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ScienceDirect
The human brain is organized into large-scale networks that

can be noninvasively identified using functional connectivity

(FC) functional magnetic resonance imaging. FC varies across

individuals, and there is significant interest in associating

individual variation in FC with external behavioral measures.

However, only recently has FC variation been characterized by

studying brain networks within individual humans. We review

these recent efforts, and we argue that individual variation in FC

networks comes in three distinct forms: 1) variability in

connectional strength, in which brain regions in the same

location have variable FC strength across subjects; 2) variability

in spatial localization, in which regions exhibit the same

connections across subjects, but are expanded/contracted or

spatially displaced in specific subjects; and 3) topological

variability, in which networks have variable sets of constituent

nodes. Unfortunately, each of these three types of variation

confounds attempts to measure the others, which significantly

impacts research studying brain networks.
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Individual variation in human functional
connectivity networks
The human brain is divided into a number of large-scale,

spatially distributed networks consisting of multiple

interacting cortical areas [1]. This network organization,
www.sciencedirect.com 
which is held to be a fundamental organizing principle of

the brain [2], has been the subject of intense interest for

over fifteen years now, ever since the discovery that it was

possible to noninvasively delineate these networks in the

in-vivo human using a modification of standard functional

magnetic resonance imaging (fMRI) techniques called

functional connectivity (FC) [3]. In FC approaches, func-

tionally related brain regions are observed to exhibit

strong correlations between the temporal patterns of their

fMRI signal that could not arise by chance. Simple

extensions of this technique were shown to identify

not just pairs or connected brain regions, but extensive,

distributed networks of functionally connected regions

that map closely to known brain systems dedicated to

certain types of processing [4]. Since that time, a huge

amount of effort has been devoted to identifying and

mapping these networks in the human brain [5,6], and our

ever-growing understanding of these brain networks has

grown to serve as an indispensable framework for studies

mapping the neural correlates of cognitive function [7].

The strength of FC between brain regions is well known

to vary across individual humans. Indeed, recent work has

emphasized that the magnitude of this cross-individual

variation is very large compared to other types of FC

strength variation, for example, within-subject variation

across days or states [8], suggesting that FC variability

functions as a trait-level measure that is well-suited to

associate with variable trait-level measures of behavior

across individuals. Indeed, a large body of research has

argued that these variations are indeed related to indi-

vidual differences in cognitive and motor function [9].

These findings make intuitive sense, as the most com-

pelling interpretation of fMRI-derived FC is that it

reflects a statistical lifetime history of co-activations

between regions to perform processing needed during

everyday life events [10]. This interpretation suggests

that individual differences in FC between specific brain

regions should reflect differences in the degree to which

those regions are co-engaged during that processing,

which would likely influence the efficacy of that

processing.

However, many previous results identifying associations

between FC and behavior have been relatively under-

powered, and thus may have been reporting artificially

inflated FC-behavior relationships [11]. More recent work

has used very high-powered datasets to test the idea that
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individual variation in FC might relate to individual

differences in behavior. This work has found that while

such relationships do exist, they are surprisingly weak

[12�]. At first glance, this result seems to fly in the face of

the widespread assumption that FC is strongly reflective

of behaviorally relevant brain function. However, it is

notable that highly powered within-subject designs do

successfully describe robust associations between behav-

ioral alterations and FC changes [13]. Thus, it seems that

while FC is associated with behavior, individual varia-

tions in FC are not very strongly related to individual

variations in behavior. Why?

One possibility is that we don’t really understand the

nature of individual variations in FC. The vast majority of

works examining FC variation, and FC-behavior relation-

ships, have treated FC as a continuously varying unidi-

mensional measure, not different in principle from, for

example, height, except that there are a large number of

FC measures in the brain. Alternate approaches may

employ summary measures of network features (obtained

via e.g., graph theoretical approaches [14,15]), but the

variation is still assumed to be at the level of the strength

of FC. Implicitly assumed in these approaches is that two

FC measures collected from a brain location in two

different subjects are directly comparable.

Up until six years ago, we shared this assumption that FC

strength was the only relevant measure, and our research

focused on using group-averaged data to identify sets of

brain regions that could be used as optimal regions of

interest for FC analyses [16,17]. While we had superfi-

cially examined brain networks derived from individual

subjects, these often appeared noisy and strange, and we

did not trust them.

Our mindset changed when we first began to examine

individual-level datasets with large data quantities, in

which FC measures were so reliable that we could not

dismiss unusual features as noise-related (The MyCon-

nectome dataset [18]; the Midnight Scan Club dataset

[19�]). Critically, in each individual we examined, we

found clear evidence of FC network features that varied

from other individuals in unexpected ways. Soon we came

to realize that, rather than there being a single type of

variation in FC that differs across individuals on a single

axis, there are at least three separate, independent types

of individual variation in FC networks that, unfortu-

nately, each confound attempts to estimate the other

two types of variation.

