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Merton’s portfolio optimization problem

1 Set-up: A frictionless market consisting of a risky asset with price

process St : Ω→ R+, t ≥ 0, and a risk-free asset with price process Bt ,

t ≥ 0, s.t. B0 = 1.

2 Goal:

Allocate a given initial wealth w0 so that to maximize the agent’s expected

final “utility" during a finite time horizon [0,T ].
3 State-dependent utility: U(w , ω) : R+ × Ω→ R s.t.

• Increasing and concave in the wealth w , for each state of nature ω ∈ Ω.
• Differentiable in [0,H(ω)) and flat for wealths w above certain threshold

H(ω) : R+ → R̄+.

4 Problem:

Find a self-financing portfolio strategy such that the corresponding

portfolio’s value process {Vt}t≤T maximizes E {U(VT , ω)} subject to

V0 ≤ w (budget constraint) and V· ≥ 0 (solvency or admissibility

condition).
Utility function graph
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Some financial background

1 Typical set-up:

• The discounted price process {B−1
t St}t≥0 is a semimartingale.

• The classM of Equivalent Martingale Measures (EMM) is non-empty.

2 The Fundamental Theorem of Finance:

• The market is complete if and only ifM = {Q}.
• “Any" T -claim H is reachable with the initial endowment w = EQ

˘
B−1

T H
¯

.
• Each EMM Q induces an arbitrage-free pricing procedure: EQ

˘
B−1

T H
¯

.

3 The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is w̄ := supQ∈M EQ

[
B−1

T
H
]

4 There exists an admissible portfolio {Vt}t≤T such that

V0 = w and VT ≥ H, a.s.

if and only if w ≥ w̄ .
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Convex Duality Method

• Basic idea: Upper bound a maximization problem with constraints, using
a convex minimization problem without constraints.

• Primal problem:
p∗ := max f (x)

s.t . h(x) ≤ 0

• Construction of the dual problem:

• f (x) ≤

L(x,λ)z }| {
f (x)− λh(x), λ ≥ 0

• p∗ ≤ eL(λ) := maxx L(x , λ), Convex

• p∗ ≤ d∗ := min
λ≥0

eL(λ)| {z }
Dual Problem

.

• We say that strong duality holds if p∗ = d∗.
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Convex duality in portfolio optimization problems
Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

1 The primal problem:{
p∗(w) := sup E {U(VT , ω)}
such that V0 ≤ w and V· ≥ 0,

2 Assumption: w < w̄ := supQ∈M EQ

[
B−1

T
H
]
<∞.

3 The dual domain Γ̃:

Nonnegative supermartingales {ξt}t≥0 such that (i) 0 ≤ ξ0 ≤ 1 and (ii)

{ξtB−1
t Vt}t≥0 is a supermaringale for all admissible {Vt}t≥0.

4 The dual problem:

d∗(λ) := inf
ξ∈eΓ E

{
Ũ(λξT B−1

T
, ω)
}
,

where

Ũ(λ, ω) := sup
v≥0
{U (v , ω)− λv} .
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Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

1 The primal problem:{
p∗(w) := sup E {U(VT , ω)}
such that V0 ≤ w and V· ≥ 0,

2 Assumption: w < w̄ := supQ∈M EQ

[
B−1

T
H
]
<∞.

3 The dual domain Γ̃:

Nonnegative supermartingales {ξt}t≥0 such that (i) 0 ≤ ξ0 ≤ 1 and (ii)

{ξtB−1
t Vt}t≥0 is a supermaringale for all admissible {Vt}t≥0.

4 The dual problem:

d∗(λ) := inf
ξ∈eΓ E

{
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Karatzas et. al. 91, Cvitanić & Karatzas 92-93, Kramkov & Schachermayer 99

1 The primal problem:{
p∗(w) := sup E {U(VT , ω)}
such that V0 ≤ w and V· ≥ 0,

2 Assumption: w < w̄ := supQ∈M EQ

[
B−1

T
H
]
<∞.

3 The dual domain Γ̃:

Nonnegative supermartingales {ξt}t≥0 such that (i) 0 ≤ ξ0 ≤ 1 and (ii)

{ξtB−1
t Vt}t≥0 is a supermaringale for all admissible {Vt}t≥0.

4 The dual problem:

d∗(λ) := inf
ξ∈eΓ E

{
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Motivation behind the dual problem

• E
{
ξT B−1

T
VT

}
≤ ξ0B−1

0 V0 ≤w if V0 ≤ w .

• For any ξ ∈ Γ̃, λ > 0, and admissible V· with V0 ≤ w :

E {U (VT , ω)}≤E {U (VT , ω)} − λ
(
E
{
ξT B−1

T
VT

}
− w

)
= E

{
U (VT , ω)− λ ξT B−1

T
VT

}
+ λw

≤ E

{
sup
v≥0

{
U (v , ω)− λ ξT B−1

T
v
}}

+ λw

= E
{

Ũ(λξT B−1
T
, ω)
}

+ λw .

