\mathbb{E}\left\{\xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} \leq \xi_{0}B_{0}^{-1}V_{0} \leq w$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}$, $\lambda > 0$, and admissible V. with $V_0 \leq w$:

$$\begin{split} \mathbb{E}\left\{U\left(V_{\tau},\omega\right)\right\} &\leq \mathbb{E}\left\{U\left(V_{\tau},\omega\right)\right\} - \lambda\left(\mathbb{E}\left\{\xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} - w\right) \\ &= \mathbb{E}\left\{U\left(V_{\tau},\omega\right) - \lambda\xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} + \lambda w \\ &\leq \mathbb{E}\left\{\sup_{v\geq 0}\left\{U\left(v,\omega\right) - \lambda\xi_{\tau}B_{\tau}^{-1}v\right\}\right\} + \lambda w \\ &= \mathbb{E}\left\{\widetilde{U}(\lambda\xi_{\tau}B_{\tau}^{-1},\omega)\right\} + \lambda w. \end{split}$$

$$p^*(w) = \sup \mathbb{E} \left\{ U(V_{\tau}, \omega) \right\} \leq \underbrace{\inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\}}_{d_{\tau}^*(\lambda)} + \lambda w.$$

- $\mathbb{E} \{\xi_{\tau} B_{\tau}^{-1} V_{\tau}\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq w$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}$, $\lambda > 0$, and admissible V. with $V_0 \leq w$:

$$\begin{split} \mathbb{E}\left\{U\left(V_{\tau},\omega\right)\right\} &\leq \mathbb{E}\left\{U\left(V_{\tau},\omega\right)\right\} - \lambda\left(\mathbb{E}\left\{\xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} - w\right) \\ &= \mathbb{E}\left\{U\left(V_{\tau},\omega\right) - \lambda\,\xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} + \lambda w \\ &\leq \mathbb{E}\left\{\sup_{v\geq 0}\left\{U\left(v,\omega\right) - \lambda\,\xi_{\tau}B_{\tau}^{-1}v\right\}\right\} + \lambda w \\ &= \mathbb{E}\left\{\widetilde{U}(\lambda\xi_{\tau}B_{\tau}^{-1},\omega)\right\} + \lambda w. \end{split}$$

$$p^*(w) = \sup \mathbb{E}\left\{U(V_{\tau}, \omega)\right\} \leq \underbrace{\inf_{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega)\right\}}_{d_{\tau}^*(\lambda)} + \lambda w$$

- $\mathbb{E} \{\xi_{\tau} B_{\tau}^{-1} V_{\tau}\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq w$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}$, $\lambda > 0$, and admissible V. with $V_0 \le w$:

$$\begin{split} \mathbb{E}\left\{U(V_{\tau},\omega)\right\} &\leq \mathbb{E}\left\{U(V_{\tau},\omega)\right\} - \lambda \left(\mathbb{E}\left\{\xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} - w\right) \\ &= \mathbb{E}\left\{U(V_{\tau},\omega) - \lambda \xi_{\tau}B_{\tau}^{-1}V_{\tau}\right\} + \lambda w \\ &\leq \mathbb{E}\left\{\sup_{v\geq 0}\left\{U(v,\omega) - \lambda \xi_{\tau}B_{\tau}^{-1}v\right\}\right\} + \lambda w \\ &= \mathbb{E}\left\{\widetilde{U}(\lambda \xi_{\tau}B_{\tau}^{-1},\omega)\right\} + \lambda w. \end{split}$$

$$p^*(w) = \sup \mathbb{E} \left\{ U(V_{\tau}, \omega) \right\} \leq \underbrace{\inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\}}_{d_{\tau}^*(\lambda)} + \lambda w$$

- $\mathbb{E} \{\xi_{\tau} B_{\tau}^{-1} V_{\tau}\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq w$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}$, $\lambda > 0$, and admissible V. with $V_0 \le w$:

$$\mathbb{E} \left\{ U(V_{\tau}, \omega) \right\} \leq \mathbb{E} \left\{ U(V_{\tau}, \omega) \right\} - \lambda \left(\mathbb{E} \left\{ \xi_{\tau} B_{\tau}^{-1} V_{\tau} \right\} - w \right)$$

$$= \mathbb{E} \left\{ U(V_{\tau}, \omega) - \lambda \xi_{\tau} B_{\tau}^{-1} V_{\tau} \right\} + \lambda w$$

$$\leq \mathbb{E} \left\{ \sup_{v \geq 0} \left\{ U(v, \omega) - \lambda \xi_{\tau} B_{\tau}^{-1} v \right\} \right\} + \lambda w$$

$$= \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_{\tau} B_{\tau}^{-1}, \omega) \right\} + \lambda w.$$

$$p^*(w) = \sup \mathbb{E} \left\{ U(V_\tau, \omega) \right\} \leq \underbrace{\inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda \xi_\tau B_\tau^{-1}, \omega) \right\}}_{d_r^*(\lambda)} + \lambda w.$$

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

Weak duality:

$$p^*(w) \le d^*_{\Gamma}(\lambda) + \lambda w$$
, for all $\lambda > 0$, and $\Gamma \subset \widetilde{\Gamma}$.

