Optimal portfolios and admissible strategies in a

Lévy market

José Enrique Figueroa-López¹
(Joint work with Jin Ma)

${ }^{1}$ Department of Statistics
Purdue University

Stochastic Analysis at Purdue Workshop 2009

Outline

(1) Introduction

Merton's portfolio optimization problem
Financial background
(2) The convex duality method

Semimartingale market model
A non-Markovian Lévy market
Characterization of the dual solution
(3) An example
(4) Conclusions

Merton's portfolio optimization problem

(1) Set-up: A frictionless market consisting of a risky asset with price process $S_{+}: \Omega \rightarrow \mathbb{R}_{1}, t \geq 0$ and a risk-free asset with price process B_{t}, $t \geq 0$, s.t. $B_{0}=1$.
(2) Goal:

Allocate a given initial wealth wo so that to maximize the agent's expected final "utility" during a finite time horizon $[0, T]$.
(3) State-dependent utility: $U(\omega, \omega): \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ s.t.

- Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
- Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_{+} \rightarrow \overline{\mathbb{R}}_{+}$.
(4) Problem:

Find a self-financing portfolio strategy such that the corresponding portfolio's value process $\left\{V_{t}\right\}_{t \leq T}$ maximizes $\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}$ subject to $V_{0} \leq w$ (budget constraint) and $V . \geq 0$ (solvency or admissibility condition).

Merton's portfolio optimization problem

(1) Set-up: A frictionless market consisting of a risky asset with price process $S_{t}: \Omega \rightarrow \mathbb{R}_{+}, t \geq 0$, and a risk-free asset with price process B_{t}, $t \geq 0$, s.t. $B_{0}=1$.
Allocate a given initial wealth w_{0} so that to maximize the agent's expected final "utility" during a finite time horizon $[0, T]$.

- Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
- Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_{+} \rightarrow \overline{\mathbb{R}}_{+}$.
(4) Problem:

Find a sclf-financing portfolio strategy such that the corresponding portfolio's value process $\left\{V_{t}\right\} t \leq T$ maximizes $\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}$ subject to $V_{0} \leq m$ (budget constraint) and $V \geq 0$ (solvency or admissibility

Merton's portfolio optimization problem

(1) Set-up: A frictionless market consisting of a risky asset with price process $S_{t}: \Omega \rightarrow \mathbb{R}_{+}, t \geq 0$, and a risk-free asset with price process B_{t}, $t \geq 0$, s.t. $B_{0}=1$.
(2) Goal:

Allocate a given initial wealth w_{0} so that to maximize the agent's expected final "utility" during a finite time horizon $[0, T]$.

- Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
- Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold
(4) Problem:

Find a self-financing portfolio strategy such that the corresponding portfolio's value process $\left\{V_{t}\right\}_{t \leq T}$ maximizes $\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}$ subject to $V_{0} \leq w$ (budget constraint) and $V . \geq 0$ (solvency or admissibility

Merton's portfolio optimization problem

(1) Set-up: A frictionless market consisting of a risky asset with price process $S_{t}: \Omega \rightarrow \mathbb{R}_{+}, t \geq 0$, and a risk-free asset with price process B_{t}, $t \geq 0$, s.t. $B_{0}=1$.
(2) Goal:

Allocate a given initial wealth w_{0} so that to maximize the agent's expected final "utility" during a finite time horizon $[0, T]$.
(3) State-dependent utility: $U(w, \omega): \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ s.t.

- Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
- Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_{+} \rightarrow \overline{\mathbb{R}}_{+}$.
oram
Find a self-financing portfolio strategy such that the corresponding portfolio's value process $\left\{V_{t}\right\}_{t<T}$ maximizes $\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}$ subject to

Merton's portfolio optimization problem

(1) Set-up: A frictionless market consisting of a risky asset with price process $S_{t}: \Omega \rightarrow \mathbb{R}_{+}, t \geq 0$, and a risk-free asset with price process B_{t}, $t \geq 0$, s.t. $B_{0}=1$.
(2) Goal:

Allocate a given initial wealth w_{0} so that to maximize the agent's expected final "utility" during a finite time horizon $[0, T]$.
(3) State-dependent utility: $U(w, \omega): \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ s.t.

- Increasing and concave in the wealth w, for each state of nature $\omega \in \Omega$.
- Differentiable in $[0, H(\omega))$ and flat for wealths w above certain threshold $H(\omega): \mathbb{R}_{+} \rightarrow \overline{\mathbb{R}}_{+}$.
(4) Problem:

Find a self-financing portfolio strategy such that the corresponding portfolio's value process $\left\{V_{t}\right\}_{t \leq T}$ maximizes $\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}$ subject to $V_{0} \leq w$ (budget constraint) and $V . \geq 0$ (solvency or admissibility condition).

Some financial background

(1) Typical set-up:

- The discounted price process $\left\{B_{t}^{-1} S_{t}\right\}_{t \geq 0}$ is a semimartingale.
- The class \mathcal{M} of Equivalent Martingale Measures (EMM) is non-empty.
(2) The Fundamental Theorem of Finance:
- The market is complete if and only if $\mathcal{M}=\{Q\}$.
- "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
- Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
(3) The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is $\bar{W}:=\sup \mathbb{Q}_{\mathbb{M}} \mathbb{E}_{\mathbb{Q}}\left[B_{T}^{-1} H\right]$

Some financial background

(1) Typical set-up:

- The discounted price process $\left\{B_{t}^{-1} S_{t}\right\}_{t \geq 0}$ is a semimartingale.
- The class \mathcal{M} of Equivalent Martingale Measures (EMM) is non-empty.
(2) The Fundamental Theorem of Finance:
- The market is complete if and only if $\mathcal{M}=\{\mathbb{Q}\}$.
- "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathrm{o}}\left\{B_{T}^{-1} \mathrm{H}\right\}$
- Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathrm{Q}}\left\{B_{T}^{-1} H\right\}$
(3) The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is $\bar{w}:=\sup _{\mathbb{D} \in M} \mathbb{E}_{D_{T}} B_{T}^{-1} H \mid$

Some financial background

(1) Typical set-up:

- The discounted price process $\left\{B_{t}^{-1} S_{t}\right\}_{t \geq 0}$ is a semimartingale.
- The class \mathcal{M} of Equivalent Martingale Measures (EMM) is non-empty.
(2) The Fundamental Theorem of Finance:
- The market is complete if and only if $\mathcal{M}=\{\mathbb{Q}\}$.
- "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
- Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
(3) The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is $\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}}\left[B_{T}^{-1} H\right]$

