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Abstract

The composition of clinopyroxene and clinopyroxene-liquid (Cpx-Liq) pairs are frequently used to calculate crystallization/equilibration
pressures in igneous systems. While canonical uncertainties are often assigned to calculated pressures based on fits to calibration or
test datasets, the sources of these uncertainties (and thus ways to reduce them) have not been rigorously assessed. We show that
considerable uncertainties in calculated pressures arise from analytical error associated with Electron Probe Microanalyser (EPMA)
measurements of Cpx. Specifically, low X-ray counts during analysis of elements with concentrations <1 wt% resulting from insufficient
count times and/or low beam currents yield highly imprecise measurements (1σ errors of 10–40% for Na2O).
Low analytical precision propagates into the calculation of pressure-sensitive mineral components such as jadeite. Using Monte Carlo
approaches, we demonstrate that elemental variation resulting from analytical precision alone generates pressures spanning ∼4 kbar
(∼15 km) for a single Cpx and ∼6 kbar for a single Cpx-Liq pair using popular barometry expressions. In addition, analytical uncertainties
in mineral compositions produce highly correlated arrays between pressure and temperature that have been previously attributed to
transcrustal magma storage. Before invoking such geological interpretations, a more mundane origin from analytical imprecision must
be ruled out. Most importantly, low analytical precision does not just affect the application of barometers to natural systems; it has
also affected characterization of Cpx in experimental products used to calibrate and test barometers. The impact of poor precision on
each individual measurement is often magnified by the small number of measurements made within experimental charges, meaning
that low analytical precision and true variability in mineral compositions have not been sufficiently mediated by averaging multiple
EPMA analyses. We compile the number of Cpx measurements performed in N = 307 experiments used to calibrate existing barometers,
and N = 490 new experiments, finding ∼45% of experiment charges were characterized by ≤5 individual Cpx analyses. Insufficient
characterization of the true composition of experimental phases likely accounts for the fact that all Cpx-based barometers exhibit
large errors (± 3 kbar) when tested using global experimental datasets.
We suggest specific changes to analytical and experimental protocols, such as increased count times and/or higher beam currents when
measuring low concentration elements in relatively beam resistant Cpx in experiments and natural samples. We also advocate for
increasing the number of analyses per experimental charge, resolving interlaboratory analytical offsets and improving data reporting.
Implementing these changes is essential to produce a more robust dataset to calibrate and test the next generation of more precise
and accurate Cpx-based barometers. In turn, this will enable more rigorous investigation of magma storage geometries in a variety of
tectonic settings (e.g. distinguishing true transcrustal storage vs. storage in discrete reservoirs).
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INTRODUCTION

Constraining the conditions under which magma is stored
and transported within the crust is of critical importance to
understanding volcanic systems (e.g. McGuire et al., 2017). It has
long been recognized, based on thermodynamic principles and

from chemical characterization of experimental products, that
the composition of igneous minerals and co-existing liquids can
be used to place constraints on the pressures, temperatures,
and water concentrations at which these phases grew and
equilibrated (e.g. Bacon & Carmichael, 1973; Brown & Parsons,
1981; Lindsley & Andersen, 1983; Putirka, 1999, 1997, 2008).
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Many of the most commonly used mineral-based igneous
thermobarometers revolve around clinopyroxene (Cpx), perhaps
because this phase is relatively abundant in a wide variety of
different volcanic systems and tectonic settings (e.g. mid-oceanic
ridges, oceanic islands, and volcanic arcs), and in a wide range
of lava compositions (basalts to rhyolites). Cpx-based equilibria
are sensitive to pressure because there is a large change in
volume associated with the exchange of Na and Al (the jadeite
component, NaAlSi2O6) between liquid (Liq) and Cpx. There
are also relatively large volume changes between different Cpx
components (e.g. jadeite and diopside-hedenbergite, CaMgSi2O6–
CaFeSi2O6, Putirka, 2016; Putirka et al., 1996). The exchange of
jadeite and diopside-hedenbergite between clinopyroxene and
liquid is also sensitive to temperature, so the abundance of these
components can be used as a thermometer (e.g. Putirka, 1999).

By parameterizing the relationship between phase composi-
tion and intensive parameters in experiments, measurements of
natural crystals and co-existing equilibrium liquids can be used
to calculate pressures and temperatures (e.g. Putirka, 1999, 2008;
Neave & Putirka, 2017; Petrelli et al., 2020; Wang et al., 2021). The
vast majority of published calibrations have a structure rooted in
thermodynamics, both in terms of the form of the expression, and
the compositional components included (e.g. jadeite in Cpx).

For example, both the Putirka et al. (1996) eqP1 and Putirka
(2008) eq30 models for Cpx-Liq barometry have the same general
form informed by thermodynamics:

P = a + bT
104

+ cT
104

ln
(
JdCpx−Liq

)
+ . . . [Equation 1]

Additional empirical composition terms are added to improve
regression statistics (Neave & Putirka, 2017), although sometimes
these terms can also be approximately tied to thermodynamic
reasoning. For example, the XLiq

Na XLiq
Al term in Putirka et al. (1996)

eqP1 implies identical activity coefficients for Na and Al in the
liquid. In general, an increasing number of empirical terms have
been added to barometry equations to improve the fit between
calculated and experimental pressures in calibration datasets
as more experimental data have become available. For example,
while both eqP1 (P1996) and eq30 (P2008) have additional empir-
ically derived terms for the sum of the cation fraction of Na and
Al, eq30 has terms for the liquid Mg#, the diopside-hedenbergite
component in the Cpx, and the log of liquid Fe, Mg and K cation
fractions.

More recently, machine learning algorithms have been cali-
brated for equilibria involving Cpx (Petrelli et al., 2020; Higgins et
al., 2022; Jorgenson et al., 2022). Instead of creating equations with
specific terms informed by thermodynamics (as in Equation 1),
these machine learning techniques simply input selected oxide
data from a training dataset into the machine learning algorithm,
along with the predictor variable (e.g. pressure or temperature;
Petrelli et al., 2020).

When discussing errors and uncertainties associated with
different thermobarometers in this manuscript, we follow the
National Physics Laboratory terminology guidelines (Bell, 2001).
Error is taken as the difference between the measured value and
the true value; if a barometer calculates a pressure of 3 kbar but
the experiment was performed at 2 kbar, the error is +1 kbar.
Uncertainty quantifies the doubt about the measurement result,
so an error with an unknown magnitude is referred to as an
uncertainty. A random uncertainty or error means that if the
measurement is repeated, a different value is obtained each time,
but averaging of sufficient measurements converges on the true
value. Random uncertainties may follow a normal or Poisson

distribution (or other unskewed distribution). However, the central
limit theorem states that as the sample size grows, a distribution
of sample means approximates a normal distribution (even if
the data are not normally distributed). Systematic uncertainties
or errors cause the measurement to be offset from the true
value, so additional measurements do not help to converge on
the correct answer, meaning that more measurements produce a
more precise, but inaccurate result.

The success of a given barometer or thermometer is normally
assessed by comparing predicted pressures and temperatures
with experimentally determined pressures and temperatures. The
goodness of fit is typically assessed using R2 values and estimates
of the standard error estimate (SEE, sometimes referred to as
the root mean-square error, RMSE). In general, Cpx and Cpx-Liq
thermometers have high R2 values (>0.8) and relatively low SEE
(e.g. ±20–100 K; e.g. Putirka, 2008, Petrelli et al., 2020). These SEEs
represents only a 2%–10% error considering the temperatures of
most magmatic systems (∼1000–1400 K). In contrast, barometers
commonly have SEE of 1.4–5 kbar (∼ ± 6–19 km, using a represen-
tative ρ of 2700 kg/m3 throughout this paper), which corresponds
to very large percentage errors given the depths of interest in
many volcanic systems. For example, these large SEEs span the
entire crustal column in many tectonic settings (e.g. 5–8.5 km
in MORB, White et al., 1992; 14–24 km in Hawai’i, Leahy et al.,
2010). This means that pressures calculated on individual Cpx
analyses do not have sufficient precision/resolution to reliably
identify upper, mid or lower crustal storage, or distinguish storage
in distinct magma reservoirs separated by ∼1–2 km (unlike melt
inclusion saturation pressures, which can achieve such precision
at relatively low pressures; Lerner et al., 2021; Wieser et al., 2022a;
Wieser et al., 2021). Even in arcs with Moho pressures of 8 ± 3 kbar
(based on ∼30 ± 12 km from Profeta et al., 2016), these SEE esti-
mates can only just distinguish between upper, mid and lower
crustal storage. As many of the uncertainties associated with
thermobarometers are random uncertainties, averaging multiple
experiments (or natural Cpx analyses) can result in significant
improvements. For example, Putirka et al. (1996) showed that
the SEE on individual experiments using their eqP1 is 1.36 kbar,
but can be reduced to 0.32 kbar if they average experiments
conducted at the same pressure.