2 Strong duality:

$$p^*(w) = d^*_{_{\widetilde{\Gamma}}}(\lambda^*) + \lambda^* w, \quad ext{for some } \lambda^* > 0.$$

Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V^* s.t.

$$V_{\scriptscriptstyle T}^* = I\left(\lambda^* \; \xi_{\scriptscriptstyle T}^* \; B_{\scriptscriptstyle T}^{-1}\right),$$

where $I(\cdot,\omega)$ is the "inverse" of $U'(\cdot,\omega)$, and λ^* is the dual solution of $d_{\widetilde{\Gamma}}^*$.

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

Weak duality:

$$p^*(w) \le d^*_{\Gamma}(\lambda) + \lambda w$$
, for all $\lambda > 0$, and $\Gamma \subset \widetilde{\Gamma}$.

Strong duality:

$$ho^*(w) = d^*_{\widetilde{\mathfrak{f}}}(\lambda^*) + \lambda^* w$$
, for some $\lambda^* > 0$.

3) Dual characterization of the optimal final wealth: The primal problem is attainable at an admissible portfolio V^* s.f

$$V_{\scriptscriptstyle T}^* = I\left(\lambda^* \; \xi_{\scriptscriptstyle T}^* \; B_{\scriptscriptstyle T}^{-1}\right),$$

where $I(\cdot,\omega)$ is the "inverse" of $U'(\cdot,\omega)$, and λ^* is the dual solution of $d_{\tilde{\epsilon}}^*$.

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

Weak duality:

$$p^*(w) \le d^*_{\Gamma}(\lambda) + \lambda w$$
, for all $\lambda > 0$, and $\Gamma \subset \widetilde{\Gamma}$.

2 Strong duality:

$$p^*(w) = d^*_{\tilde{\Gamma}}(\lambda^*) + \lambda^* w$$
, for some $\lambda^* > 0$.

Dual characterization of the optimal final wealth: The primal problem is attainable at an admissible portfolio V^* s.

$$V_{\tau}^* = I\left(\lambda^* \; \xi_{\tau}^* \; B_{\tau}^{-1}\right),$$

where $I(\cdot,\omega)$ is the "inverse" of $U'(\cdot,\omega)$, and λ^* is the dual solution of $d_{\tilde{\epsilon}}^*$.

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

Weak duality:

$$p^*(w) \le d^*_{\Gamma}(\lambda) + \lambda w$$
, for all $\lambda > 0$, and $\Gamma \subset \widetilde{\Gamma}$.

2 Strong duality:

$$p^*(w) = d^*_{\tilde{\Gamma}}(\lambda^*) + \lambda^* w$$
, for some $\lambda^* > 0$.

Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible partie.

The primal problem is attainable at an admissible portfolio V^* s.t.

$$V_{\tau}^* = I\left(\lambda^* \; \xi_{\tau}^* \; B_{\tau}^{-1}\right),$$

where $\mathit{I}(\cdot,\omega)$ is the "inverse" of $\mathit{U}'(\cdot,\omega)$, and λ^* is the dual solution of $d_{\widetilde{\Gamma}}^*$.

1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$N((0,\tau]\times(a,b]):=\#\{t\leq\tau:\Delta Z_t\in(a,b]\}\sim \mathsf{Poisson}(\tau\nu((a,b])).$$

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \int_{\mathbb{R}^d} v(t, z) \left(N(dt, dz) - dt \nu(dz) \right) \right\},$$

- ③ Interpretation: (Finite-jump activity $\nu(\mathbb{R}) < \infty$)
 - Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_t \int v(t,z)\nu(dz)$ and volatility σ_t
 - S jumps at the jump times of Z such that, if ΔZ_t ≠ 0, the stock price jumps a that, if ΔZ_t ≠ 0, the stock price jumps a fraction v(t, ΔZ_t) of its level:

$$\frac{S_t - S_{t-}}{S_{t-}} = v(t, \Delta Z_t) > -1$$

1 Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$N((0,\tau]\times(a,b]):=\#\{t\leq \tau:\Delta Z_t\in(a,b]\}\sim \mathsf{Poisson}(\tau\nu((a,b])).$$