Here we will review evidence for each of these three

types of variability and how they confound our ability to

estimate the other types. Notably, in our experience the

best way to understand these variabilities is not to esti-

mate population variation in FC across large datasets, but

rather to examine brain networks at the level of individual
Current Opinion in Behavioral Sciences 2021, 40:79–86 
subjects. As such, for each type of variation we propose,

we will present specific examples of that variation within

our own data that first convinced us of its presence.

Connectivity strength variation in functional
connectivity networks
As detailed above, it is well known that the strength of

FC—the magnitude of the correlation between distant

brain regions—varies across individuals. Such variation is

stable and of relatively large magnitude [8], such that they

can be reliably used to uniquely identify individuals from

each other [20]. Within our own data we do observe classic

variation across subjects in FC strength between, for

example, the lateral frontal and parietal aspects of the

Fronto-parietal network.

However, we also observe more dramatic and remarkable

examples of individual variation in FC strength. For

example, we have seen that every one of our individual

subjects has a similarly shaped region that tracks the

curve of the pregenual anterior cingulate cortex and

extends forward into medial prefrontal cortex; this region

is always strongly connected to ventral anterior insula and

ventral caudate [21]. However, this region varies across

individuals in which large-scale network it is connected

to. In some subjects, we see this structure linked to

anterior medial prefrontal and medial parietal regions

within the Default network, while in others we see it

linked to dorsomedial prefrontal regions of the Salience

network (Figure 1). This observation—that brain regions

can be spatially consistent and strongly linked to the same

subcortical structures across subjects, but their large-scale

network affiliations are variable—suggests that in some

cases, individual variation in FC strength can be large

enough to substantially reconfigure brain networks.

Spatial variation in functional connectivity
networks
Cortical areas are likely the basic mesoscale structures

that are linked together to form brain networks [1]. It is

well established that cortical areas vary across individuals

both in their physical size [22] and in their position along

the cortical sheet [23]. It thus follows that features of

brain networks would also spatially vary across individu-

als; and indeed, such spatial variation has been repeatedly

demonstrated in cortex [24–28], basal ganglia and thala-

mus [29], and cerebellum [30,31]. This spatial variation

(relative to anatomical features such as gyri and sulci) is of

sufficient magnitude that many brain organizational fea-

tures can be identified only in individual-specific data, not

in group-average data [32�,33–38]. Such spatial variation

comes in two primary forms: translation of brain network

nodes along the cortical surface, and expansion/contrac-

tion of brain network nodes [24].

In our own data, we observed these variations most

strikingly in two networks within the first highly sampled
www.sciencedirect.com
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Figure 1
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Variation in a region’s functional network membership across subjects.

(a) A subnetwork was identified in every subject in pregenual medial frontal cortex (teal) that was connected to ventral anterior insula and ventral

striatum (not pictured). (b) In some subjects (example subjects MSC02 and MSC04 shown here), this subnetwork was more strongly connected

(black arrows) to the Salience network (black outlines). In others (MSC01 and MSC05), it was more strongly connected (red arrows) to the medial

parietal node of the Default network (red outlines). (c) Difference between Pregenual connectivity to Salience and Default networks, across all

subjects.
subject we collected in the MSC dataset (subject MSC01,

who is author SMN). The Parietal Memory Network

(PMN) is a relatively small network with four primary

nodes in the left and right posterior cingulate cortex and

posterior dorsomedial precuneus. While often mistaken

for the DMN due to the adjacent large DMN represen-

tation in medial parietal cortex, this network is strikingly

distinct from the DMN, as it has no representation in

medial prefrontal cortex, angular gyrus, or temporal cor-

tex [39–42]. Among association networks, the PMN is one
www.sciencedirect.com 
of the more spatially consistent networks in the brain.

Thus, we were surprised when we examined the PMN of

various subjects and found substantial spatial variation in

the location of their precuneus node. This variation is

most remarkable in subject MSC01, in whom this node is

not actually located in the precuneus. Instead, the node is

substantially displaced approximately 30 mm along the

cortical surface such that it is not even on the medial

surface of the brain (Figure 2a). Such huge displacements

are not explained by, for example, areal distortions due to
Current Opinion in Behavioral Sciences 2021, 40:79–86
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Figure 2
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Spatial variation in functional connectivity networks across subjects.