In general, more recent calibrations of mineral-only and
mineral-melt barometers state smaller SEEs (e.g. ±1.4 kbar for
Cpx-Liq from Neave & Putirka, 2017, ±1.66 kbar for Cpx-only
from Wang et al., 2021, vs. ±3.6 kbar for equation 30 and ± 5 kbar
for eq32c of Putirka, 2008). However, statistics quoted by different
studies are not directly comparable. For example, the ±1.4 kbar
SEE commonly stated by petrological studies using the Neave &
Putirka (2017) barometer describes the model fit to the calibration
dataset of 113 experiments. When this thermobarometer is
applied to their global compilation of experimental data that span
a wider compositional range than was used in the calibration, the
SEE is ±3.6–3.8 kbar. When applied to test data with compositions
more similar to the calibration dataset (i.e. tholeiitic basalts),
the Neave & Putirka (2017) barometer return a SEE similar to
the quoted SEE of 1.4 kbar. The ±1.66 kbar SEE from Wang et al.
(2021) describes the overall fit to 100 random splits into training
and validation of the calibration dataset. However, when applied
to global datasets (including data not used at any point during
model tuning), this barometer has a SEE of ±3.68 kbar. Finally,
the Cpx-only and Cpx-Liq machine-learning barometer of Petrelli
et al. (2020) have SEEs of ±3.1 kbar and ±3.2 kbar, respectively,
when applied to a subset of N = 119 experiments not used for
calibration. The ‘global’ statistics for newer barometers are more
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similar to the larger quoted errors of Putirka (2008), who calculate
statistics using a global calibration dataset.

It is also important to recognize that the quoted SEE describes
the overall fit across the range of pressures or temperatures being
considered. Close to the edges of the distribution (e.g. very shallow
or very deep pressures), the error can be larger than the SEE, and
toward the center of the distribution, the error can be smaller.
Additionally, the SEE estimated from a barometer between 0 and
40 kbar (e.g. Putirka et al., 1996) is not directly comparable to one
estimated between 0 and 20 kbar (e.g. Petrelli et al., 2020), which
can also make comparison of statistics from different barometers
challenging.

Despite the fact that it is difficult to directly compare statistics,
we can say in general that the majority of Cpx-based barometers
show large SEE (±2–5 kbar, 7.6–19 km) when applied to global
datasets (Wieser et al., 2023). Given that significantly greater
precision in crustal barometry is needed to address many of the
key issues in igneous petrology (McGuire et al., 2017), we try to
reconcile the source of these large errors, to identify ways in which
to improve Cpx-based barometric methods in future.

A new test dataset—ArcPL
The majority of Cpx-based barometers were calibrated using
experiments present in the LEPR dataset compiled in 2008 (Library
of Experimental Phase Relationships; Hirschmann et al., 2008, e.g.
N = 850 experiments in Petrelli et al., 2020). For clarity, in this
paper the word experiment is used to represent a single exper-
imental run/capsule/charge. In addition to using experimental
data within LEPR, we also compile Cpx-bearing experiments on
variably hydrous compositions ranging from basalt to rhyolite at
crustal conditions (<13 kbar) that were not included in LEPR. Most
of the studies represented in this new dataset were published after
LEPR, and have not been added to it yet (Costa, 2004; Bogaerts
et al., 2006; Pichavant & Macdonald, 2007; Hamada & Fujii, 2008;
Mercer & Johnston, 2008; Alonso-Perez et al., 2009; Feig et al.,
2010; Parman et al., 2011; Krawczynski et al., 2012; Almeev et al.,
2013; Blatter et al., 2013, 2017; Rader & Larsen, 2013; Cadoux et
al., 2014; Mandler et al., 2014; Nandedkar et al., 2014; Parat et
al., 2014; Andújar et al., 2015; Melekhova et al., 2015; Riker et al.,
2015; Erdmann et al., 2016; Erdmann & Koepke, 2016; Husen et
al., 2016; Ulmer et al., 2018; Firth et al., 2019; Neave et al., 2019;
Waters et al., 2021, Nakatani et al., 2022, Marxer et al., 2022). We also
include a small number of pre-2008 experiments, which were not
included in LEPR (Rutherford et al., 1985; Berndt, 2004; Sisson et
al., 2005). We call our new dataset ArcPL (Arc post-LEPR, N = 490).
We also consider a subset of the LEPR database relevant to arc
magmas (ArcLEPR, N=307), as well as the entire LEPR dataset used
to calibrate the thermobarometers of Putirka (2008) and Petrelli
et al. (2020 at various points in this manuscript. One advantage
of ArcPL is that many of the experiments were conducted rel-
atively recently, meaning that it was easier to obtain additional
analytical information from the authors, and more information
on analytical conditions was generally presented in the text and
supporting information. We use these different datasets of experi-
ments to place quantitative constraints on sources of uncertainty
when calibrating and testing Cpx-based barometers. The relative
performance of each barometer is evaluated in Wieser et al., 2023.

Sources of uncertainty
Thermobarometer calibrations based on experimental products
are subject to three main sources of uncertainty:

(1) Uncertainties relating to the regression method used to cali-
brate thermobarometry equations and models (e.g. extrapolation,
overfitting, incomplete data; Fig. 1a).

(2) Analytical uncertainties associated with measurements of
minerals and glasses, normally by electron probe microanalyzer
(EPMA, e.g. insufficient counts, heterogeneity in primary stan-
dards within a single chip and between chips, beam damage,
instrument miscalibration; Fig. 1b).

(3) Experimental errors (e.g. crystallization under disequilib-
rium conditions, uncertainty in the pressure in a piston-cylinder;
Fig. 1c), as well as additional issues associated with analyzing
small experimental products (Fig. 1d).

Each of these are discussed in detail below.

Model formulation and calibration
One unavoidable reason why barometers have higher percentage
errors than thermometers relates to thermodynamics, namely
major and minor element variations in available igneous phases
are simply more sensitive to temperature than pressure, because
relevant reactions have larger changes in entropy (relating to
T) than volume (relating to P). This is in contrast to subsolidus
metamorphic systems where a relatively large number of very P-
sensitive phase transitions and chemical reactions are available
(Powell & Holland, 2008). The paucity of P-sensitive reactions
between solid mineral phases and silicate melts reflects the
ability of liquid-rich igneous systems to absorb changes in vol-
ume (and to a lesser extent temperature and composition) with-
out drastically changing the composition of the coprecipitating
phases (Putirka, 2008). Thus, it is expected that regressions of
experimental Cpx compositions against pressure will have rela-
tively poor predictive power (Fig. 1a), as many variables other than
pressure have more influence on the reaction (e.g. temperature,
water content, melt composition).

However, there are a number of sources of uncertainty that can
be introduced during the calibration of barometric models, which
decrease the accuracy and precision of barometers beyond some
theoretical limit determined by the thermodynamics of each
reaction. Identifying these is vital to produce the best possible
barometers for igneous systems.

Firstly, the calibration dataset may span a restricted composi-
tional, pressure or temperature range, and empirical fits devel-
oped on this dataset may return poor results when extrapolated
outside this range (Fig. 1a). For example, Neave & Putirka (2017)
cautioned users about the limited applicability of their model in
highly oxidized and alkaline systems, as it was predominantly cal-
ibrated using tholeiites. Similarly, Wang et al. (2021) attributed the
poorer performance of their barometer at pressures >12 kbar to
the lack of high-pressure experiments in their calibration dataset.
Models can also be overfitted to calibration data. This is a par-
ticular problem for certain machine-learning algorithms such as
extra tree regressors, which can perfectly fit the training data, but
produce erratic results on test data.