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \int_{\mathbb{R}^d} v(t, z) \left(N(dt, dz) - dt \nu(dz) \right) \right\},$$

$$\text{To } v(t, 0) = 0 \text{ and } v(t, z) > 1$$

- 3 Interpretation: (Finite-jump activity $\nu(\mathbb{R}) < \infty$)
 - Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_t \int v(t,z)\nu(dz)$ and volatility σ
 - S jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps a the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps a the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps a the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jump times of Z such that, if ∆Z_t ≠ 0, the stock pr

$$\frac{S_t - S_{t^-}}{S_{t^-}} = v(t, \Delta Z_t) > -1.$$

1 Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$N((0,\tau]\times(a,b]):=\#\{t\leq \tau:\Delta Z_t\in(a,b]\}\sim \mathsf{Poisson}(\tau\nu((a,b])).$$

$$dS_t = S_{t^-} \left\{ \mu_t dt + \sigma_t dW_t + \int_{\mathbb{R}^d} v(t, z) \left(N(dt, dz) - dt \nu(dz) \right) \right\},$$
 where $v(t, 0) = 0$, and $v(t, z) > -1$.

- 3 Interpretation: (Finite-jump activity $\nu(\mathbb{R}) < \infty$)
 - Between jump times the stock follows a Black-Scholes model with
 - instantaneous mean rate of return $\mu_l \int v(t,z)\nu(dz)$ and volatility σ_l .
 - S jumps at the jump times of Z such that, if $\Delta Z_t \neq 0$, the stock price jumps : ""Tasting" : $(t, \Delta Z_t)$ of its level.
 - $\frac{S_t S_{t-}}{S_{t-}} = v(t, \Delta Z_t) > -1.$

1 Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$N((0,\tau]\times(a,b]):=\#\{t\leq\tau:\Delta Z_t\in(a,b]\}\sim \mathsf{Poisson}(\tau\nu((a,b])).$$

$$dS_t = S_{t^-} \left\{ \mu_t dt + \sigma_t dW_t + \int_{\mathbb{R}^d} v(t, z) \left(N(dt, dz) - dt \nu(dz) \right) \right\},$$
 where $v(t, 0) = 0$, and $v(t, z) > -1$.

- 3 Interpretation: (Finite-jump activity $\nu(\mathbb{R}) < \infty$)
 - Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_t \int v(t,z)\nu(dz)$ and volatility σ_t .
 - *S* jumps at the jump times of *Z* such that, if $\Delta Z_t \neq 0$, the stock price jumps a "fraction" $v(t, \Delta Z_t)$ of its level:

$$\frac{S_t - S_{t^-}}{S_{t^-}} = v(t, \Delta Z_t) > -1.$$

1 Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$N((0,\tau]\times(a,b]):=\#\{t\leq\tau:\Delta Z_t\in(a,b]\}\sim \mathsf{Poisson}(\tau\nu((a,b])).$$

$$dS_t = S_{t^-} \left\{ \mu_t dt + \sigma_t dW_t + \int_{\mathbb{R}^d} v(t, z) \left(N(dt, dz) - dt \nu(dz) \right) \right\},$$
 where $v(t, 0) = 0$, and $v(t, z) > -1$.

- 3 Interpretation: (Finite-jump activity $\nu(\mathbb{R}) < \infty$)
 - Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_t \int v(t,z)\nu(dz)$ and volatility σ_t .
 - *S* jumps at the jump times of *Z* such that, if $\Delta Z_t \neq 0$, the stock price jumps a "fraction" $v(t, \Delta Z_t)$ of its level:

$$\frac{S_t - S_{t^-}}{S_{t^-}} = v(t, \Delta Z_t) > -1$$

1 Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$N((0,\tau]\times(a,b]):=\#\{t\leq \tau:\Delta Z_t\in(a,b]\}\sim \mathsf{Poisson}(\tau\nu((a,b])).$$

$$d\,S_t = S_{t^-} \left\{ \mu_t\,dt + \sigma_t\,dW_t + \int_{\mathbb{R}^d} v(t,z) \left(N(dt,dz) - dt\nu(dz)\right) \right\},$$
 where $v(t,0) = 0$, and $v(t,z) > -1$.

- 3 Interpretation: (Finite-jump activity $\nu(\mathbb{R}) < \infty$)
 - Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_t \int v(t,z)\nu(dz)$ and volatility σ_t .
 - S jumps at the jump times of Z such that, if ∆Z_t ≠ 0, the stock price jumps a
 "fraction" v(t, ∆Z_t) of its level:

$$\frac{S_t - S_{t^-}}{S_{t^-}} = v(t, \Delta Z_t) > -1.$$

Merton's problem in Lévy markets

A natural problem:

For a specific market model (say Lévy one) and a given utility function,

Can one narrow down the dual domain $\Gamma \subset \widetilde{\Gamma}$ where to search ξ^* ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]

For the previous Lévy market and for unbounded Inada type utility functions, the Dual Theorem holds and the dual solution ξ^* is the *stochastic exponential* $\mathcal{E}(X^*)$ of a local martingale

$$X_t^* := \int_0^t G^*(s) dW_s + \int_0^t \int F^*(s, z) \left(N(ds, dz) - ds \nu(dz) \right),$$

for a process G^* and for a field $F^* > -1$.