Some financial background

(1) Typical set-up:

- The discounted price process $\left\{B_{t}^{-1} S_{t}\right\}_{t \geq 0}$ is a semimartingale.
- The class \mathcal{M} of Equivalent Martingale Measures (EMM) is non-empty.
(2) The Fundamental Theorem of Finance:
- The market is complete if and only if $\mathcal{M}=\{\mathbb{Q}\}$.
- "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
- Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
(3) The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is $\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}}\left[B_{T}^{-1} H\right]$
(4) There exists an admissible portfolio $\left\{V_{t}\right\}_{t \leq T}$ such that

Some financial background

(1) Typical set-up:

- The discounted price process $\left\{B_{t}^{-1} S_{t}\right\}_{t \geq 0}$ is a semimartingale.
- The class \mathcal{M} of Equivalent Martingale Measures (EMM) is non-empty.
(2) The Fundamental Theorem of Finance:
- The market is complete if and only if $\mathcal{M}=\{\mathbb{Q}\}$.
- "Any" T-claim H is reachable with the initial endowment $w=\mathbb{E}_{\mathbb{Q}}\left\{B_{T}^{-1} H\right\}$.
- Each EMM Q induces an arbitrage-free pricing procedure: $\mathbb{E}_{\mathrm{Q}}\left\{B_{T}^{-1} H\right\}$.
(3)The Super-Replication Theorem: [Kramkov 97]

The cost of super-replication is $\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}}\left[B_{T}^{-1} H\right]$
(4) There exists an admissible portfolio $\left\{V_{t}\right\}_{t \leq T}$ such that

$$
V_{0}=w \quad \text { and } \quad V_{T} \geq H, \quad \text { a.s. }
$$

if and only if $w \geq \bar{w}$.

Convex Duality Method

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
- We say that strong duality holds if $p^{*}=d^{*}$.

Convex Duality Method

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
- Primal problem:

s.t. $h(x) \leq 0$
- Construction of the dual prablem:

- We say that strong duality holds if $p^{*}=d^{*}$

Convex Duality Method

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
- Primal problem:

$$
\begin{aligned}
& p^{*}:=\max f(x) \\
& \text { s.t. } h(x) \leq 0
\end{aligned}
$$

- Construction of the dual problem:

- We say that strong duality holds if $p^{*}=d^{*}$

Convex Duality Method

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
- Primal problem:

$$
\begin{aligned}
& p^{*}:=\max f(x) \\
& \text { s.t. } h(x) \leq 0
\end{aligned}
$$

- Construction of the dual problem:
- $f(x) \leq \overbrace{f(x)-\lambda h(x)}^{\mathcal{L}(x, \lambda)}, \quad \lambda \geq 0$
- $p^{*} \leq \widetilde{\mathcal{L}}(\lambda):=\max _{x} \mathcal{L}(x, \lambda), \quad$ Convex
- $p^{*} \leq \underbrace{d^{*}:=\min _{\lambda \geq 0} \widetilde{\mathcal{L}}(\lambda)}_{\text {Dual Problem }}$.
- We say that strong duality holds if $p^{*}=d^{*}$

Convex Duality Method

- Basic idea: Upper bound a maximization problem with constraints, using a convex minimization problem without constraints.
- Primal problem:

$$
\begin{aligned}
& p^{*}:=\max f(x) \\
& \text { s.t. } h(x) \leq 0
\end{aligned}
$$

- Construction of the dual problem:
- $f(x) \leq \overbrace{f(x)-\lambda h(x)}^{\mathcal{L}(x, \lambda)}, \quad \lambda \geq 0$
- $p^{*} \leq \widetilde{\mathcal{L}}(\lambda):=\max _{x} \mathcal{L}(x, \lambda), \quad$ Convex
- $p^{*} \leq \underbrace{d^{*}:=\min _{\lambda \geq 0} \widetilde{\mathcal{L}}(\lambda)}_{\text {Dual Problem }}$.
- We say that strong duality holds if $p^{*}=d^{*}$.

Convex duality in portfolio optimization problems

Karatzas et. al. 91, Cvitanić \& Karatzas 92-93, Kramkov \& Schachermayer 99
(1) The primal problem:

(2) Assumption: $w<\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{0}\left[B_{T}^{-1} H\right]<\infty$.
(3) The dual domain Γ :

Nonnegative supermartingales $\left\{\xi_{t}\right\}_{t \geq 0}$ such that (i) $0 \leq \xi_{0} \leq 1$ and (ii) $\left\{\xi_{t} B_{t}^{-1} V_{t}\right\}_{t \geq 0}$ is a supermaringale for all admissible $\left\{V_{t}\right\}_{t \geq 0}$.
(4) The dual problem:

where

Convex duality in portfolio optimization problems

Karatzas et. al. 91, Cvitanić \& Karatzas 92-93, Kramkov \& Schachermayer 99
(1) The primal problem:

$$
\left\{\begin{array}{l}
p^{*}(w):=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \\
\text { such that } \quad V_{0} \leq w \quad \text { and } \quad V . \geq 0
\end{array}\right.
$$

(2) Assumption: $w<\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{0}\left[B_{T}^{-1} H\right]<\infty$.
(3) The dual domain Γ :

Nonnegative supermartingales $\left\{\xi_{t}\right\}_{t \geq 0}$ such that (i) $0 \leq \varepsilon_{0} \leq 1$ and (ii) $\left\{\xi_{t} B_{t}^{-1} V_{t}\right\}_{t \geq 0}$ is a supermaringale for all admissible $\left\{V_{t}\right\}_{t \geq 0}$.
(4) The dual problem:

where

Convex duality in portfolio optimization problems

Karatzas et. al. 91, Cvitanić \& Karatzas 92-93, Kramkov \& Schachermayer 99
(1) The primal problem:

$$
\left\{\begin{array}{l}
p^{*}(w):=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \\
\text { such that } \quad V_{0} \leq w \quad \text { and } \quad V . \geq 0
\end{array}\right.
$$

(2) Assumption: $w<\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathrm{Q}}\left[B_{T}^{-1} H\right]<\infty$.
(3) The dual domain Γ :