A second source of uncertainty relates to the fact that not all
experimental studies report the concentrations of all the major
and minor elements in Cpx and Liq used when performing ther-
mobarometry calibrations. This is problematic for several reasons.
Firstly, missing elements from the quantification routine during
EPMA analysis can affect the concentration of elements, which
are measured. For example, EPMA analyses calculating water
by difference without a subsequent iterative matrix correction
produce water estimates that are low by as much as 1 to 2 wt%
absolute (Roman et al., 2006). This is equally true for other unan-
alyzed elements (Fournelle et al., 2020). Missing elements also
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Fig. 1. Schematic diagram showing the three main categories of uncertainty associated with thermobarometry.

cause issues during regression analysis. It is generally considered
that up to 5% missing data on each attribute (i.e. a single oxide)
are manageable during regression, 5%–15% requires use of more
sophisticated approaches, and >15% can severely impact the
prediction accuracy of the model on unseen data (Pyle, 1999;
Twala, 2009). Unfortunately, the percentage of missing data in
experimental compilations used to calibrate barometers is well
within the severe category. For example, 66% of experiments in the
LEPR dataset used by Petrelli et al. (2020) and 73% in Putirka (2008)
do not report H2O contents in the glass phase, and 42% of Putirka
(2008) do not report Cr2O3 in the Cpx. Yet, both these elements
feature heavily in parameterizations of Cpx-only and Cpx-Liq
barometry, and the presence/absence of Cr actually affects phase
stability (discussed in detail below, Voigt et al., 2017).

There is abundant literature, but little consensus, about
how to deal with missing values during regression analysis
(Emmanuel et al., 2021). The simplest way is list-wise deletion,
where experiments with any missing values for any oxides
are simply removed from the calibration dataset. However, in
the experimental datasets used to calibrate thermobarometers,
which have large amounts of missing data, list-wise deletion can

result in a dramatic reduction in the number of observations used
for calibration. For example, 54% of experiments in the calibration
dataset of Petrelli et al. (2020) do not report P2O5 in glass, 61% do
not report Cr2O3 in glass, and 71% do not report K2O in Cpx. List-
wise deletion of all oxides used in the regression model would
leave only 7/850 experiments for Cpx-Liq and 80/850 for Cpx-only,
both of which are very small calibration datasets. The software
JMP used by Putirka (2008, and previous papers) uses list-wise
deletion by default; the shrinking dataset issue was mitigated by
excluding elements from the calibration, which results in lots of
rows being deleted, but likely do not have a major influence on
the equilibria of interest (e.g. MnO in Liq, K2O in Cpx).

List-wise deletion can be very problematic if missing values
reflect an underlying bias in the measurement procedure (termed
‘missing not at random’ by Rubin, 1976). For example, it is far more
likely that H2O-poor or nominally anhydrous experiments do not
report H2O in experimental glasses compared with very water-
rich experiments. Removing experiments with no reported water
could easily bias the remaining dataset toward compositions and
phase assemblages found in more hydrous magmas, meaning the
resulting model would be poorly calibrated for relatively anhy-
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drous melts. For H2O-poor experiments, it is far better to enter
H2O = 0 into the dataset than to remove the experiment. Missing
H2O data has been dealt with in several ways. Petrelli et al. (2020)
fill all missing values for H2O (and any other elements) with zeros.

Alternatively, missing values can be imputed (i.e. estimated).
For example, Putirka (2008) replaced missing H2O data with 100
minus the sum of major element totals (i.e. volatiles by differ-
ence). While this method is associated with large uncertainty
unless calibrated using hydrous standards (Hughes et al., 2019),
it is likely better than replacing missing values with the mean or
median of the dataset (which can create issues when data are not
missing at random, as discussed above for H2O; Twala, 2009).

The presence/absence of reported Cr2O3 (or Cr) data in Cpx
demonstrates one challenge associated with imputation for
experimental datasets. In many cases, experiments on synthetic
starting materials do not report Cr concentrations in Cpx or Liq
because no Cr was added to the starting material (e.g, Hamada
& Fujii, 2008), whereas in other studies, Cr was likely present but
not reported. For example, Parat et al. (2014) use a natural starting
material with ∼187 ppm Cr, but report no Cr2O3 data in Cpx or
glasses. Using an approximate partition coefficient (∼10, Hart &
Dunn, 1993), their Cpx could contain ∼0.1–0.2 wt% Cr2O3. Finally,
there are experiments where it is unclear whether Cr is present
or not. For example, the natural starting materials of Cadoux et al.
(2014) are sufficiently evolved (67–71 wt% SiO2) that it is unlikely
there is very much Cr left, but the actual Cr content of the starting
material (and experimental Cpx) are not reported.

The paucity of Cr data (resulting from Cr-free starting mate-
rials and the lack of Cr measurements in Cr-bearing starting
materials) has been discussed in detail in the context of MORB
differentiation and liquid-barometry by Voigt et al. (2017). Voigt
et al. (2017) showed that Cr-containing experiments stabilize Cpx
at higher temperatures than Cr-free experiments. Pressures cal-
culated using their melt geobarometer for Cr = 0 versus true Cr
contents in MORBs differ by up to 1.5 kbar. Thus, replacing missing
values with the mean of the dataset, or any other prediction,
would fail to capture the fact that there truly was no Cr, which
has likely influenced Cpx stability. We quantitatively evaluate the
effect of missing Cr data on the Cpx-only and Cpx-Liq thermo-
barometers in the discussion section.

Analytical uncertainty
In addition to thermodynamic considerations (larger changes in
entropy compared with volume), the larger percentage errors
associated with barometers compared with thermometers may
result from the lower concentration of elements that are impor-
tant in barometery compared with thermometry, meaning ana-
lytical errors are larger (e.g. Na in Cpx for pressure vs. Mg-Fe for
temperature). A number of random and systematic uncertain-
ties can arise during EPMA analyses. Each wavelength dispersive
spectrometer (WDS) is calibrated for a specific element using the
relationship between the peak-background ratio and the concen-
tration of that element in a primary standard material. In turn,
this relationship is used to predict the element concentration in
an unknown material based on the measured peak-background
ratio. A matrix correction is applied to account for the influence
of the specific material analyzed on the intensity of measured X-
rays (e.g. atomic number effects, absorption, and fluorescence).

The generation of X-rays from a sample excited by an electron
beam is a random process (like radioactive decay), meaning that
the emission of any given X-ray cannot be predicted. However,
if X-ray arrivals are collected over a long enough time interval,
the average number of X-ray arrivals per unit time is a function

of the rate of X-ray production. X-ray production is determined
by the specific element and electron shell ionization efficiencies,
element concentration, beam current, beam voltage and detector
take off angle. The instrumental efficiency of X-ray detection
is controlled by the WDS crystal size/geometric efficiency and
detector efficiency (as well as the vacuum). X-ray intensities are
then normalized to beam current, yielding counts per second
per nA. Instrumental specific effects are accounted for when
converting counts into concentration by performing the X-ray
measurements using the same beam energy and spectrometer
on both the primary standard and the unknown material to
produce a k-ratio, which should be identical within measurement
error for all instruments using the same element, X-ray emission
line, beam energy and takeoff angle (assuming the high voltage
calibration and effective take off angle of the spectrometers are
sufficiently similar).

The precision of an EPMA measurement is determined by the
total accumulated number of X-rays counted by the WDS detector
at the peak and background positions. Errors directly resulting
from the fundamentally random process of X-ray generation and
detection are termed counting statistics. When averaged over
sufficient time period, X-ray counts follow a Poisson distribu-
tion, which approximates a normal distribution at sufficiently
high counting rates (i.e. the central limit theorem). Errors result-
ing from counting statistics can be estimated using two main
methods.