Merton's problem in Lévy markets

A natural problem:

For a specific market model (say Lévy one) and a given utility function, Can one narrow down the dual domain $\Gamma \subset \widetilde{\Gamma}$ where to search ξ^* ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]

For the previous Lévy market and for unbounded Inada type utility functions, the Dual Theorem holds and the dual solution ξ^* is the *stochastic exponential* $\mathcal{E}(X^*)$ of a local martingale

$$X_t^* := \int_0^t G^*(s) dW_s + \int_0^t \int F^*(s, z) \left(N(ds, dz) - ds \nu(dz) \right),$$

for a process G^* and for a field $F^* > -1$.

Merton's problem in Lévy markets

A natural problem:

For a specific market model (say Lévy one) and a given utility function, Can one narrow down the dual domain $\Gamma \subset \widetilde{\Gamma}$ where to search ξ^* ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]

For the previous Lévy market and for unbounded Inada type utility functions, the Dual Theorem holds and the dual solution ξ^* is the *stochastic exponential* $\mathcal{E}(X^*)$ of a local martingale

$$X_t^* := \int_0^t G^*(s) dW_s + \int_0^t \int F^*(s,z) \left(N(ds,dz) - ds \nu(dz) \right),$$

for a process G^* and for a field $F^* > -1$.

Key tool

Representation Theorems: [Kunita-Watanabe (1967)]

Let \mathcal{F}_t be the information process generated by $\{W_s: s \leq t\}$ and by $\{Z_s: s \leq t\}$.

• ξ is a *positive* local martingale with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ iff $\xi_t=\xi_0\mathcal{E}(X)$ with

$$X_t := \int_0^t G(s)dW_s + \int_0^t \int F(s,z) \left(N(dt,dz) - dt\nu(dz)\right), \quad F > -1.$$

• ξ is a *positive* supermartingale iff $\xi_t = \xi_0 \mathcal{E}(X - A)$ where X is as above and A is increasing predictable s.t. the jump $\Delta A < 1$.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{w}_r := \sup_{\epsilon \in \Gamma} \mathbb{E} \{ \xi_T H \} < \infty$
 - (ii) Γ is closed under "Fatou convergence"

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $\circ : c_1^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ U(\lambda^* \xi_1, \omega) \right\}$ is attainable at ξ^*
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$ then
 - $I\left(\lambda^*\,\xi_{_T}^*\right)$ is super-replicable by an admissible V^* s.t. $V_0^*=w$. Hence
 - V* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{w}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d_{\epsilon}^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda^* \xi_{\tau}, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^*I\left(\lambda^*\,\xi_{\tau}^*\right)
 ight\}=w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \, \xi_\tau^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$

- $I\left(\lambda^*\,\xi_7^*\right)$ is super-replicable by an admissible V^* s.t. $V_0^*=w$. Hence
 - V^* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d_r^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda^* \xi_\tau, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^{*}I\left(\lambda^{*}\xi_{\tau}^{*}\right)\right\}=w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_7^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$
 - then
 - $I\left(\lambda^*\,\xi_T^*\right)$ is super-replicable by an admissible V^* s.t. $V_0^*=w$. Hence
 - V* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d_r^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \tilde{U}(\lambda^* \xi_\tau, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^*I\left(\lambda^*\xi_{\tau}^*\right)\right\}=w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_7^*\right)\right)\right]$
- ② Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$
 - then
 - $I\left(\lambda^*\,\xi_7^*\right)$ is super-replicable by an admissible V^* s.t. $V_0^*=w$. Hence
 - V* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d^*_{\Gamma}(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}(\lambda^* \xi_{\tau}, \omega)\right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^{*}I\left(\lambda^{*}\xi_{\tau}^{*}\right)\right\}=w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_T^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$

- $I(\lambda^* \xi_{\tau}^*)$ is super-replicable by an admissible V^* s.t. $V_0^* = w$. Hence.
- V* solves the primal problem

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d_{\Gamma}^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda^* \xi_{\tau}, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^{*}I\left(\lambda^{*}\xi_{\tau}^{*}\right)\right\}=w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_T^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$

- $I(\lambda^* \xi_\tau^*)$ is super-replicable by an admissible V^* s.t. $V_0^* = w$. Hence
 - V^* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d^*_{\Gamma}(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda^* \xi_{\tau}, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^{*}I\left(\lambda^{*}\xi_{\tau}^{*}\right)\right\} = w$, where *I* is the inverse of *U'*
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_T^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$