Nonnegative supermartingales $\left\{\xi_{t}\right\}_{t \geq 0}$ such that (i) $0 \leq \xi_{0} \leq 1$ and (ii)
$\left\{\xi_{t} B_{t}^{-1} V_{t}\right\}_{t \geq 0}$ is a supermaringale for all admissible $\left\{V_{t}\right\}_{t \geq 0}$.
(4) The dual problem:

where

Convex duality in portfolio optimization problems

Karatzas et. al. 91, Cvitanić \& Karatzas 92-93, Kramkov \& Schachermayer 99
(1) The primal problem:

$$
\left\{\begin{array}{l}
p^{*}(w):=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \\
\text { such that } \quad V_{0} \leq w \quad \text { and } \quad V . \geq 0
\end{array}\right.
$$

(2) Assumption: $w<\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathrm{Q}}\left[B_{T}^{-1} H\right]<\infty$.
(3) The dual domain $\tilde{\Gamma}$:

Nonnegative supermartingales $\left\{\xi_{t}\right\}_{t \geq 0}$ such that (i) $0 \leq \xi_{0} \leq 1$ and (ii) $\left\{\xi_{t} B_{t}^{-1} V_{t}\right\}_{t \geq 0}$ is a supermaringale for all admissible $\left\{V_{t}\right\}_{t \geq 0}$.

Convex duality in portfolio optimization problems

Karatzas et. al. 91, Cvitanić \& Karatzas 92-93, Kramkov \& Schachermayer 99
(1) The primal problem:

$$
\left\{\begin{array}{l}
p^{*}(w):=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \\
\text { such that } \quad V_{0} \leq w \quad \text { and } \quad V . \geq 0
\end{array}\right.
$$

(2) Assumption: $w<\bar{w}:=\sup _{\mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}}\left[B_{T}^{-1} H\right]<\infty$.
(3) The dual domain $\widetilde{\Gamma}$:

Nonnegative supermartingales $\left\{\xi_{t}\right\}_{t \geq 0}$ such that (i) $0 \leq \xi_{0} \leq 1$ and (ii) $\left\{\xi_{t} B_{t}^{-1} V_{t}\right\}_{t \geq 0}$ is a supermaringale for all admissible $\left\{V_{t}\right\}_{t \geq 0}$.
(4) The dual problem:

$$
d^{*}(\lambda):=\inf _{\xi \in \widetilde{\Gamma}} \mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}
$$

where

$$
\widetilde{U}(\lambda, \omega):=\sup _{v \geq 0}\{U(v, \omega)-\lambda v\} .
$$

Motivation behind the dual problem

- $\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq w \quad$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}, \lambda>0$, and admissible V. with $V_{0} \leq w$:

$$
\begin{aligned}
\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} & \leq \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}-\lambda\left(\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\}-w\right) \\
& =\mathbb{E}\left\{U\left(V_{T}, \omega\right)-\lambda \xi_{T} B_{T}^{-1} V_{T}\right\}+\lambda w \\
& \leq \mathbb{E}\left\{\sup _{v \geq 0}\left\{U(v, \omega)-\lambda \xi_{T} B_{T}^{-1} v\right\}\right\}+\lambda w \\
& =\mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}+\lambda w .
\end{aligned}
$$

- For any subclass of $\Gamma \subset \tilde{\Gamma}$:

$$
p^{*}(w)=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \leq \underbrace{\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}}_{d_{\Gamma}^{*}(\lambda)}+\lambda w .
$$

Motivation behind the dual problem

- $\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq \boldsymbol{w} \quad$ if $V_{0} \leq \boldsymbol{w}$.
- For any $\xi \in \Gamma, \lambda>0$, and admissible V. with $V_{0} \leq w$:

$$
\begin{aligned}
\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} & \leq \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}-\lambda\left(\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\}-w\right) \\
& =\mathbb{E}\left\{U\left(V_{T}, \omega\right)-\lambda \xi_{T} B_{T}^{-1} V_{T}\right\}+\lambda w \\
& \leq \mathbb{E}\left\{\sup _{v \geq 0}\left\{U(v, \omega)-\lambda \xi_{T} B_{T}^{-1} v\right\}\right\}+\lambda w \\
& =\mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}+\lambda w .
\end{aligned}
$$

- For any subclass of $\Gamma \subset \widetilde{\Gamma}$:

$$
p^{*}(w)=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \leq \underbrace{\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}}_{d_{\Gamma}^{*}(\lambda)}+\lambda w .
$$

Motivation behind the dual problem

- $\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq \boldsymbol{w} \quad$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}, \lambda>0$, and admissible V. with $V_{0} \leq w$:

$$
\begin{aligned}
\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} & \leq \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}-\lambda\left(\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\}-w\right) \\
& =\mathbb{E}\left\{U\left(V_{T}, \omega\right)-\lambda \xi_{T} B_{T}^{-1} V_{T}\right\}+\lambda w \\
& \leq \mathbb{E}\left\{\sup _{v \geq 0}\left\{U(v, \omega)-\lambda \xi_{T} B_{T}^{-1} v\right\}\right\}+\lambda w \\
& =\mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}+\lambda w .
\end{aligned}
$$

- For any subclass of $\Gamma \subset \widetilde{\Gamma}$:

Motivation behind the dual problem

- $\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\} \leq \xi_{0} B_{0}^{-1} V_{0} \leq w \quad$ if $V_{0} \leq w$.
- For any $\xi \in \widetilde{\Gamma}, \lambda>0$, and admissible V. with $V_{0} \leq w$:

$$
\begin{aligned}
\mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} & \leq \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\}-\lambda\left(\mathbb{E}\left\{\xi_{T} B_{T}^{-1} V_{T}\right\}-w\right) \\
& =\mathbb{E}\left\{U\left(V_{T}, \omega\right)-\lambda \xi_{T} B_{T}^{-1} V_{T}\right\}+\lambda w \\
& \leq \mathbb{E}\left\{\sup _{v \geq 0}\left\{U(v, \omega)-\lambda \xi_{T} B_{T}^{-1} v\right\}\right\}+\lambda w \\
& =\mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}+\lambda w .
\end{aligned}
$$

- For any subclass of $\Gamma \subset \widetilde{\Gamma}$:

$$
p^{*}(w)=\sup \mathbb{E}\left\{U\left(V_{T}, \omega\right)\right\} \leq \underbrace{\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda \xi_{T} B_{T}^{-1}, \omega\right)\right\}}_{d_{\Gamma}^{*}(\lambda)}+\lambda w .
$$

Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]
(1) Weak duality:

$$
p^{*}(w) \leq d_{\Gamma}^{*}(\lambda)+\lambda w, \quad \text { for all } \lambda>0, \text { and } \Gamma \subset \widetilde{\Gamma} .
$$

(2) Strong duality:

$$
\ddot{p}^{*}(w)=d^{*}\left(\lambda^{*}\right)+\lambda^{*} w, \text { for some } \lambda^{*}>0
$$

(3) Dual characterization of the optimal final wealth:

The nrimal problem is attainable at an admissible nortfolio V^{*} s.t.
where $I(\cdot, \omega)$ is the "inverse" of $U^{\prime}(\cdot, \omega)$, and λ^{*} is the dual solution of d_{Γ}^{*}.

Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]
(1) Weak duality:

$$
p^{*}(w) \leq d_{\Gamma}^{*}(\lambda)+\lambda w, \quad \text { for all } \lambda>0, \text { and } \Gamma \subset \widetilde{\Gamma} .
$$

(2) Strong duality:

$$
p^{*}(w)=d_{\bar{\Gamma}}^{*}\left(\lambda^{*}\right)+\lambda^{*} w, \quad \text { for some } \lambda^{*}>0 .
$$

(3) Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V^{*} s.t.

Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]
(1) Weak duality:

$$
p^{*}(w) \leq d_{\Gamma}^{*}(\lambda)+\lambda w, \quad \text { for all } \lambda>0, \text { and } \Gamma \subset \widetilde{\Gamma} .
$$

(2) Strong duality:

$$
p^{*}(w)=d_{\stackrel{r}{*}}^{*}\left(\lambda^{*}\right)+\lambda^{*} w, \quad \text { for some } \lambda^{*}>0 .
$$

(3) Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V^{*} s.t.

Relationship between the dual and primal problems

The Dual Theorem. [KrSch 99, FllmLkrt, 2000]
(1) Weak duality:

$$
p^{*}(w) \leq d_{\Gamma}^{*}(\lambda)+\lambda w, \quad \text { for all } \lambda>0, \text { and } \Gamma \subset \widetilde{\Gamma} .
$$

(2) Strong duality:

$$
p^{*}(w)=d_{\stackrel{r}{*}}^{*}\left(\lambda^{*}\right)+\lambda^{*} w, \quad \text { for some } \lambda^{*}>0 .
$$

(3) Dual characterization of the optimal final wealth:

The primal problem is attainable at an admissible portfolio V^{*} s.t.

$$
V_{T}^{*}=I\left(\lambda^{*} \xi_{T}^{*} B_{T}^{-1}\right),
$$

where $I(\cdot, \omega)$ is the "inverse" of $U^{\prime}(\cdot, \omega)$, and λ^{*} is the dual solution of d_{Γ}^{*}.

A non-Markovian Lévy Market

(1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$
N((0, \tau] \times(a, b]):=\#\left\{t \leq \tau: \Delta Z_{t} \in(a, b]\right\} \sim \operatorname{Poisson}(\tau \nu((a, b]))
$$

(2) The stock price process $\left\{S_{t}\right\}_{t \geq 0}$ follows the dynamics:

$$
d S_{t}=S_{t}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}^{d}} v(t, z)(N(d t, d z)-d t \nu(d z))\right\}
$$

where $v(t, 0)=0$, and $v(t, z)>-1$.
(3) Interpretation: (Finite-jump activity $\nu(\mathbb{R})<\infty$)

A non-Markovian Lévy Market

(1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$
N((0, \tau] \times(a, b]):=\#\left\{t \leq \tau: \Delta Z_{t} \in(a, b]\right\} \sim \operatorname{Poisson}(\tau \nu((a, b])) .
$$

(2) The stock price process $\left\{S_{t}\right\}_{t \geq 0}$ follows the dynamics: $d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}^{d}} v(t, z)(N(d t, d z)-d t \nu(d z))\right\}$ where $v(t, 0)=0$, and $v(t, z)>-1$.
(3) Interpretation: (Finite-jump activity $\nu(\mathbb{R})<\infty$)

A non-Markovian Lévy Market

(1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$
N((0, \tau] \times(a, b]):=\#\left\{t \leq \tau: \Delta Z_{t} \in(a, b]\right\} \sim \operatorname{Poisson}(\tau \nu((a, b])) .
$$

(2) The stock price process $\left\{S_{t}\right\}_{t \geq 0}$ follows the dynamics:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}^{d}} v(t, z)(N(d t, d z)-d t \nu(d z))\right\}
$$

where $v(t, 0)=0$, and $v(t, z)>-1$.

A non-Markovian Lévy Market

(1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$
N((0, \tau] \times(a, b]):=\#\left\{t \leq \tau: \Delta Z_{t} \in(a, b]\right\} \sim \operatorname{Poisson}(\tau \nu((a, b])) .
$$

(2) The stock price process $\left\{S_{t}\right\}_{t \geq 0}$ follows the dynamics:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}^{d}} v(t, z)(N(d t, d z)-d t \nu(d z))\right\}
$$

where $v(t, 0)=0$, and $v(t, z)>-1$.
(3) Interpretation: (Finite-jump activity $\nu(\mathbb{R})<\infty$)

- Between jump times the stock follows a Black-Scholes model with
instantaneous mean rate of return $\mu_{t}-\int v(t, z) \nu(d z)$ and volatility σ_{t}.
- S jumps at the jump times of Z such that, if $\Delta Z_{t} \neq 0$, the stock price jumps a "fraction" $v\left(t, \Delta Z_{t}\right)$ of its level:

A non-Markovian Lévy Market

(1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$
N((0, \tau] \times(a, b]):=\#\left\{t \leq \tau: \Delta Z_{t} \in(a, b]\right\} \sim \operatorname{Poisson}(\tau \nu((a, b])) .
$$

(2) The stock price process $\left\{S_{t}\right\}_{t \geq 0}$ follows the dynamics:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}^{d}} v(t, z)(N(d t, d z)-d t \nu(d z))\right\}
$$

where $v(t, 0)=0$, and $v(t, z)>-1$.
(3) Interpretation: (Finite-jump activity $\nu(\mathbb{R})<\infty$)

- Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_{t}-\int v(t, z) \nu(d z)$ and volatility σ_{t}.
"fraction" $v\left(t, \Delta Z_{t}\right)$ of its level:

A non-Markovian Lévy Market

(1) Let W be a Wiener process and let N be an independent Poisson jump measure associated with a Lévy process Z with Lévy measure ν :

$$
N((0, \tau] \times(a, b]):=\#\left\{t \leq \tau: \Delta Z_{t} \in(a, b]\right\} \sim \operatorname{Poisson}(\tau \nu((a, b])) .
$$