(a) Identified Parietal Memory Network (PMN) (left column) and PCC-seeded FC (middle column) across three example subjects (overlap shown in

right column). In subject MSC01, the posterior medial precuneus node of this network is wrapped around to the lateral side of the brain. (b)

Identified Contextual Association Network (CAN) (left column) and retrosplenial-seeded FC (middle column) across three example subjects (overlap

shown in right column). In subject MSC01, the CAN is expanded all the way up the parieto-occipital sulcus, filling the gap left by the displaced

PMN.
the surface-based registration procedure [24], which are

in the range of �1 mm in most subjects including MSC01.

Thus, this is a dramatic example of spatial variability via

displacement: a strong, clearly identifiable node of a very

simple four-node network that is located on the wrong side of
the brain.

The next question became: if the posterior PMN node is

displaced away from its original position, what is filling its

original position? We found that in MSC01, the retro-

splenial/ventral precuneus node of the Contextual Asso-

ciation Network (CAN), a known subnetwork within the

DMN [21] related to processing contextual information

[43], was expanded very far up the parieto-occipital sulcus

relative to other subjects, taking over the real estate

vacated by the PMN (Figure 2b). Tasks probing the

functional engagement of the CAN verified the unusual

expansion of the posterior node in this subject [19�].

The relative magnitude of this particular spatial variation

in CAN was large, as the node nearly doubled in surface

area. However, once we started looking, we found varia-

tions in the size of network nodes all over the cortex, even

in primary cortex where we expected individual variation

to be relatively low. For example, while the hand-soma-

tomotor and mouth-somatomotor networks are usually
Current Opinion in Behavioral Sciences 2021, 40:79–86 
constrained within the banks of the pre and postcentral

gyri, there can be substantial variation in the dorsal-

ventral position of the border between these two net-

works [24].

Topological variation in functional
connectivity networks
The assumption with both of the above two types of

variation in FC is that every individual has the same set of

networked brain areas. These areas may vary in their size

or spatial position, and even in some cases in their

network membership, but ultimately they do represent

the same cortical object in approximately the same area of

cortex, and thus are directly comparable across people.

Individual connectomes composed of such matched areas

can be said to have the same cortical topology.

However, the assumption of matched network topologies

appears to be only mostly valid. Broadly, individuals

always seem to have the same networks composed of

the same distributed sets of regions [19�,33]. However, on

a local level, specific areas that appear unitary in most

subjects have been demonstrated to split into multiple

discontinuous regions in a minority of subjects. Glasser

et al. [44�] explored this in detail with putative area 55b,

where they demonstrated that a network node that is
www.sciencedirect.com
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Figure 3
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Topological variations in functional connectivity networks.

(a) Local topological variations can cause areas to be split, such as Area 55b, which is unitary in group average data (top image) and in typical

subjects (second image), but is anterior-posterior split in some subjects (bottom images). Figure reproduced from Ref. [44�]. (b) Network-level

topological variations cause intrusions of network nodes into unusual areas. Top: in group average data, two regions in lateral prefrontal cortex are

both within the Fronto-parietal network (yellow), and have very similar functional connectivity patterns. Bottom: in the MyConnectome dataset, one

of these regions (Seed 1) is instead connected to the Cingulo-opercular network (purple), causing the two regions to have dramatically different

functional connectivity patterns. Figure reproduced from Ref. [18]. (c) Localization of such topological variations identified their presence in every

subject studied, and suggested similar spatial distributions across subjects in the MSC dataset (left) and in the Human Connectome Project

dataset (right). Figure reproduced from Ref. [45�].
singular in one individual may exist as multiple dissoci-

ated regions in another (Figure 3a).

We have identified additional individual variations in net-

work topology in densely sampled individual data. Indeed,

one of the first major features of interest we observed in Dr

Russ Poldrack’s MyConnectome data [18] was a region in

anterior lateral prefrontal cortex—an area always assigned

to the Fronto Parietal network in group studies—which was

uncorrelated with Dr Poldrack’s Fronto-Parietal network,

but strongly linked to his Cingulo-Opercular network

(Figure3b,Seed1).Thisregionwassopunctate,sospatially

distant fromtherest of theCingulo-Opercular network, and
www.sciencedirect.com 
sodivergentinitsconnectivitypatternfromthesurrounding

Fronto-Parietal tissue (e.g., Seed 2), that it is hard to inter-

pret it as anything other than an entirely idiosyncratic node,

not topologically comparable to areas we have seen in most

individuals. Since then, we have identified putative topo-

logical ‘variants’ in every individual we have studied [45�]
(Figure 3c).