- $I(\lambda^* \xi_{\tau}^*)$ is super-replicable by an admissible V^* s.t. $V_0^* = w$. Hence.
 - V^* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d_{\Gamma}^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda^* \xi_{\tau}, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^{*}I\left(\lambda^{*}\xi_{\tau}^{*}\right)\right\} = w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_{\tau}^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$

- $I\left(\lambda^* \, \xi_{ au}^*
 ight)$ is super-replicable by an admissible V^* s.t. $V_0^* = w$. Hence
 - V^* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d_{\Gamma}^*(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E} \left\{ \widetilde{U}(\lambda^* \xi_{\tau}, \omega) \right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^{*}I\left(\lambda^{*}\xi_{\tau}^{*}\right)\right\}=w$, where I is the inverse of U'
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_{\tau}^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$
 - $I\left(\lambda^* \, \xi_{\scriptscriptstyle T}^*\right)$ is super-replicable by an admissible V^* s.t. $V_0^* = w$. Hence, V^* solves the primal problem.

- **1** WLG assume $B_t \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
 - (i) $\bar{\mathbf{w}}_{\Gamma} := \sup_{\xi \in \Gamma} \mathbb{E} \left\{ \xi_{\tau} H \right\} < \infty$
 - (ii) Γ is closed under "Fatou convergence".

Then, for each $0 < w < \bar{w}_{\Gamma}$, there exist $\lambda^* > 0$ and $\xi^* \in \Gamma$ s.t.

- $d^*_\Gamma(\lambda^*) := \inf_{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}(\lambda^* \xi_T, \omega)\right\}$ is attainable at ξ^*
- $\mathbb{E}\left\{\xi_{\tau}^*I\left(\lambda^*\xi_{\tau}^*\right)\right\} = w$, where *I* is the inverse of *U'*
- $p^*(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^* \xi_{\tau}^*\right)\right)\right]$
- 2 Furthermore, if
 - (iii) Γ contains $\xi_t := \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$ for any EMM $\mathbb{Q} \in \mathcal{M}$

then

• $I\left(\lambda^* \, \xi_{\tau}^*\right)$ is super-replicable by an admissible V^* s.t. $V_0^* = w$. Hence, V^* solves the primal problem.

1 Let

$$S:=\{X_t:=\int_0^t G(s)dW_s+\int_0^t \int F(s,z)\widetilde{N}(ds,dz): F\geq -1\},$$

 $\widehat{\Gamma}:=\{\xi:=\xi_0\mathcal{E}\left(X- extbf{ extit{A}}
ight):X\in\mathcal{S}, extit{ extit{A}} ext{ increasing, and } \xi\geq 0\},$

where $\widetilde{N}(dt,dz):=N(dt,dz)-dt
u(dz)$. Then,

$$\Gamma := \widehat{\Gamma} \cap \widetilde{\Gamma},$$

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.

2 There exist $\lambda^* > 0$, $X^* \in S$ and increasing A^* such that

$$\mathcal{X}^* := I(\lambda^* \mathcal{E}(X^* - A^*))$$

$$\mathbb{E}U(V_T) \leq \mathbb{E}U(V_T^*), \quad \forall \quad V \quad s.t. \quad V_0 \leq w.$$

1 Let

$$\mathcal{S}:=\{X_t:=\int_0^t \textbf{\textit{G}}(\textbf{\textit{s}})dW_{\textbf{\textit{s}}}+\int_0^t \int \textbf{\textit{F}}(\textbf{\textit{s}},\textbf{\textit{z}})\widetilde{N}(d\textbf{\textit{s}},d\textbf{\textit{z}}):F\geq -1\},$$

$$\widehat{\Gamma}:=\{\xi:=\xi_0\mathcal{E}\,(X-\textbf{\textit{A}}):X\in\mathcal{S}, \text{\textit{A} increasing, and }\xi\geq 0\},$$
 where $\widetilde{N}(dt,d\textbf{\textit{z}}):=N(dt,d\textbf{\textit{z}})-dt\nu(d\textbf{\textit{z}}).$ Then,

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.