(2) The stock price process $\left\{S_{t}\right\}_{t \geq 0}$ follows the dynamics:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{\mathbb{R}^{d}} v(t, z)(N(d t, d z)-d t \nu(d z))\right\}
$$

where $v(t, 0)=0$, and $v(t, z)>-1$.
(3) Interpretation: (Finite-jump activity $\nu(\mathbb{R})<\infty$)

- Between jump times the stock follows a Black-Scholes model with instantaneous mean rate of return $\mu_{t}-\int v(t, z) \nu(d z)$ and volatility σ_{t}.
- S jumps at the jump times of Z such that, if $\Delta Z_{t} \neq 0$, the stock price jumps a "fraction" $v\left(t, \Delta Z_{t}\right)$ of its level:

$$
\frac{S_{t}-S_{t^{-}}}{S_{t^{-}}}=v\left(t, \Delta Z_{t}\right)>-1
$$

Merton's problem in Lévy markets

A natural problem:

For a snecific market model (say Lévy one) and a given utility function,
Can one narrow down the dual domain $\Gamma \subset 「$ where to search ξ^{*} ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]
For the previous Lévy market and for unbounded Inada type utility functions, the Dual Theorem holds and the dual solution ξ^{*} is the stochastic exponential $\mathcal{E}\left(X^{*}\right)$ of a local martingale

$$
X_{t}^{*}:=\int_{0}^{t} G^{*}(s) d W_{s}+\int_{0}^{t} \int F^{*}(s, z)(N(d s, d z)-d s \nu(d z))
$$

for a process G^{*} and for a field $F^{*}>-1$.

Merton's problem in Lévy markets

A natural problem:
For a specific market model (say Lévy one) and a given utility function, Can one narrow down the dual domain $\Gamma \subset \widetilde{\Gamma}$ where to search ξ^{*} ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]
For the previous Lévy market and for unbounded Inada type utility functions,
the Dual Theorem holds and the dual solution ξ^{*} is the stochastic exponential $\mathcal{E}\left(X^{*}\right)$ of a local martingale

$$
X_{t}^{*}:=\int_{0}^{t} G^{*}(s) d W_{s}+\int_{0}^{t} \int F^{*}(s, z)(N(d s, d z)-d s \nu(d z))
$$

Merton's problem in Lévy markets

A natural problem:
For a specific market model (say Lévy one) and a given utility function, Can one narrow down the dual domain $\Gamma \subset \widetilde{\Gamma}$ where to search ξ^{*} ?

Theorem. [Karatzas et. al. 91], [Kunita, 03]
For the previous Lévy market and for unbounded Inada type utility functions, the Dual Theorem holds and the dual solution ξ^{*} is the stochastic exponential $\mathcal{E}\left(X^{*}\right)$ of a local martingale

$$
X_{t}^{*}:=\int_{0}^{t} G^{*}(s) d W_{s}+\int_{0}^{t} \int F^{*}(s, z)(N(d s, d z)-d s \nu(d z))
$$

for a process G^{*} and for a field $F^{*}>-1$.

Key tool

Representation Theorems: [Kunita-Watanabe (1967)]

Let \mathcal{F}_{t} be the information process generated by $\left\{W_{s}: s \leq t\right\}$ and by $\left\{Z_{s}: s \leq t\right\}$.

- ξ is a positive local martingale with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ iff $\xi_{t}=\xi_{0} \mathcal{E}(X)$ with

$$
X_{t}:=\int_{0}^{t} G(s) d W_{s}+\int_{0}^{t} \int F(s, z)(N(d t, d z)-d t \nu(d z)), \quad F>-1 .
$$

- ξ is a positive supermartingale iff $\xi_{t}=\xi_{0} \mathcal{E}(X-A)$ where X is as above and A is increasing predictable s.t. the jump $\Delta A<1$.

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(2) Furthermore, if
(iii) 「 contains $\varepsilon_{+}:=\mathbb{E}\left[\left.\frac{d Q}{d t} \right\rvert\, \mathcal{F}_{t}\right]$ for any $\mathbb{E M M} Q \in M$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.

(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d d}{d} \right\rvert\, \mathcal{F}_{i}\right]$ for any $E M M Q \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \Gamma} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<w<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d Q}{d r} \right\rvert\, \mathcal{F}_{i}\right]$ for any $E M M Q \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \Gamma} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<w<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d d}{d} \right\rvert\, \mathcal{F}_{\mathcal{F}}\right]$ for any $E M M Q \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \Gamma} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<\boldsymbol{w}<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d}{d} \right\rvert\, \mathcal{F}_{t}\right]$ for any $E M M Q \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \mathrm{r}} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<\boldsymbol{w}<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.

- $d_{\Gamma}^{*}\left(\lambda^{*}\right):=\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda^{*} \xi_{T}, \omega\right)\right\}$ is attainable at ξ^{*}
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d}{d} \right\rvert\, \mathcal{F}_{i}\right]$ for any $E M M Q \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \mathrm{r}} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<\boldsymbol{w}<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.

- $d_{\Gamma}^{*}\left(\lambda^{*}\right):=\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda^{*} \xi_{T}, \omega\right)\right\}$ is attainable at ξ^{*}
- $\mathbb{E}\left\{\xi_{T}^{*} I\left(\lambda^{*} \xi_{T}^{*}\right)\right\}=w$, where l is the inverse of U^{\prime}
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d Q}{d} \right\rvert\, \mathcal{F}_{7}\right]$ for any $E M M Q \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \mathrm{r}} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<\boldsymbol{w}<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.

- $d_{\Gamma}^{*}\left(\lambda^{*}\right):=\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda^{*} \xi_{T}, \omega\right)\right\}$ is attainable at ξ^{*}
- $\mathbb{E}\left\{\xi_{T}^{*} I\left(\lambda^{*} \xi_{T}^{*}\right)\right\}=w$, where l is the inverse of U^{\prime}
- $p^{*}(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^{*} \xi_{T}^{*}\right)\right)\right]$
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d \mathbb{Q}}{d \mathbb{P}} \right\rvert\, \mathcal{F}_{t}\right]$ for any $\mathrm{EMM} \mathbb{Q} \in \mathcal{M}$

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \mathrm{r}} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<\boldsymbol{w}<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.