• For any subclass of Γ ⊂ Γ̃:

p∗(w)= sup E {U(VT , ω)} ≤ inf
ξ∈Γ

E
{

Ũ(λξT B−1
T
, ω)
}

︸ ︷︷ ︸
d∗

Γ
(λ)

+λw .
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Ũ(λξT B−1
T
, ω)
}

︸ ︷︷ ︸
d∗

Γ
(λ)

+λw .



Motivation behind the dual problem

• E
{
ξT B−1

T
VT

}
≤ ξ0B−1

0 V0 ≤w if V0 ≤ w .

• For any ξ ∈ Γ̃, λ > 0, and admissible V· with V0 ≤ w :

E {U (VT , ω)}≤E {U (VT , ω)} − λ
(
E
{
ξT B−1

T
VT

}
− w

)
= E

{
U (VT , ω)− λ ξT B−1

T
VT

}
+ λw

≤ E

{
sup
v≥0

{
U (v , ω)− λ ξT B−1

T
v
}}

+ λw

= E
{
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Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

1 Weak duality:

p∗(w) ≤ d∗
Γ

(λ) + λw , for all λ > 0, and Γ ⊂ Γ̃.

2 Strong duality:

p∗(w) = d∗eΓ (λ∗) + λ∗w , for some λ∗ > 0.

3 Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V ∗ s.t.

V ∗
T

= I
(
λ∗ ξ∗

T
B−1

T

)
,

where I(·, ω) is the “inverse" of U ′(·, ω), and λ∗ is the dual solution of d∗eΓ .



Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

1 Weak duality:

p∗(w) ≤ d∗
Γ

(λ) + λw , for all λ > 0, and Γ ⊂ Γ̃.

2 Strong duality:

p∗(w) = d∗eΓ (λ∗) + λ∗w , for some λ∗ > 0.

3 Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V ∗ s.t.

V ∗
T

= I
(
λ∗ ξ∗

T
B−1

T

)
,

where I(·, ω) is the “inverse" of U ′(·, ω), and λ∗ is the dual solution of d∗eΓ .



Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

1 Weak duality:

p∗(w) ≤ d∗
Γ

(λ) + λw , for all λ > 0, and Γ ⊂ Γ̃.

2 Strong duality:

p∗(w) = d∗eΓ (λ∗) + λ∗w , for some λ∗ > 0.

3 Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V ∗ s.t.

V ∗
T

= I
(
λ∗ ξ∗

T
B−1

T

)
,

where I(·, ω) is the “inverse" of U ′(·, ω), and λ∗ is the dual solution of d∗eΓ .



Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]

1 Weak duality:

p∗(w) ≤ d∗
Γ

(λ) + λw , for all λ > 0, and Γ ⊂ Γ̃.

2 Strong duality:

p∗(w) = d∗eΓ (λ∗) + λ∗w , for some λ∗ > 0.

3 Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V ∗ s.t.

V ∗
T

= I
(
λ∗ ξ∗

T
B−1

T

)
,

where I(·, ω) is the “inverse" of U ′(·, ω), and λ∗ is the dual solution of d∗eΓ .



A non-Markovian Lévy Market

1 Let W be a Wiener process and let N be an independent Poisson jump

measure associated with a Lévy process Z with Lévy measure ν:

N((0, τ ]× (a,b]) := #{t ≤ τ : ∆Zt ∈ (a,b]} ∼ Poisson(τν((a,b])).

2 The stock price process {St}t≥0 follows the dynamics:

d St = St−

{
µt dt + σt dWt +

∫
Rd

v(t , z) (N(dt ,dz)− dtν(dz))

}
,

where v(t ,0) = 0, and v(t , z) > −1.
3 Interpretation: (Finite-jump activity ν(R) <∞)

• Between jump times the stock follows a Black-Scholes model with

instantaneous mean rate of return µt −
R

v(t , z)ν(dz) and volatility σt .
• S jumps at the jump times of Z such that, if ∆Zt 6= 0, the stock price jumps a

“fraction" v(t ,∆Zt ) of its level:

St − St−

St−
= v(t ,∆Zt ) > −1.
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measure associated with a Lévy process Z with Lévy measure ν:

N((0, τ ]× (a,b]) := #{t ≤ τ : ∆Zt ∈ (a,b]} ∼ Poisson(τν((a,b])).
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Merton’s problem in Lévy markets

A natural problem:

For a specific market model (say Lévy one) and a given utility function,

Can one narrow down the dual domain Γ ⊂ Γ̃ where to search ξ∗?

Theorem. [Karatzas et. al. 91], [Kunita, 03]

For the previous Lévy market and for unbounded Inada type utility functions,

the Dual Theorem holds and the dual solution ξ∗ is the stochastic exponential

E(X ∗) of a local martingale

X ∗t :=

∫ t

0
G∗(s)dWs +

∫ t

0

∫
F ∗(s, z) (N(ds,dz)− dsν(dz)) ,

for a process G∗ and for a field F ∗ > −1.
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Key tool

Representation Theorems: [Kunita-Watanabe (1967)]

Let Ft be the information process generated by {Ws : s ≤ t} and by

{Zs : s ≤ t}.