Equation 2 can be used to predict the relative error (100∗standard
deviation (σ )/concentration) for a given element in an unknown
sample using information from count rates in the primary
standard (Weill et al., 2004), the relative concentration of the
element in the primary standard and sample, and the time spent
counting:

Error
(
%

) = 100 ×
√√√√√

Xsample(Pstd−Bstd)

Xstd
+ 2Bstd(

Xsample(Pstd−Bstd)

Xstd

)2
t

, (Equation 2)

where Pstd and Bstd are the counts per second (cps) of the peak
and background for the element in the primary standard, Xstd is
the element concentration in the primary standard (wt%), Xsample

is the concentration in the unknown sample (wt%), and t is the
count time on the unknown sample (s).

Equation 2 assumes that the total count times on the peak and
background are the same and does not account for the different
matrices of the primary standard and the sample. It can be made
more versatile by including a factor for the probe current (I),
substituting counts per second on the primary standard with
counts per second per nA (PI, Std and BI, Std):

Error
(
%

) = 100 ×

√√√√√√
Xsample(I PI,std−I BI,std)

Xstd
+ 2 I BI,std

(
Xsample(I PI,std,−I BI,std)

Xstd

)2
t

. (Equation 3)

When the measured total counts (PTot,sample) on the peak and
background (BTot,sample) are known, a more precise way of calcu-
lating the relative error for a specific element is given by

Error
(
%

) = 100 ×
√

PTot,sample

t2 + BTot,sample

t2(
PTot,sample

t − BTot,sample

t

) . (Equation 4)

Equations 2–4 yield very similar results (often within ∼1%),
with slight discrepancies resulting from the fact that Equation 4
accounts for differences in the matrix of the sample and standard,
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which affects the intensity of generated X-rays, and slight differ-
ences in the background count rate on the sample and standard.
The main advantage of Equations 2–3 is that they can be used
predictively to assess the approximate precision on an unknown
using count rates from primary standards on a given spectrometer
and crystal. Equation 4 is best applied after an analysis has been
conducted, and is what most commercial EPMA software uses to
output 1 sigma errors for a specific analysis.

Uncertainties resulting from counting are almost always ran-
dom (i.e. following a Poisson distribution), whereas instrument
calibration can introduce systematic errors. Historically, because
the accuracy of the physical models used for performing matrix
corrections were limited (though today that is generally no longer
the case), EPMA analyses of geological materials have tended to
use primary standards with similar matrices to the target analytes
(e.g. Na in Albite for analysis of Na in feldspar, Na in jadeite for
analysis of Na in pyroxene). The most common primary standards
are from the Smithsonian National Museum of Natural History
(NMNH) collections (Jarosewich et al., 1980; Jarosewich, 2002).
However, it is well documented that different chips of the same
natural NMNH standard may differ from published compositions
determined by wet chemistry, and that heterogeneity can also
exist within a single chip (Jarosewich et al., 1980; Rose et al., 2008;
Fournelle, 2012). As each EPMA laboratory has its own set of
primary standards, for any given named standard (e.g. San Carlos
olivine), heterogeneity between the different chips in different
laboratories can result in systematic offsets between measure-
ments made in these laboratories. Different laboratories also rely
on different primary standards to calibrate a specific element,
increasing the variability. Some laboratories also utilize ‘home
grown’ materials obtained from their mineral collections or syn-
thetically produced ‘in-house’ standards, and some commercially
available standard materials may not be what are advertised. For
example, some commercial ‘San Carlos olivine’ has not been split
from the Smithsonian mineral collection, but rather was merely
collected from the same geographical vicinity.

The resulting systematic offsets in instrument calibration can
be identified using round-robins, where the same material is ana-
lyzed as an unknown in different laboratories using their routine
calibration strategy. Hunt et al. (1998) distributed a Lipari Obsidian
sample to five laboratories, and Kuehn et al. (2011) distributed
three different glass compositions (rhyolite, phonolite, basalt) to
27 laboratories. The Kuehn round-robin identified a number of
outlier laboratories with large systematic errors, especially with
regards to the correction of time dependent intensity (TDI) effects,
sometimes referred to as volatile element or beam damage effects.
These changes in emitted intensity are usually due to ion mobility
within the interaction volume (Morgan & London, 2005; Hughes
et al., 2019) and are observable on not only highly mobile alkali
elements such as Na and K (which can dramatically decrease in
intensity during the measurement and therefore must be extrap-
olated back to their zero time intensities), but also for less mobile
elements such as Si and Al, whose apparent intensities increase
as the alkali element intensities decrease due to migration toward
subsurface charge accumulation. Such TDI corrections can range
from under a few percent (relative) to 30%–100%. Thus, changes
in counts during beam exposure should be carefully inspected
for each element in representative samples when performing a
study on hydrous/alkaline melt compositions and used to inform
decisions about which elements to perform TDI corrections for.
As many Cpx-Liq thermobarometers are parameterized in terms
of Na and K (and Si and Al) in the liquid (e.g. Neave & Putirka,
2017, eq30–31 of Putirka, 2008), different TDI correction routines

used to measure different experiments could add significant
scatter to an experimental dataset compiled from many different
laboratories.

At various points over the last few decades, authors have
used smaller round-robins to identify systematic offsets in glass
measurements and have corrected data compiled from these
different laboratories to produce a more consistent calibration
dataset. For example, Yang et al. (1996) performed corrections to
glass data collected at both Massachusetts Institute of Technology
(MIT) and the Smithsonian prior to performing modeling and
thermobarometric calculations. Most recently, Gale et al. (2013)
performed a round-robin using VG2 to obtain correction factors
for MORB glasses relative to EPMA analyses from Lamont Doherty
Earth Observatory (hereafter, Lamont; Fig. 2). To our knowledge,
no such reconciliation has been performed for datasets used to
calibrate Cpx-based barometers (or any other mineral barome-
ters), so we quantify the possible effects of interlaboratory offsets
in the discussion section.

Additional systematic and random analytical uncertainty dur-
ing EPMA analyses can result from problems relating to beam
damage/charging of materials under the electron beam, poor
sample preparation (e.g. bad polishing, sample tilt) and drift of
the instrument (e.g. stage Z height, changes in the temperature
and pressure in the room; Fig. 1b). It should also be mentioned
that other sources of systematic analytical inaccuracy can be
introduced from improperly calibrated instruments, for example
assumed dead time constants and picoammeter readings from
poorly maintained instruments. However, these are almost impos-
sible to quantify retrospectively from published data, so are not
discussed further.

Experimental scatter
Analysis of the experimental products used to calibrate thermo-
barometers are subject to the analytical uncertainty discussed
above, along with several other sources of uncertainty (Fig. 1c).
Firstly, experimental phases may be heterogeneous because of
zoning resulting from changing P-T-fO2-H2O conditions during
the run, remnant seed crystals, or kinetic effects during growth
and sample quench. Capsules may also experience Fe and H+

exchange with samples and assemblies (Gaetani & Grove, 1998;
Botcharnikov et al., 2005), resulting in poor redox buffering.
Relict crystals from the starting material may be present if the
starting material was not fully melted (Mutch et al., 2016). The
relatively small size of experimental products also enhances
EPMA uncertainty relative to natural crystals, because the
interaction volume of the electron beam may directly enter other
phases, and neighboring phases may influence the measure-
ment through secondary fluorescence (Llovet & Galan, 2003;
Fig. 1d).