- $d_{\Gamma}^{*}\left(\lambda^{*}\right):=\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda^{*} \xi_{T}, \omega\right)\right\}$ is attainable at ξ^{*}
- $\mathbb{E}\left\{\xi_{T}^{*} I\left(\lambda^{*} \xi_{T}^{*}\right)\right\}=w$, where l is the inverse of U^{\prime}
- $p^{*}(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^{*} \xi_{T}^{*}\right)\right)\right]$
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d \mathbb{Q}}{d \mathbb{P}} \right\rvert\, \mathcal{F}_{t}\right]$ for any $\mathrm{EMM} \mathbb{Q} \in \mathcal{M}$ then
- $I\left(\lambda^{*} \xi_{T}^{*}\right)$ is super-replicable by an admissible V^{*} s.t. $V_{0}^{*}=w$. Hence, V^{*} solves the primal problem.

A closer look into the dual theorem

(1) WLG assume $B_{t} \equiv 1$. Let Γ be a convex subclass of $\widetilde{\Gamma}$ s.t.
(i) $\bar{w}_{\Gamma}:=\sup _{\xi \in \Gamma} \mathbb{E}\left\{\xi_{T} H\right\}<\infty$
(ii) Γ is closed under "Fatou convergence".

Then, for each $0<\boldsymbol{w}<\bar{w}_{\Gamma}$, there exist $\lambda^{*}>0$ and $\xi^{*} \in \Gamma$ s.t.

- $d_{\Gamma}^{*}\left(\lambda^{*}\right):=\inf _{\xi \in \Gamma} \mathbb{E}\left\{\widetilde{U}\left(\lambda^{*} \xi_{T}, \omega\right)\right\}$ is attainable at ξ^{*}
- $\mathbb{E}\left\{\xi_{T}^{*} I\left(\lambda^{*} \xi_{T}^{*}\right)\right\}=w$, where l is the inverse of U^{\prime}
- $p^{*}(w) \leq \mathbb{E}\left[U\left(I\left(\lambda^{*} \xi_{T}^{*}\right)\right)\right]$
(2) Furthermore, if
(iii) Γ contains $\xi_{t}:=\mathbb{E}\left[\left.\frac{d \mathbb{Q}}{d \mathbb{P}} \right\rvert\, \mathcal{F}_{t}\right]$ for any $\mathrm{EMM} \mathbb{Q} \in \mathcal{M}$ then
- $I\left(\lambda^{*} \xi_{T}^{*}\right)$ is super-replicable by an admissible V^{*} s.t. $V_{0}^{*}=w$. Hence, V^{*} solves the primal problem.

Construction of the dual class 「 in Lévy markets

F-L \& Ma, 2008
(1) Let

$$
\begin{aligned}
\mathcal{S} & :=\left\{X_{t}:=\int_{0}^{t} G(s) d W_{s}+\int_{0}^{t} \int F(s, z) \widetilde{N}(d s, d z): F \geq-1\right\} \\
& \widehat{\Gamma}:=\left\{\xi:=\xi_{0} \mathcal{E}(X-A): X \in \mathcal{S}, A \text { increasing, and } \xi \geq 0\right\}
\end{aligned}
$$

where $\widetilde{N}(d t, d z):=N(d t, d z)-d t \nu(d z)$.
(2) There exist $\lambda^{*}>0, X^{*} \in \mathcal{S}$ and increasing A^{*} such that

$$
\nu^{*}:=I\left(\lambda^{*} \mathcal{C}\left(X^{*}-A^{*}\right)\right)
$$

is super-replicable by an admissible portfolio V^{*} with $V_{0}^{*} \leq w$ and

$$
\mathbb{E} U\left(V_{T}^{\prime}\right) \leq \mathbb{E} U\left(V_{T}^{*}\right), \quad \forall \quad V^{\prime} \quad \text { s.t. } \quad V_{0} \leq W
$$

Construction of the dual class 「 in Lévy markets

F-L \& Ma, 2008
(1) Let

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{S} & :=\left\{X_{t}:=\int_{0}^{t} G(s) d W_{s}+\int_{0}^{t} \int F(s, z) \widetilde{N}(d s, d z): F \geq-1\right\}, \\
\widehat{\Gamma} & :=\left\{\xi:=\xi_{0} \mathcal{E}(X-A): X \in \mathcal{S}, A \text { increasing, and } \xi \geq 0\right\}, \\
\text { where } \widetilde{N}(d t, d z) & :=N(d t, d z)-d t \nu(d z) \text {. Then, }
\end{aligned} \text {. }
\end{aligned}
$$

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.
(2) There exist $\lambda^{*}>0, X^{*} \in \mathcal{S}$ and increasing A^{*} such that

$$
\mathcal{X}^{*}:=I\left(\lambda^{*} \mathcal{E}\left(X^{*}-\Delta^{*}\right)\right)
$$

is super-replicable by an admissible portfolio V^{*} with $V_{0}^{*} \leq w$ and

Construction of the dual class 「 in Lévy markets

F-L \& Ma, 2008
(1) Let

$$
\begin{aligned}
& \mathcal{S}:=\left\{X_{t}:=\int_{0}^{t} G(s) d W_{s}+\int_{0}^{t} \int F(s, z) \widetilde{N}(d s, d z): F \geq-1\right\}, \\
& \hat{\Gamma}:=\left\{\xi:=\xi_{0} \mathcal{E}(X-A): X \in \mathcal{S}, A \text { increasing, and } \xi \geq 0\right\},
\end{aligned}
$$

where $\widetilde{N}(d t, d z):=N(d t, d z)-d t \nu(d z)$. Then,

$$
\Gamma:=\widehat{\Gamma} \cap \widetilde{\Gamma},
$$

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.
(2) There exist $\lambda^{*}>0, X^{*} \in \mathcal{S}$ and increasing A^{*} such that is super-replicable by an admissible portfolio V^{*} with $V_{0}^{*} \leq w$ and