The interpretation of this topological variation is still

unclear. It is possible that such variants simply represent

extreme examples of the spatial or connectional variabil-

ity described above. A Cingulo-Opercular node in the

middle of lateral prefrontal cortex, as in Figure 3b, could
Current Opinion in Behavioral Sciences 2021, 40:79–86
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be a normally Cingulo-Opercular-linked area that has

been substantially displaced. Or, it could be a normally

Fronto-Parietal-linked area that exhibits wildly different

connectivity patterns from its standard functionality.

Alternately, it could be a node that simply doesn’t exist

in the networks of most individuals, in the same way that

area 55b doesn’t split in most individuals.

Cross-confounding effects of different types
of variation
The difficulty with multiple simultaneous types of net-

work variation is that effects of each one can confound

estimates of the others. For example, in an approach using

a priori parcels, which ignores inter-subject spatial vari-

ability, FC estimates for an individual with a highly

displaced parcel (as in Figure 2a) will appear wildly

abnormal. While this is most evident for large displace-

ments, even small displacements will produce signal

mixing within a priori parcels, and will result in reduced

FC estimates—which would then be interpreted as

‘lower’ FC. Indeed, initial attempts to understand the

relative contributions of spatial and connectional variabil-

ity have suggested that spatial variability contributes

relatively more to observed individual differences than

connectional variability [32�]. Importantly, as the scale of

spatial variation is probably relatively consistent across

the brain, this issue will always affect smaller network

nodes (which overlap worse with a priori regions) to a

greater extent than large network nodes [37].

At the same time, FC differences may confound attempts

to understand spatial variation in networks. A network

node may be relatively spatially consistent across indi-

viduals, but if it had strongly varying FC patterns, then it

can be interpreted as spatial variation in large-scale net-

works that are dramatically expanding or contracting to

encompass or exclude the network node (as in Figure 1).

These cross-confounding effects are likely exacerbated

when varying estimates of FC strength may also be driven

by variation in data quality. For example, it can be very

hard to interpret variability of FC strength in striatal and

thalamic regions as meaningful, because that FC strength

is often critically driven SNR within those regions, which

varies with the distance from the MR coil and thus can be

influenced by variation in head size.

How to get around these issues? One promising approach

may be to employ machine learning classification

approaches for network node matching [26,44�], espe-

cially ones specifically designed to simultaneously model

both spatial and connectional variability [32�,37]. How-

ever, such approaches often critically rely on having good

priors, and it is not clear whether we know enough about

the range of inter-individual variation in FC networks to

generate such priors. Another approach might be to esti-

mate networks at a hierarchically lower level—network

substructures—where connections are more likely to be
Current Opinion in Behavioral Sciences 2021, 40:79–86 
direct and connectional variation may be reduced [21],

and subnetworks matched across individuals based on

similarity of spatial distributions. However, just because

connectional variation might be reduced at this hierarchi-

cal level doesn’t mean it would be eliminated altogether.

Importantly, it is not clear that any of these approaches

can deal with the existence of putative topological varia-

tions. Whether the observed topological variants repre-

sent idiosyncratic, de novo brain regions or not, they

represent areas that are so spatially/connectionally diver-

gent from other subjects and from a group-derived prior

that they may not be classifiable by any extant approach.

Implications for brain network research
Ultimately, these confounding effects mean that it is very

difficult to accurately compare FC across individuals. A

subject may exhibit abnormally low or high FC, but that

deviation from the mean is not easily interpretable, since

it is not clear what aspect of the deviation might be driven

by spatial or topological rather than connectional varia-

tion. This may be somewhat disheartening. At the same

time, it may also explain some of the replication failures

and low effect sizes that have been revealed in the field

recently using the standard approach of measuring FC

using a priori seeds [12�]. This standard approach will

inevitably collapse these multiple types of variability,

introducing uninterpretable noise into the FC measure

and reducing the ability to observe FC-behavior associa-

tions. Importantly, this conceptualization not only helps

explain why the field has had trouble linking individual

differences in FC to cognition, but also points towards a

path forward. We believe that solving the problem of

matching network nodes across individuals, while chal-

lenging in the face of the multiple simultaneous types of

variability we have outlined, is a critical step towards

being able to effectively compare brain function across

people.

We want to emphasize the critical role that we believe

individual-focused analyses must have in the develop-

ment of these techniques (see also Ref. [46]). Without the

ability to look at the brain networks of individuals and see

real, concrete examples of how people vary, these types of

variability remain abstract and nebulous. We hope that by

presenting the dramatic examples of individual variation

in FC that first struck us in our own data, we can help the

field move towards understanding and ultimately

accounting for this variability more broadly. Finally, we

believe that the development of future classification

priors must be built on individual-level data, not group

averages, as group average data almost by definition

cannot represent the types of spatial, connectional, and

topological variation we see in individual brains.
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