There are also a number of sources of uncertainty that can
arise from the experimental set up. Experiments conducted at <5–
7 kbar were mostly performed using TMZ/MHZ vessels (Sisson
and Grove, 1993a, 1993b) and internally heated pressure vessels
(IHPV, e.g. Cadoux et al., 2014; Di Carlo, 2006; Hamada & Fujii, 2008;
Parat et al., 2014). Pressure in IHPV experiments is monitored with
strain gauge manometers, Heise Bourdon tube gauges, or digital
pressure transducers, which have a precision of ∼0.01–0.04 kbar
(1–4 MPa; Koepke et al., 2018; Pichavant, 2002). Pressure variations
during experiments are mostly within ∼0.05 kbar (e.g. Parat et al.,
2014). Because pressure is transmitted via a gas to the capsule,
excluding calibration offsets in gauges/manometers/transducers,
an experimental pressure recorded in one lab is likely to be similar
to that in another lab.
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Fig. 2. Assessing the influence of interlaboratory biases on Cpx-only and Cpx-Liq thermobarometry. (a,b) Interlaboratory correction factors from Gale
et al. (2013) relative to Lamont (plotting at 1, 1). (c,d) Calculated Cpx-only and Cpx-Liq pressures and temperatures for the average reported
composition from Experiment 41c-106 of Krawczynski et al. (2012, 4.9 kbar, 1248.15 K), corrected as if Cpx and Liq compositions were measured in
different laboratories. (e,f) as for (c) and (d), using Experiment B1038 (8 kbar, 1323.15 K). Additional experiments are shown in Supplementary Figs 2–4.
Commonly stated SEEs for each thermobarometer are shown for comparison. The SEE for eq32b is the fit to N = 1173 data, eq32d is the fit to N = 910
anhydrous experiments, and eq33 is the fit to N = 1174 data (all from figures in Putirka, 2008). The SEE for Neave & Putirka (2017) is that given in their
abstract.

In contrast, most experiments conducted at >5 kbar were
performed in piston cylinders (Baker & Eggler, 1987; Gaetani &
Grove, 1998; Mercer & Johnston, 2008), where a solid-medium
transmits pressure to an enclosed capsule. Pressure in the piston
cylinder apparatus is commonly monitored using a Heise gauge,
and maintained to within ±0.5 kbar (Hamada & Fujii, 2008).

In solid-medium experiments the pressure experienced by the
experimental capsule can differ from the pressure applied to
the hydraulic piston (measured with the Heise gauge), with
the correction between the two often referred to as a friction
correction (Tamayama & Eyring, 1967; Condamine et al., 2022).
This friction/pressure correction can be evaluated for each
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experimental set up by running experiments for reactions, which
are well constrained in P–T space, and applying a shift to account
for any offsets between the observed and predicted transition.

However, different laboratories investigating Cpx equilibria cor-
rect for friction in different ways, which could easily introduce
bias to an experimental dataset compiled from many different
studies. For example, Mercer & Johnston (2008) and Draper &
Johnston (1992) do not include a friction correction. Likewise,
Bartels et al. (1991) do not apply a correction, because their offsets
calculated from the melting point of Au are only 0–1 kbar, which
is within the uncertainty of the Au calibration (Akella & Kennedy,
1971). Grove et al. (2003) corrected for the offset using the reac-
tion between anorthite+gehlenite+corundum � Ca-tshermakite
(now kushiroite, Hays, 1966), and although they do not give the
magnitude of the offset, they stated that after this correction
pressures are accurate to ±0.5 kbar. Gaetani & Grove (1998) used
this Ca-tshermakite/kushiroite reaction in addition to the melting
point of Au, resulting in a friction correction of 300 MPa. In
contrast to this constant offset applied to 12, 16 and 20 kbar
experiments, Hamada and Fujii (2008) apply a −10% correction for
their 4 kbar experiments, and a −15% correction for their 7 kbar
experiments based on a calibration using the water solubility of
albite melt (Behrens et al., 2001). Ulmer et al. (2018) stated that
they follow the experimental approach of Villiger (2004), who
applied a correction of -3% calibrated against the quartz-coesite
transition at 3.07 GPa and 1000◦C (Bose and Ganguly, 1995) and
fayalite+qtz� orthoferrosilite reaction at 1.41 GPa and 1000◦C
(Bohlen et al., 1980). Finally, Blatter et al. (2013, 2017) calibrated
at each pressure by bracketing the CsCl melting curve (Bohlen &
Boettcher, 1982).

The wide variation in the reactions chosen for calibration
(and the variation in the pressures and temperatures of these
calibration reactions) means that it is perfectly plausible that
systematic offsets still exist between different laboratories, up
to the magnitude of the corrections applied (e.g. ∼10%–15%, or
a few kbar). For example, Johannes et al. (1971) showed that
measurements of the pressure of the albite� jadeite+quartz
reaction at 600◦C using the same starting material in six different
laboratories varied from 15.7 to 16.8 kbar Additionally, Condamine
et al. (2022) showed that friction can decrease during a run (from
29% in 6 hr runs to 21% in 24 hr runs), which means that the true
pressure experienced by the capsule may also be influenced by
the length of the experimental run, which varies greatly between
studies. Johannes et al. (1971) also pointed out that the friction
correction can also vary between runs conducted with identical
protocols, because of a softer than average batch of the solid-
medium material, or more efficient wall lubrication. This means
that a piston cylinder experiment reported at 10 kbar in one
laboratory may not have experienced the same pressures as
an experiment performed at 10 kbar in another laboratory, and
variations may exist even within experiments run at 10 kbar in a
single laboratory. Uncertainties in the true pressure experienced
by the charge explains why experimentalists tend to space out
their piston-cylinder pressures within a single study, to ensure
that trends are at least coherent. However, when all these data
are compiled to calibrate a barometer, offsets on the order of 0.5–
1 kbar will increase scatter, and could create systematic uncer-
tainties based on different laboratories investigating different
regions of PT space.

Temperature variations in piston cylinders are generally mea-
sured with thermocouples (e.g. Pt-Rh, Baker & Eggler, 1987, W-
Re, Mercer & Johnston, 2008), although the exact geometry varies
in different laboratories. Although thermocouples are reasonably

precise and accurate (±10◦C), the larger source of error results
from thermal gradients within the piston cylinder, requiring a
correction to be made to account for the higher temperatures
in the hotspot where the experimental capsule is placed versus
the position of the thermocouple tip. These corrections depend
on the capsule geometry and assembly, but can easily reach 20–
40◦C (Grove et al., 2003; Brugman et al., 2021). Variable thermal
gradients between the capsule and thermocouple could result
in systematic differences between runs and laboratories, and
thermal gradients within capsules themselves (Harlow, 1997) can
cause crystals grown in different parts of the capsule to show dif-
ferent compositions (increasing the compositional scatter seen in
experiments). Putirka et al. (1996) stated that the most consistent
pyroxene analyses are when rim compositions are analyzed along
with the neighboring liquid interface, perhaps helping to mitigate
the effect of thermal gradients (and thus compositional variations
throughout the capsule).

DISCUSSION
Quantifying the effect of interlaboratory EPMA
analysis offsets
The dataset of experiments from LEPR used by Putirka (2008)
to calibrate their Cpx ± Liq thermobarometers lists 46 unique
experimental laboratories, with a relatively small number of labo-
ratories performing a large proportion of experiments (MIT = 25%,
Penn State = 7%, Lamont = 6%, Hannover and University of Ore-
gon = 4-5%). If all laboratories investigated the same P-T-X con-
ditions, and interlaboratory offsets were normally distributed
about the nominally correct value, inter-laboratory EPMA off-
sets would simply add random uncertainty to calibration and
test datasets. However, as different experimental laboratories,
which mostly use a specific EPMA instrument, tend to target
different research questions, the occurrence of these analytical
offsets in the experimental dataset is not uniformly distributed,
and could thus lead to systematic uncertainty. For example, in
the LEPR dataset, at pressures >10 kbar, experiments performed
at Australia National University (ANU) tend to focus on higher
SiO2 liquids than experiments performed at MIT or University
of Tasmania (Supporting Fig. 1–2). Thus, interlaboratory offsets
mean the calibration could be skewed as a function of liquid
composition.

Interlaboratory offsets can also affect the statistics determined
from a test dataset if a specific laboratory has an offset relative
to the average offset of the LEPR dataset (or even the average
value in a specific P-T-X region of calibration dataset). It is note-
worthy that the relative contribution of different laboratories at
crustal pressures (0–13 kbar) has changed dramatically between
our newly compiled ArcPL dataset and LEPR. For example, exper-
iments conducted at Hannover account for 40% of the ArcPL
dataset, but just 4% of the LEPR dataset, while MIT comprises
25% of the LEPR dataset and 10% of the ArcPL dataset. If, say the
EPMA lab at Hannover (or any other laboratory that has greater
output since LEPR was compiled) had an offset from one of the
dominant EPMAs in the LEPR dataset used for calibration of many
published barometers, this could help to account for the fact that
new experimental data are predicted poorly by these barometry
calibrations.