Construction of the dual class 「 in Lévy markets

F-L \& Ma, 2008
(1) Let

$$
\begin{aligned}
\mathcal{S} & :=\left\{X_{t}:=\int_{0}^{t} G(s) d W_{s}+\int_{0}^{t} \int F(s, z) \widetilde{N}(d s, d z): F \geq-1\right\} \\
& \widehat{\Gamma}
\end{aligned}:=\left\{\xi:=\xi_{0} \mathcal{E}(X-A): X \in \mathcal{S}, A \text { increasing, and } \xi \geq 0\right\},
$$

where $\widetilde{N}(d t, d z):=N(d t, d z)-d t \nu(d z)$. Then,

$$
\Gamma:=\widehat{\Gamma} \cap \widetilde{\Gamma}
$$

fulfills the conditions necessary (i)-(iii) for the Dual Theorem.
(2) There exist $\lambda^{*}>0, X^{*} \in \mathcal{S}$ and increasing A^{*} such that

$$
\mathcal{X}^{*}:=I\left(\lambda^{*} \mathcal{E}\left(X^{*}-A^{*}\right)\right),
$$

is super-replicable by an admissible portfolio V^{*} with $V_{0}^{*} \leq w$ and

$$
\mathbb{E} U\left(V_{T}\right) \leq \mathbb{E} U\left(V_{T}^{*}\right), \quad \forall \quad V \quad \text { s.t. } \quad V_{0} \leq w .
$$

Characterization of the dual class

Question: Under what conditions $\xi=\xi_{0} \mathcal{E}(X-A) \in \widehat{\Gamma}$ is in $\widetilde{\Gamma}$?
(1) There exists predictable increasing A^{p} s.t. $\xi=\xi_{0} \mathcal{E}\left(X-A^{p}\right)$.
(2) $\left\{\xi_{t} S_{t}\right\}_{t}$ is a supermartingale iff

for any $t \leq \tau(\omega):=\sup _{n} \inf \left\{t: \xi_{t}<1 / n\right\}$.
© $c^{V^{\beta}}$ is supermartingale for any admissible $V_{t}^{\beta}:=V_{0}+\int_{0}^{t} \beta_{U} \frac{d S}{S}$ iff

Characterization of the dual class

Question: Under what conditions $\xi=\xi_{0} \mathcal{E}(X-A) \in \widehat{\Gamma}$ is in $\tilde{\Gamma}$?
(1) There exists predictable increasing A^{p} s.t. $\xi=\xi_{0} \mathcal{E}\left(X-A^{p}\right)$.
(2) $\left\{\xi_{t} S_{t}\right\}_{t}$ is a supermartingale iff

for any $t \leq \tau(\omega):=\sup _{n} \inf \left\{t: \xi_{t}<1 / n\right\}$.
(3) ξV^{β} is supermartingale for any admissible $V_{t}:=V_{0}+\int_{0}^{t} \beta_{u} \frac{d S}{S_{u}}$ iff

Characterization of the dual class

Question: Under what conditions $\xi=\xi_{0} \mathcal{E}(X-A) \in \widehat{\Gamma}$ is in $\tilde{\Gamma}$?
(1) There exists predictable increasing A^{p} s.t. $\xi=\xi_{0} \mathcal{E}\left(X-A^{p}\right)$.
(2) $\left\{\xi_{t} S_{t}\right\}_{t}$ is a supermartingale iff

$$
h_{t}:=b_{t}+\sigma_{t} G(t)+\int v(t, z) F(t, z) \nu(d z) \leq a_{t}:=\frac{d A_{t}^{c}}{d t} .
$$

for any $t \leq \tau(\omega):=\sup _{n} \inf \left\{t: \xi_{t}<1 / n\right\}$.
(3) $\xi \cdot V^{3}$ is supermartingale for any admissible

Characterization of the dual class

Question: Under what conditions $\xi=\xi_{0} \mathcal{E}(X-A) \in \widehat{\Gamma}$ is in $\tilde{\Gamma}$?
(1) There exists predictable increasing A^{p} s.t. $\xi=\xi_{0} \mathcal{E}\left(X-A^{p}\right)$.
(2) $\left\{\xi_{t} S_{t}\right\}_{t}$ is a supermartingale iff

$$
h_{t}:=b_{t}+\sigma_{t} G(t)+\int v(t, z) F(t, z) \nu(d z) \leq a_{t}:=\frac{d A_{t}^{c}}{d t} .
$$

for any $t \leq \tau(\omega):=\sup _{n} \inf \left\{t: \xi_{t}<1 / n\right\}$.
(3) $\xi . V^{\beta}$ is supermartingale for any admissible $V_{t}^{\beta}:=V_{0}+\int_{0}^{t} \beta_{u} \frac{d S_{u}}{S_{u}}$ iff

$$
h_{t} \beta_{t} \leq a_{t}, \quad \text { a.e. } \quad t \leq \tau
$$

An example

Model: ν is atomic with atoms $\left\{z_{i}\right\}_{i}$:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\sum_{i} v\left(t, z_{i}\right)(t) d N_{t}^{(i)}\right\}
$$

$N^{(i)}$ is homogeneous Poisson with intensity $\nu\left(z_{i}\right)$.
(1) A predictable $\beta_{t}: \Omega \rightarrow \mathbb{R}$ is admissible iff
(2) $\xi \in \widetilde{\Gamma}$ iff
(3) There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi}:=\xi_{0} \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and ξ. $\leq \widetilde{\xi}$.
(4) $\left\{\widetilde{\xi}(t) V_{t}^{\beta}\right\}_{t<\tau}$ is a local martingale for all admissible

An example

Model: ν is atomic with atoms $\left\{z_{i}\right\}_{i}$:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\sum_{i} v\left(t, z_{i}\right)(t) d N_{t}^{(i)}\right\}
$$

$N^{(i)}$ is homogeneous Poisson with intensity $\nu\left(z_{i}\right)$.
(1) A predictable $\beta_{t}: \Omega \rightarrow \mathbb{R}$ is admissible iff

$$
-\frac{1}{\max _{i} v\left(t, z_{i}\right) \vee 0} \leq \beta_{t} \leq-\frac{1}{\min _{i} v\left(t, z_{i}\right) \wedge 0} .
$$

(3) There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi}:=\xi_{0} \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and ξ. $\leq \widetilde{\xi}$.

An example

Model: ν is atomic with atoms $\left\{z_{i}\right\}_{i}$:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\sum_{i} v\left(t, z_{i}\right)(t) d N_{t}^{(i)}\right\}
$$

$N^{(i)}$ is homogeneous Poisson with intensity $\nu\left(z_{i}\right)$.
(1) A predictable $\beta_{t}: \Omega \rightarrow \mathbb{R}$ is admissible iff

$$
-\frac{1}{\max _{i} v\left(t, z_{i}\right) \vee 0} \leq \beta_{t} \leq-\frac{1}{\min _{i} v\left(t, z_{i}\right) \wedge 0} .
$$

(2) $\xi \in \widetilde{\Gamma}$ iff

$$
\hat{h}_{t}:=-\frac{h_{t}}{\max _{i} v\left(t, z_{i}\right) \vee 0} \mathbf{1}_{\left\{h_{t}<0\right\}}-\frac{h_{t}}{\min _{i} v\left(t, z_{i}\right) \wedge 0} \mathbf{1}_{\left\{h_{t}>0\right\}} \leq a_{t} .
$$

(3) There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi}:=\xi_{0} \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and ξ. $\leq \widetilde{\xi}$.
(4) $\left\{\widetilde{\xi}(t) V_{t}^{\beta}\right\}_{t \leq T}$ is a local martingale for all admissible β.