2 There exist $\lambda^* > 0$, $X^* \in S$ and increasing A^* such that

$$\mathcal{X}^* := I(\lambda^* \mathcal{E}(X^* - A^*))$$

$$\mathbb{E}U(V_T) \leq \mathbb{E}U(V_T^*), \quad \forall \quad V \quad s.t. \quad V_0 \leq w.$$

F-L & Ma, 2008

1 Let

$$\mathcal{S}:=\{X_t:=\int_0^t \textbf{\textit{G}}(\textbf{\textit{s}}) dW_{\textbf{\textit{s}}} + \int_0^t \int \textbf{\textit{F}}(\textbf{\textit{s}},\textbf{\textit{z}}) \widetilde{N}(d\textbf{\textit{s}},d\textbf{\textit{z}}): F\geq -1\},$$

$$\widehat{\Gamma}:=\{\xi:=\xi_0\mathcal{E}\,(X-\textbf{\textit{A}}): X\in\mathcal{S}, \textbf{\textit{A}} \text{ increasing, and } \xi\geq 0\},$$
 where $\widetilde{N}(dt,d\textbf{\textit{z}}):=N(dt,d\textbf{\textit{z}})-dt\nu(d\textbf{\textit{z}}).$ Then,
$$\Gamma:=\widehat{\Gamma}\cap\widetilde{\Gamma},$$

fulfills the conditions necessary (i)-(iii) for the *Dual Theorem*.

② There exist $\lambda^* > 0$, $X^* \in \mathcal{S}$ and increasing A^* such that

$$\mathcal{X}^* := I(\lambda^* \mathcal{E}(X^* - A^*))$$

$$\mathbb{E}U(V_T) \leq \mathbb{E}U(V_T^*), \quad \forall \quad V \quad s.t. \quad V_0 \leq w.$$

1 Let

$$\mathcal{S}:=\{X_t:=\int_0^t \textbf{\textit{G}}(\textbf{\textit{s}})dW_{\textbf{\textit{s}}}+\int_0^t \int \textbf{\textit{F}}(\textbf{\textit{s}},\textbf{\textit{z}})\widetilde{N}(d\textbf{\textit{s}},d\textbf{\textit{z}}): F\geq -1\},$$

$$\widehat{\Gamma}:=\{\xi:=\xi_0\mathcal{E}\,(X-\textbf{\textit{A}}): X\in\mathcal{S}, \textbf{\textit{A}} \text{ increasing, and } \xi\geq 0\},$$
 where $\widetilde{N}(dt,d\textbf{\textit{z}}):=N(dt,d\textbf{\textit{z}})-dt\nu(d\textbf{\textit{z}}).$ Then,
$$\Gamma:=\widehat{\Gamma}\cap\widetilde{\Gamma}.$$

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.

2 There exist $\lambda^* > 0$, $X^* \in \mathcal{S}$ and increasing A^* such that

$$\mathcal{X}^* := I(\lambda^* \mathcal{E}(X^* - A^*)),$$

$$\mathbb{E}U(V_T) \leq \mathbb{E}U(V_T^*), \quad \forall \quad V \quad s.t. \quad V_0 \leq w.$$

Question: Under what conditions $\xi = \xi_0 \mathcal{E}(X - A) \in \widehat{\Gamma}$ is in $\widetilde{\Gamma}$?

- 1 There exists predictable increasing A^p s.t. $\xi = \xi_0 \mathcal{E}(X A^p)$.
- 2 $\{\xi_t S_t\}_t$ is a supermartingale iff

$$h_t := b_t + \sigma_t G(t) + \int v(t,z) F(t,z) \nu(dz) \le a_t := \frac{dA_t^c}{dt}$$

for any $t \le \tau(\omega) := \sup_n \inf\{t : \xi_t < 1/n\}$.

③ $\xi.V^eta$ is supermartingale for any admissible $V^eta_t:=V_0+\int_0^teta_urac{dS_u}{S_u}$ iff

$$h_t \beta_t \leq a_t$$
, a.e. $t \leq \tau$

Question: Under what conditions $\xi = \xi_0 \mathcal{E}(X - A) \in \widehat{\Gamma}$ is in $\widetilde{\Gamma}$?

- **1** There exists predictable increasing A^p s.t. $\xi = \xi_0 \mathcal{E}(X A^p)$.
- 2 $\{\xi_t S_t\}_t$ is a supermartingale iff

$$h_t := b_t + \sigma_t G(t) + \int v(t,z) F(t,z)
u(dz) \le a_t := rac{dA_t^c}{dt}$$

for any $t \le \tau(\omega) := \sup_n \inf\{t : \xi_t < 1/n\}.$

③ $\xi.V^eta$ is supermartingale for any admissible $V^eta_t:=V_0+\int_0^teta_urac{dS_u}{S_u}$ iff

$$h_t \beta_t \leq a_t$$
, a.e. $t \leq \tau$.

Question: Under what conditions $\xi = \xi_0 \mathcal{E}(X - A) \in \widehat{\Gamma}$ is in $\widetilde{\Gamma}$?