In general, interlaboratory analytical differences from glass
round-robins are <10% (Hunt et al., 1998; Kuehn et al., 2011; Gale
et al., 2013), although occasionally it is noted that one or more
laboratories produce discrepancies >10% (their identity is kept
anonymous in Hunt et al., 1998). Compared to other analytical
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techniques, relatively little attention has been paid to interlabora-
tory EPMA offsets in petrology, with most studies being conducted
on silicate glasses by the tephrochronology community (Hunt et
al., 1998; Kuehn et al., 2011). To our knowledge, no round-robins
have been conducted on pyroxene or other silicate minerals. As
many of the EPMAs used to measure the pre-2008 experiments
in the LEPR dataset have been decommissioned, we conclude
that we will never be able to fully determine the exact value of
offsets for Cpx. In the absence of other data, we assume that
the interlaboratory offsets for VG2 glass reported by Gale et al.
(2013; Fig. 2a-b) are a first-order estimate of the interlaboratory
differences that may have occurred during Cpx analysis. The
round-robin conducted by Gale et al. (2013) is particularly useful
because it targeted a number of laboratories, which have analyzed
experimental charges used to calibrate and test various thermo-
barometers.

To assess whether 0–10% offsets between different EPMA labo-
ratories could adversely affect thermobarometric calibrations and
assessment using test datasets, we consider the average reported
Cpx and glass compositions from experiments from Krawczyn-
ski et al. (2012) analyzed on the MIT EPMA. We multiply these
measured compositions by the correction factors from Gale et al.
(2013) to obtain the compositions that would have been measured
on the Lamont EPMA. Using the interlaboratory comparisons to
Lamont from Gale et al. (2013), we also estimate the composition
that would have been measured at a number of other EPMA
labs. We then calculate pressures and temperatures for these
corrected compositions by iterating eq32d (T) and eq32b (P) for
Cpx-only thermobarometry, and eq33 (T) and eq31 (P) for Cpx-Liq
thermobarometry (equations from Putirka, 2008).

The range of calculated pressures resulting from these labora-
tory offsets is significant (Fig. 2c–f), and varies greatly between dif-
ferent experiments and different thermobarometry expressions
(Fig. 2, Supporting Figs 3–5). Cpx-Liq pressures that would have
been calculated from mineral compositions measured in different
laboratories show offsets from one another of ∼0.5 to 6 kbar
(Fig. 2d,f, Supporting Figs 3–5), while Cpx-only pressures show off-
sets of ∼3 to 5 kbar (Fig. 2c,e, Supporting Figs 3–5). Interlaboratory
offsets also impact calculated temperatures (∼10–50 K), but to a
lesser extent. These interlaboratory offsets likely contribute to the
overall scatter between calculated versus experimental pressures
in calibration and test datasets. In fact, it is noteworthy that
our calculated offsets are similar in magnitude to quoted SEEs
on barometers. These offsets also affect natural samples that
barometry equations are applied to; it is highly concerning that
calculated pressures may vary by 3–5 kbar based solely on the
EPMA laboratory used to perform analyses.

Variability in treatment of chromium
As discussed in the introduction, many experiments in the cal-
ibration dataset do not report Cr data, yet the Cpx-only thermo-
barometers of Wang et al. (2021, eq1, 2, 32dH), Putirka (2008, eq32b,
32d) and Petrelli et al. (2020) include a term for the Cr content of
the Cpx. For Cpx-Liq thermobarometry, only the model of Petrelli
et al. (2020) is parameterized directly in terms of the Cr content of
the Cpx and the liquid. However, Cr in the Cpx is used to calculate
the CrCaTs component of the Cpx, which is then used to calculate
the diopside-hedenbergite (DiHd) component:

CrCaTs = 0.5∗Crcat frac

DiHd = Cacat frac − CaTs − CaTi − CrCaTs

The DiHd component is included in the Cpx-Liq barometers of
Putirka (2008, eq30 and 31), Neave & Putirka (2017), and the Cpx-
only barometers of Putirka (2008, eq32a, 32b). Additionally, even
Cpx-Liq or Cpx-only barometers that have no compositional term
dependent on Cr in Cpx are normally parameterized in terms of
Cpx cation fractions, either directly or in terms of components like
jadeite, which are calculated from cation fractions. If Cr is present
in the sample, but not measured, the calculated cation fractions
of other elements such as Na (and therefore jadeite) are artificially
high. Thus, a wide range of barometers are directly or indirectly
sensitive to the Cr content of the Cpx.

The proportion of missing Cpx Cr data is high in both the
LEPR calibration dataset of Putirka (2008, 42%) and ArcPL (62%).
Missing Cr data in the calibration dataset may have resulted in
the relationship between components dependent on Cr and P and
T being incorrectly parameterized (or correctly parameterized,
but with the addition of significant noise). Missing Cr data in
our test dataset will also cause noise when comparing predicted
versus experimental pressures, because if Cr was present but not
reported, calculated pressures and temperatures using true Cr
contents may differ from those calculated using the Cr = 0 wt%
(and would perhaps lie closer to the 1:1 line). To investigate the
possible offsets caused by not reporting Cr when it is actually
present, we calculate pressures and temperatures for all Cpx and
Cpx-Liq pairs in the ArcPL dataset with reported Cr data, and
compare this to calculations using Cr = 0 wt% (Fig. 3).

Different barometers show different sensitivity to Cr. For the
Wang et al. (2021) Cpx-only barometer and thermometer, there
is a clear correlation between the change in pressure and the Cr
content of the Cpx, with the most Cr-rich Cpx showing pressures
up to 2.8 kbar too high when Cr is set to 0 wt% (Fig. 3a). The effect
on temperature is proportionally smaller (∼35 K; Fig. 3b). Strong
correlations with true Cr content are also seen for pressures
calculated using Putirka (2008) eq32d-32b, with max offsets of
1.9 kbar (and 16 K for temperature). In contrast, the change in
pressure using the Petrelli et al. (2020) Cpx-only barometer shows
no apparent relationship to the Cr content of the Cpx, and shows
significantly larger variations than the other barometers (max
�P = 4.9 kbar, �T = 97 K). This unintuitive response reflects the
use of decision trees, where the Cr content affects the route taken
through the tree.

For Cpx-Liq thermobarometers, iteration of Putirka (2008) eq33
(T) with eq30 (P), or eq33 (T) with Neave and Putirka (2017, P, red
triangles) shows very little sensitivity to Cr content (apart from
a single Cpx-Liq pair showing a large change for all equations;
Fig. 3c). Iteration of various thermometers with eq32c for pressure
shows slightly more sensitivity, with offsets of up to �P = 1 kbar
and �T = 10 K. As for their Cpx-only thermobarometer, the extra-
trees regressions for Cpx-Liq of Petrelli et al. (2020) are slightly
more sensitive to Cr, with temperatures varying by up to ±23 K
by changing the Cr content, and no clear correlation between
the offset and the actual Cr content of the Cpx. Overall, these
comparisons show that the presence/absence of Cr data in both
calibration and test datasets can clearly introduce noticeable
uncertainty in terms of calculated pressures (>1 kbar).