An example

Model: ν is atomic with atoms $\left\{z_{i}\right\}_{i}$:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\sum_{i} v\left(t, z_{i}\right)(t) d N_{t}^{(i)}\right\}
$$

$N^{(i)}$ is homogeneous Poisson with intensity $\nu\left(z_{i}\right)$.
(1) A predictable $\beta_{t}: \Omega \rightarrow \mathbb{R}$ is admissible iff

$$
-\frac{1}{\max _{i} v\left(t, z_{i}\right) \vee 0} \leq \beta_{t} \leq-\frac{1}{\min _{i} v\left(t, z_{i}\right) \wedge 0} .
$$

(2) $\xi \in \tilde{\Gamma}$ iff

$$
\hat{h}_{t}:=-\frac{h_{t}}{\max _{i} v\left(t, z_{i}\right) \vee 0} \mathbf{1}_{\left\{h_{t}<0\right\}}-\frac{h_{t}}{\min _{i} v\left(t, z_{i}\right) \wedge 0} \mathbf{1}_{\left\{h_{t}>0\right\}} \leq a_{t} .
$$

(3) There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi}:=\xi_{0} \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and ξ. $\leq \widetilde{\xi}$.

An example

Model: ν is atomic with atoms $\left\{z_{i}\right\}_{i}$:

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\sum_{i} v\left(t, z_{i}\right)(t) d N_{t}^{(i)}\right\}
$$

$N^{(i)}$ is homogeneous Poisson with intensity $\nu\left(z_{i}\right)$.
(1) A predictable $\beta_{t}: \Omega \rightarrow \mathbb{R}$ is admissible iff

$$
-\frac{1}{\max _{i} v\left(t, z_{i}\right) \vee 0} \leq \beta_{t} \leq-\frac{1}{\min _{i} v\left(t, z_{i}\right) \wedge 0} .
$$

(2) $\xi \in \tilde{\Gamma}$ iff

$$
\hat{h}_{t}:=-\frac{h_{t}}{\max _{i} v\left(t, z_{i}\right) \vee 0} \mathbf{1}_{\left\{h_{t}<0\right\}}-\frac{h_{t}}{\min _{i} v\left(t, z_{i}\right) \wedge 0} \mathbf{1}_{\left\{h_{t}>0\right\}} \leq a_{t} .
$$

(3) There exists $\widetilde{X} \in \mathcal{S}$ such that $\widetilde{\xi}:=\xi_{0} \mathcal{E}(\widetilde{X}) \in \widetilde{\Gamma}$ and ξ. $\leq \widetilde{\xi}$.
(4) $\left\{\tilde{\xi}(t) V_{t}^{\beta}\right\}_{t \leq T}$ is a local martingale for all admissible β.

Conclusions

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$
d S^{i}(t)=S^{i}\left(t^{-}\right)\left\{b_{t}^{i} d t+\sum_{j=1}^{d} \sigma_{t}^{i j} d W_{t}^{j}+\int_{\mathbb{R}^{d}} h(t, z) \widetilde{N}(d t, d z),\right\}
$$

for a general Poisson random measure and Wiener process.

Conclusions

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$
d S^{i}(t)=S^{i}\left(t^{-}\right)\left\{b_{t}^{i} d t+\sum_{j=1}^{d} \sigma_{t}^{i j} d W_{t}^{j}+\int_{\mathbb{R}^{d}} h(t, z) \widetilde{N}(d t, d z),\right\}
$$

for a general Poisson random measure and Wiener process.

Conclusions

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$
d S^{i}(t)=S^{i}\left(t^{-}\right)\left\{h_{i}^{i} d t+\sum_{j=1}^{d} \sigma_{t}^{i j} d W_{t}^{j}+\int_{R^{d}} h(t, z) \tilde{N}(d t, d z),\right\}
$$

for a general Poisson random measure and Wiener process.

Conclusions

- The method here is more explicit in the sense that the dual domain enjoys an explicit parametrization.
- Such a parametrization could potentially lead to numerical approximation schemes of the solution.
- The approach can be applied to more general jump-diffusion models driven by Lévy processes such as

$$
d S^{i}(t)=S^{i}\left(t^{-}\right)\left\{b_{t}^{i} d t+\sum_{j=1}^{d} \sigma_{t}^{i j} d W_{t}^{j}+\int_{\mathbb{R}^{d}} h(t, z) \widetilde{N}(d t, d z),\right\}
$$

for a general Poisson random measure and Wiener process.

For Further Reading I

Figueroa－Lopez and Ma．
State－dependent utility maximization in Lévy markets
Preprint available at ArXiv， 2008.
圕 Kramkov and Schachermayer．
The asymptotic elasticity of utility functions and optimal investment in incomplete markets．Finance and Stochastics， 1999.
國 Föllmer and Leukert．
Efficient hedging：Cost versus shortfall risk．Finance and Stochastics， 2000.

漍 Karatzas，Lehoczky，Shreve，and Xu．
Martingale and duality methods for utility maximization in an incomplete market．SIAM J．Control and Optimization， 1991.

For Further Reading II

Kunita
Variational equality and portfolio optimization for price processes with jumps. In Stoch. Proc. and Appl. to Mathem. Fin., 2003.

Optional decomposition of supermartingales and pricing of contigent claims in incomplete security markets. Prob. Th. and Rel. fields, 1996.

Utility function and its convex dual function

- $\widetilde{U}(\lambda, \omega):=\sup _{0 \leq w \leq H}\{U(w, \omega)-\lambda w\}$,
- $I(\lambda):=\inf \left\{w \geq 0: U^{\prime}(w) \leq \lambda\right\}=-\widetilde{U}^{\prime}(\lambda)$.

Lévy processes with jumps

Compound Poisson Process

Examples of Lévy processes: compound Poisson process (left) and Lévy jump-diffusion