- **1** There exists predictable increasing A^p s.t. $\xi = \xi_0 \mathcal{E}(X A^p)$.
- **2** $\{\xi_t S_t\}_t$ is a supermartingale iff

$$h_t := b_t + \sigma_t G(t) + \int v(t,z) F(t,z) \nu(dz) \le a_t := \frac{dA_t^c}{dt}.$$

for any $t \le \tau(\omega) := \sup_n \inf\{t : \xi_t < 1/n\}.$

③ $\xi.V^eta$ is supermartingale for any admissible $V^eta_t:=V_0+\int_0^teta_Urac{dS_u}{S_u}$ iff

$$h_t \beta_t \leq a_t$$
, a.e. $t \leq \tau$.

Question: Under what conditions $\xi = \xi_0 \mathcal{E}(X - A) \in \widehat{\Gamma}$ is in $\widetilde{\Gamma}$?

- **1** There exists predictable increasing A^p s.t. $\xi = \xi_0 \mathcal{E}(X A^p)$.
- **2** $\{\xi_t S_t\}_t$ is a supermartingale iff

$$h_t := b_t + \sigma_t G(t) + \int v(t,z) F(t,z) \nu(dz) \le a_t := \frac{dA_t^c}{dt}.$$

for any $t \le \tau(\omega) := \sup_n \inf\{t : \xi_t < 1/n\}$.

3 ξ . V_t^β is supermartingale for any admissible $V_t^\beta := V_0 + \int_0^t \beta_u \frac{dS_u}{S_u}$ iff

$$h_t \beta_t \leq a_t$$
, a.e. $t \leq \tau$.

Model: ν is atomic with atoms $\{z_i\}_i$:

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \sum_i v(t, z_i)(t) dN_t^{(i)}
ight\},$$

 $N^{(i)}$ is homogeneous Poisson with intensity $\nu(z_i)$.

① A predictable $\beta_t : \Omega \to \mathbb{R}$ is admissible iff

$$-\frac{1}{\max_i v(t,z_i) \vee 0} \leq \beta_t \leq -\frac{1}{\min_i v(t,z_i) \wedge 0}.$$

 $2 \xi \in \widetilde{\Gamma}$ iff

$$\hat{h}_t := -rac{h_t}{\max_i v(t, z_i) \vee 0} \mathbf{1}_{\{h_t < 0\}} - rac{h_t}{\min_i v(t, z_i) \wedge 0} \mathbf{1}_{\{h_t > 0\}} \leq a_t.$$

- 3 There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi} := \xi_0 \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and $\xi_1 \leq \widetilde{\xi}_1$.
- 4 $\{\widetilde{\xi}(t)V_t^{\beta}\}_{t\leq T}$ is a local martingale for all admissible β .

Model: ν is atomic with atoms $\{z_i\}_i$:

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \sum_i v(t, z_i)(t) dN_t^{(i)} \right\},$$

 $N^{(i)}$ is homogeneous Poisson with intensity $\nu(z_i)$.

1 A predictable $\beta_t : \Omega \to \mathbb{R}$ is admissible iff

$$-\frac{1}{\max_{i} v(t, z_i) \vee 0} \leq \beta_t \leq -\frac{1}{\min_{i} v(t, z_i) \wedge 0}.$$

 $\mathbf{2} \ \xi \in \widetilde{\Gamma} \ \mathrm{iff}$

$$\hat{h}_t := -rac{h_t}{\max_i v(t, z_i) \lor 0} \mathbf{1}_{\{h_t < 0\}} - rac{h_t}{\min_i v(t, z_i) \land 0} \mathbf{1}_{\{h_t > 0\}} \le a_t.$$

- 3 There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi} := \xi_0 \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and $\xi_1 \leq \widetilde{\xi}_1$.

Model: ν is atomic with atoms $\{z_i\}_i$:

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \sum_i v(t, z_i)(t) dN_t^{(i)} \right\},$$

 $N^{(i)}$ is homogeneous Poisson with intensity $\nu(z_i)$.

1 A predictable $\beta_t : \Omega \to \mathbb{R}$ is admissible iff

$$-\frac{1}{\max_{i} v(t, z_i) \vee 0} \leq \beta_t \leq -\frac{1}{\min_{i} v(t, z_i) \wedge 0}.$$

 $\mathbf{2} \ \xi \in \widetilde{\Gamma} \ \text{iff}$

$$\hat{h}_t := -\frac{h_t}{\max_i v(t, z_i) \vee 0} \mathbf{1}_{\{h_t < 0\}} - \frac{h_t}{\min_i v(t, z_i) \wedge 0} \mathbf{1}_{\{h_t > 0\}} \leq a_t.$$

- 3 There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi} := \xi_0 \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and $\xi_1 \leq \widetilde{\xi}_2$.

Model: ν is atomic with atoms $\{z_i\}_i$:

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \sum_i v(t, z_i)(t) dN_t^{(i)} \right\},$$

 $N^{(i)}$ is homogeneous Poisson with intensity $\nu(z_i)$.