Quantifying the effects of analytical versus
experimental variability in test and calibration
datasets
Variability in measured phase compositions within a single exper-
iment can also affect calibration and test datasets. Analytical
uncertainty associated with the random process of X-ray gener-
ation can produce variability in measured phase compositions,
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Fig. 3. For each of the N = 490 experiments in ArcPL, we calculate pressure (a,b) and temperature (c,d) using the measured Cr content (shown on the
x-axis), and using Cr = 0 wt%. The difference between the calculation using measured Cr and Cr = 0 wt% is the y coordinate. Different colors and
symbols represent different thermobarometry combinations used to calculated these pressures and temperatures. Commonly stated 1σ errors for
these thermobarometer are shown for comparison. In addition to those described in the caption of Fig. 2 from Putirka (2008), eq32c is the fit to a global
dataset, the SEE from Petrelli et al. (2020) are the fit to a test dataset, and the error from Putirka et al. (1996) eqT1 is that stated in the conclusion of that
paper.

even if the experimental phases themselves are entirely homo-
geneous. Because analytical uncertainty resulting from counting
statistics is normally distributed and random, if infinite numbers
of compositionally homogenous Cpx crystals are analyzed from
a single experiment, the mean composition will be the same
regardless of the precision of each analysis. However, if only a very
small number of Cpx are measured, analytical uncertainty can
easily yield a reported average composition that is significantly
different from the true composition. In the more likely scenario
that experimental Cpx are also chemically heterogeneous (e.g.
zoned or sector zoned), large numbers of EPMA analyses are
required to correctly characterize the average composition of each
experiment, even if each EPMA analysis is highly precise. For
example, Neave et al. (2019) noted that their Cpx show highly
variable Al and Ca contents, which they attributed to sector
zoning. They suggested based on their observations of chemical
heterogeneity that at least 20–40 analyses are required to mean-
ingfully characterize the composition of Cpx.

Are we sufficiently averaging experimental and analytical
variability?
To address the possible influence of analytical and experimental
variability, we compile the number of reported Cpx analyses in the
490 experimental charges from the ArcPL dataset to investigate

how many publications approach the Neave et al. (2019) recom-
mendation of 20–40 analyses. We supplement the ArcPL dataset
with a compilation of Cpx measurements in 307 experimental
charges in the LEPR dataset conducted at 0–13 kbar in arc-like
compositions (ArcLEPR). We note that we do not know for each
individual experimental charge whether the number of analyses
reported in the associated paper represents measurements of
N discrete Cpx crystals, or N analyses, with some Cpx being
characterized by more than 1 EPMA spot (e.g. perhaps 10 analyses
from 8 Cpx crystals).

When ArcPL and ArcLEPR are combined (N=797), 44 experi-
mental charges (5.5% of the combined dataset) were characterized
by a single Cpx analysis. N=48 experiments (6%) performed just
2 Cpx analyses, 64 (8%) performed 3 Cpx analyses, and 78 (10%)
performed 4 Cpx analyses (Fig. 4a,b). Overall, 45% of the compiled
experimental runs were characterized by ≤5 Cpx analyses, 25%
by ≥10 Cpx analyses, and only 5% by ≥20 Cpx analyses (as
recommended by Neave et al., 2019).

Concerningly, the experiments with the lowest number of anal-
yses tend to be concentrated at lower pressures, where Na2O con-
tents are generally lower and more susceptible to large analytical
uncertainties (Fig. 4a). It is notable that the discrepancy between
the calculated pressure using the reported Cpx composition and
the true experimental pressure increases with decreasing number
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R2=0.26

R2=0.64
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1 Experimental charge 95% Quantile>4 Cpx Mean>4 Cpx Linear Regression

Fig. 4. Number of discrete Cpx analyses performed in each experimental charge plotted against experimental pressure (a) and as a histogram with a
bin width of 1 (b). (c,d) For each experimental run, we calculate the absolute difference between the pressures calculated using the Cpx-only
barometers of Wang et al. (2021) and Putirka (2008) eq32d-32b and the experimental pressure. In general, experimental runs with a smaller number of
Cpx analyses show the largest absolute discrepancies. Symbols are semi-transparent, so darker colors represent a tighter clustering of data. The blue
stars show the mean value for each discrete number of Cpx in (c) and (d), and for each pressure bin (0 ± 0.5 kbar, 1 ± 0.5 kbar, etc.), and the yellow stars
show the 95% quantile.

of Cpx analyses (for the Wang et al., 2021 and Putirka, 2008
Cpx-only barometers; Fig. 4c, d). This indicates that insufficient
averaging of analytical variability or true phase variability (e.g.
zoning) is affecting the performance of barometers. As the median
number of analyses per experiment is 6 for both our new dataset
and the subset of LEPR we have compiled the number of analyses
for, we assume the statistics given above are representative of
the entire LEPR database used for literature thermobarometry
calibrations.

Assessing the relative influence of analytical uncertainty

and experimental variability in experimental compositions is
vital to address how barometry calibrations can be improved.

If variability in measured Cpx compositions results from true
variation in the composition of that phase (e.g. zoning and

other disequilibrium processes), it means we must direct more
attention to understanding and identifying disequilibrium in
experimental products, measure very large numbers of phases

from each experiment (e.g. Neave et al., 2019), and possibly redo
experiments that have not sufficiently approached equilibrium
(or remove these experiments from the calibration dataset). In
contrast, if analytical variability is the primary culprit, it means
we need to direct our attention to improving EPMA analyses of
experimental products. Hereafter, we refer to true variation in
Cpx compositions in experimental charges as ‘phase variability’
and variability resulting from EPMA analyses as ‘analytical
precision.’

Distinguishing phase variability and analytical precision
Unfortunately, the information required to quantify the relative
influence of phase variability versus analytical precision is largely
absent from the information provided in most legacy experimen-
tal studies. In-text pdf tables are normally used to report the
mean composition and standard deviation of each phase in each
experimental charge. It is very unusual for the individual EPMA
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Fig. 5. (a) Correlation matrix showing the correlation coefficient (R2)
between different oxides in the 42 clinopyroxenes measured by Neave et
al. (2019) in experiment Y0201–2, with cells colored based on this R2

value. (b,c) Comparing measured compositions (red dots) to 500
synthetic Cpx analyses with major elements distributed normally using
the reported mean and standard deviation of the 42 clinopyroxenes
measured in the experiment (yellow dots).

analyses from each experiment to be reported, except in the
most recent publications (e.g. Erdmann et al., 2016; Neave et al.,
2019; Waters et al., 2021). This makes it difficult to assess the
true variability in Cpx compositions, because the quoted mean
and standard deviation for each phase in each experiment only
provide a good description of the underlying data if it is normally
distributed, and lacks covariance between oxides. Yet, almost all
of the full experimental datasets we have been able to obtain
(Krawczynski et al., 2012; Blatter et al., 2013; Melekhova et al., 2015;
Neave et al., 2019) do not show normally distributed elemental
variations, and exhibit significant correlations among different
oxides (e.g. Fig. 5a, Supporting Fig. 6–15).

The covariance structure of oxides in each phase gives impor-
tant clues into the source of variability in experimental products.
For example, strong correlations between SiO2-TiO2, SiO2-Al2O3,
SiO2-MgO, Al2O3-MgO in Cpx are indicative of sector zoning (e.g.
Fig. 3b, Neave et al., 2019; Ubide et al., 2019, Supporting Fig. 6–14),
whereas elements with variability arising from EPMA counting
statistics will be uncorrelated (e.g. MnO-Na2O; Fig. 5c). Impor-
tantly, when the full data are not reported, simulations using the
reported mean and standard deviation provide a poor match to
the real experimental data when a strong covariance structure
is present (e.g. Fig. 5b, simulated Cpx as yellow dots, measured
Cpx as red dots from Neave et al., 2019). The poor match of data
simulated using just the mean and standard deviation means that
it is nearly impossible to simulate the true variability in the LEPR
dataset, where individual analyses could not be recovered.

Similarly, the information required to reconstruct the analyti-
cal precision for each element is seldom (if ever) reported. Ideally,
authors would report the software-calculated sigma values for
each analysis, which uses the number of counts on the peak and
background of a specific EPMA spot to estimate the uncertainty
related to counting statistics (Equation 4). Alternatively, more
approximate estimates of error can be calculated from Equations
2–3, but this requires knowledge of the counts on the primary
calibration standards, as well as the beam current and count
times used for each element. We were unable to find any rel-
evant experimental papers reporting software-calculated errors
or sufficient information to use Equations 2–4. However, we were
able to obtain software-calculated precisions upon request from
the authors for a subset of experimental Cpx analyses from
Krawczynski et al. (2012) conducted on the old MIT JEOL 733 and
the newer MIT JEOL8200 (installed ∼2007), and from Neave et al.
(2019) on the Hannover Cameca SX100 (installed ∼2001, decom-
missioned ∼2021). We supplement these estimates with precision
from natural pyroxene analyses on the University of Cambridge
Cameca SX100 (Gleeson et al., 2021) and secondary standard
analyses for the Kakanui Augite from the Oregon State University
Cameca SX100. We also obtained peak and background counts
from primary standard analyses on the MIT JEOL 733 (installed in
the 80s) and the Bristol JEOL JXA8530F (installed ∼2012) to model
precision as a function of count time and beam current.