• ξ is a positive local martingale with respect to {Ft}t≥0 iff ξt = ξ0E(X ) with

Xt :=

∫ t

0
G(s)dWs +

∫ t

0

∫
F (s, z) (N(dt ,dz)− dtν(dz)) , F > −1.

• ξ is a positive supermartingale iff ξt = ξ0E(X − A) where X is as above

and A is increasing predictable s.t. the jump ∆A < 1.



A closer look into the dual theorem

1 WLG assume Bt ≡ 1. Let Γ be a convex subclass of Γ̃ s.t.

(i) w̄Γ := supξ∈Γ E {ξT H} <∞
(ii) Γ is closed under “Fatou convergence”.

Then, for each 0 < w < w̄
Γ
, there exist λ∗ > 0 and ξ∗ ∈ Γ s.t.

• d∗
Γ

(λ∗) := infξ∈Γ E
neU(λ∗ξT , ω)

o
is attainable at ξ∗

• E
˘
ξ∗T I
`
λ∗ ξ∗T

´¯
= w , where I is the inverse of U ′

• p∗(w) ≤ E
ˆ
U
`
I
`
λ∗ ξ∗T

´´˜
2 Furthermore, if

(iii) Γ contains ξt := E
ˆ dQ

dP |Ft
˜

for any EMM Q ∈M

then

• I
`
λ∗ ξ∗T

´
is super-replicable by an admissible V ∗ s.t. V ∗0 = w . Hence,

V ∗ solves the primal problem.
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Construction of the dual class Γ in Lévy markets
F-L & Ma, 2008

1 Let

S := {Xt :=

∫ t

0
G(s)dWs +

∫ t

0

∫
F (s, z)Ñ(ds,dz) : F ≥ −1},

Γ̂ := {ξ := ξ0E (X − A) : X ∈ S,A increasing, and ξ ≥ 0},

where Ñ(dt ,dz) := N(dt ,dz)− dtν(dz). Then,

Γ := Γ̂ ∩ Γ̃,

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.

2 There exist λ∗ > 0, X ∗ ∈ S and increasing A∗ such that

X ∗ := I(λ∗E(X ∗ − A∗)),

is super-replicable by an admissible portfolio V ∗ with V ∗0 ≤ w and

EU(VT ) ≤ EU(V ∗T ), ∀ V s.t . V0 ≤ w .
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Characterization of the dual class

Question: Under what conditions ξ = ξ0E(X − A) ∈ Γ̂ is in Γ̃?

1 There exists predictable increasing Ap s.t. ξ = ξ0E(X − Ap).

2 {ξtSt}t is a supermartingale iff

ht := bt + σtG(t) +

∫
v(t , z)F (t , z)ν(dz) ≤ at :=

dAc
t

dt
.

for any t ≤ τ(ω) := supn inf{t : ξt < 1/n}.

3 ξ·V
β
· is supermartingale for any admissible Vβ

t := V0 +
∫ t

0 βu
dSu
Su

iff

htβt ≤ at , a.e. t ≤ τ.
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An example

Model: ν is atomic with atoms {zi}i :

d St = St−

{
µt dt + σt dWt +

∑
i

v(t , zi )(t)dN(i)
t

}
,

N(i) is homogeneous Poisson with intensity ν(zi ).

1 A predictable βt : Ω→ R is admissible iff

− 1
maxi v(t , zi ) ∨ 0

≤ βt ≤ −
1

mini v(t , zi ) ∧ 0
.

2 ξ ∈ Γ̃ iff

ĥt := − ht

maxi v(t , zi ) ∨ 0
1{ht<0} −

ht

mini v(t , zi ) ∧ 0
1{ht>0} ≤ at .

3 There exists X̃ ∈ S such that ξ̃ := ξ0 E(X̃ ) ∈ Γ̃ and ξ· ≤ ξ̃·.

4 {ξ̃(t)Vβ
t }t≤T is a local martingale for all admissible β.
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4 {ξ̃(t)Vβ
t }t≤T is a local martingale for all admissible β.
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Conclusions

• The method here is more explicit in the sense that the dual domain

enjoys an explicit parametrization.

• Such a parametrization could potentially lead to numerical approximation

schemes of the solution.

• The approach can be applied to more general jump-diffusion models

driven by Lévy processes such as

dSi (t) = Si (t−){bi
tdt +

∑d
j=1 σ

ij
t dW j

t +
∫

Rd h(t , z)Ñ(dt ,dz), }

for a general Poisson random measure and Wiener process.
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Utility function and its convex dual function

• Ũ(λ, ω) := sup
0≤w≤H

{U(w , ω)− λw},

• I(λ) := inf{w ≥ 0 : U ′(w) ≤ λ} = −Ũ ′(λ).

Return 1 Return 2
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