1 A predictable $\beta_t : \Omega \to \mathbb{R}$ is admissible iff

$$-\frac{1}{\max_i v(t,z_i) \vee 0} \leq \beta_t \leq -\frac{1}{\min_i v(t,z_i) \wedge 0}.$$

 $\mathbf{2} \ \xi \in \widetilde{\Gamma} \ \text{iff}$

$$\hat{h}_t := -\frac{h_t}{\max_i v(t, z_i) \vee 0} \mathbf{1}_{\{h_t < 0\}} - \frac{h_t}{\min_i v(t, z_i) \wedge 0} \mathbf{1}_{\{h_t > 0\}} \leq a_t.$$

- 3 There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi} := \xi_0 \, \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and $\xi_{\cdot} \leq \widetilde{\xi}_{\cdot}$.

Model: ν is atomic with atoms $\{z_i\}_i$:

$$dS_t = S_{t-} \left\{ \mu_t dt + \sigma_t dW_t + \sum_i v(t, z_i)(t) dN_t^{(i)} \right\},$$

 $N^{(i)}$ is homogeneous Poisson with intensity $\nu(z_i)$.

1 A predictable $\beta_t : \Omega \to \mathbb{R}$ is admissible iff

$$-\frac{1}{\max_i v(t,z_i) \vee 0} \leq \beta_t \leq -\frac{1}{\min_i v(t,z_i) \wedge 0}.$$

 $\mathbf{2} \ \xi \in \widetilde{\Gamma} \ \text{iff}$

$$\hat{h}_t := -\frac{h_t}{\max_i v(t, z_i) \vee 0} \mathbf{1}_{\{h_t < 0\}} - \frac{h_t}{\min_i v(t, z_i) \wedge 0} \mathbf{1}_{\{h_t > 0\}} \leq a_t.$$

- 3 There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi} := \xi_0 \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and $\xi_1 \leq \widetilde{\xi}_1$.
- 4 $\{\widetilde{\xi}(t)V_t^{\beta}\}_{t\leq T}$ is a local martingale for all admissible β .

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$dS^{i}(t) = S^{i}(t^{-})\{b_{t}^{i}dt + \sum_{j=1}^{d} \sigma_{t}^{ij}dW_{t}^{j} + \int_{\mathbb{R}^{d}} h(t,z)\widetilde{N}(dt,dz),\}$$

for a general Poisson random measure and Wiener process

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$dS^{i}(t) = S^{i}(t^{-})\{b_{t}^{i}dt + \sum_{j=1}^{d} \sigma_{t}^{ij}dW_{t}^{j} + \int_{\mathbb{R}^{d}} h(t,z)\widetilde{N}(dt,dz),\}$$

for a general Poisson random measure and Wiener process

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$dS^{i}(t) = S^{i}(t^{-})\{b_{t}^{i}dt + \sum_{j=1}^{d} \sigma_{t}^{ij}dW_{t}^{j} + \int_{\mathbb{R}^{d}} h(t,z)\widetilde{N}(dt,dz),\}$$

for a general Poisson random measure and Wiener process

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$dS^{i}(t) = S^{i}(t^{-})\{b_{t}^{i}dt + \sum_{j=1}^{d} \sigma_{t}^{ij}dW_{t}^{j} + \int_{\mathbb{R}^{d}} h(t,z)\widetilde{N}(dt,dz),\}$$

for a general Poisson random measure and Wiener process.

For Further Reading I

Figueroa-Lopez and Ma.

State-dependent utility maximization in Lévy markets Preprint available at ArXiv. 2008.

Kramkov and Schachermayer.

The asymptotic elasticity of utility functions and optimal investment in incomplete markets. *Finance and Stochastics*, 1999.

Föllmer and Leukert.

Efficient hedging: Cost versus shortfall risk. *Finance and Stochastics*, 2000.

Karatzas, Lehoczky, Shreve, and Xu.

Martingale and duality methods for utility maximization in an incomplete market. *SIAM J. Control and Optimization*, 1991.

For Further Reading II

Kunita

Variational equality and portfolio optimization for price processes with jumps. *In Stoch. Proc. and Appl. to Mathem. Fin.*, 2003.

Kramkov.

Optional decomposition of supermartingales and pricing of contigent claims in incomplete security markets. *Prob. Th. and Rel. fields*, 1996.

Utility function and its convex dual function

- $\widetilde{U}(\lambda,\omega) := \sup_{0 \le w \le H} \{U(w,\omega) \lambda w\},$
- $I(\lambda) := \inf\{w \ge 0 : U'(w) \le \lambda\} = -\widetilde{U}'(\lambda).$

■ Return 1

4 Poturn 2

Lévy processes with jumps

Compound Poisson Process

Examples of Lévy processes: compound Poisson process (left) and Lévy jump-diffusion