For the following discussion, we focus on Na to highlight an ele-
ment affected by analytical error that is pertinent to the majority
of Cpx barometry parameterizations, because of its relationship
to jadeite content. As expected, compiled analytical precisions
from different EPMA systems increase in magnitude as Na2O
content decreases below 1 wt% (Fig. 6a,c), closely following the
trajectory of modeled precision curves. The exact trajectory of
these precision versus concentration curves depends on spec-
trometer efficiency (ratio of peak: background counts in a primary
standard), as well as the energy of the beam (voltage, current) and
the count time. As the majority of Cpx analyses are performed at
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Fig. 6. Analytical precision as a function of Na2O content and analytical conditions. (a) Theoretical precision versus concentration curves calculated
for four different beam conditions on the MIT JEOL733 are shown in orange. EPMA software-calculated precisions for individual Cpx analyses are
shown in red circles from Krawczynski et al. (2012) on the MIT JEOL8200 and orange circles from the older JEOL733. Phase variation/precision
calculated from each experiment of Krawczynski et al. (2012; combining analyses from both probes) are shown as yellow squares. Analyses were
performed with I∗t = 150 nA s. (b) Same for Al2O3. (c) Software-calculated precision for Cpx measurements from Neave et al. (2019) on the University of
Hannover SX100 (cyan dots) with phase variation overlain (blue squares). The necessary count rates to use equation 2 could not be obtained from this
instrument, so we overlay curves calculated using various analytical conditions for the old MIT JEOL733 and newer Bristol JEOL JXA8530F. (c) Same for
Al2O3. Theoretical lines are not shown as there is substantially more variation in instrument efficiency and analytical conditions between different
labs for Al compared to Na (See Supporting Table 1). (d,e) Experimental variability for Cpx in different experimental charges reported in the LEPR
dataset are shown as grey dots. We also overlay software-calculated precisions from MIT and Hannover, as well as measurements on the University of
Cambridge Cameca SX100 from Gleeson et al. (2021) and measurements of Kakanui augite on the Oregon State Cameca SX100. We overlay theoretical
precision lines representing best-case (newer Bristol JEOL JXA8530F, I∗t = 400 nA s) and worst-case scenarios (older MIT JEOL733, I∗t = 60 nA s).
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15 kV, variations in beam current and count time can be combined
into a single variable, I∗t (10s and 20 nA gives identical counting
statistics to 20 s and 10 nA).

Using count data from the Bristol JEOL JXA8530F TAP crystal
for Na on an Albite primary standard, we calculate that measure-
ment of a Cpx with Na2O = 0.13 wt% if I∗t = 60 nA s has a precision
of 25% (e.g. 10 s, 6 nA), while measurement if I∗t = 400 nA s has
a precision of 9.7% (e.g, 20s, 20 nA; Fig. 6c). For the MIT JEOL 733
with a TAP crystal calibrated for Na on Albite, the precision for
Na2O = 0.13 wt% is 60% for I∗t = 60 nA s, and 23% for I∗t = 400 nA s
(Fig. 6a). The lower precision on the Bristol versus MIT JEOL for a
given I∗t value reflects the increase in detector efficiency on the
newer Bristol instrument. This can also be seen by comparing the
software-reported precision for the old MIT JEOL 733 (orange dots;
Fig. 6a) to the newer MIT JEOL 8200 (red dots; Fig. 6a), where all
other variables are kept constant (same calibration routine, same
current and count times).

When information is available on both the software-reported
analytical precision for each individual EPMA spot and the true
phase variability observed in measured Cpx compositions within
a single experimental charge, these can be compared. If variability
for a specific element is dominated by analytical precision, the
percentage variation calculated from multiple measurements of
Cpx in that experimental charge (100∗σ /Mean concentration) will
be the same as the % precision value predicted from counting
statistics. In contrast, if true phase variability is dominant (e.g.
zoning, disequilibrium), the observed variability in measured Cpx
compositions will greatly exceed the analytical precision. We
were only able to obtain estimates of analytical precision for the
experiments of Krawczynski et al. (2012) and Neave et al. (2019).
In both sets of experiments, the analytical precision for Na2O
is very similar to the observed variability for measurements of
Na2O in Cpx (Fig. 6a, c). In contrast, the variability of Al2O3 in
experimental Cpx greatly exceeds the analytical precision, indi-
cating true phase variability (Fig. 6b, d). In general, variability in
elements with >1 wt% concentration in the experiments of Neave
et al. (2019) and Krawczynski et al. (2012) significantly exceed the
analytical precision, while lower abundance elements (<1 wt%)
show variability similar to that expected from counting statis-
tics (Fig. 6, Supporting Figs 16–17). While the strong correlations
between Al2O3 versus TiO2 and Al2O3 versus SiO2 in the experi-
ments of Neave et al. (2019) are strongly indicative of sector zoning
(compare Supporting Figs 6, 11), the weaker correlations for the
Krawczynski et al. (2012) data make it hard to know the exact
origin of true phase heterogeneity without detailed elemental
mapping of crystals (Supporting Fig. 8).

We wish to determine whether elemental variability for the
other experiments in the LEPR database are similarly controlled
by analytical precision for Na2O, and true phase variability for
higher concentration elements. While we cannot reconstruct the
exact analytical precisions for these studies, we can use the curves
calculated for the new Bristol JXA8530F and old MIT JEOL733
probes as end-member examples of detector efficiency to esti-
mate precision for different I∗t values. This approach is supported
by the fact that the software-calculated Cameca SX100 errors
from Hannover lie within the modeled lines for these two probes
(Fig. 6c). To get an idea of common I∗t values, we compile count
times and beam currents from 39 randomly selected experiments
in LEPR used to calibrate the Putirka (2008) and Petrelli et al.
(2020) Cpx-only and Cpx-Liq expressions, as well as a number of
Cpx containing experiments conducted since 2008 (see Support-
ing Table 1). This compilation is also hampered by insufficient
reporting of analytical conditions. Of the 39 LEPR experimental

studies, 31 stated the beam current while only 16 (∼40%) gave
the count time for Na2O. The 22 experiments published since
2008 are somewhat better, with 21 providing beam current, and
14 (∼60%) providing count times for Na2O. Although incomplete,
our compilation shows that I∗t mostly varies between 60 and
400 nA s (Supporting Table 1). Interestingly, many papers include
statements to the effect that well known or established analytical
conditions were used for analysis without actually reporting what
these were. The range of compiled I∗t values shows that this is
clearly insufficient, as there is no such thing as ‘normal’ analytical
conditions (Supporting Table 1).

When the worst-case scenario (60 nA s on the MIT JEOL733,
orange line) and best-case scenario (400 nA s on the Bristol
JX8530F, blue dashed line) are overlain on the reported 1 sigma
values for element variability within a single experimental charge
from LEPR (Fig. 6e-f), it is apparent that the majority of Cpx Na2O
variability reported within single experiments results from ana-
lytical precision. The various measures of software-reported pre-
cision we compiled for different EPMA facilities (e.g. Cambridge,
OSU) lie in the middle of the cloud defined by LEPR experiments,
further supporting this assertion. The small number of points that
lie above the MIT JEOL733 line could be influenced by experi-
mental scatter, or even lower spectrometer efficiency than the
MIT JEOL733 (or I∗t < 60 nA s). In contrast to Na2O, Al2O3 in LEPR
experiments show significantly more variability than software-
estimated precision, indicating that features such as sector zoning
may be nearly ubiquitous in experimental Cpx (Fig. 6f).

Our modeling and compilations of analytical precision high-
light a major issue with the way EPMA precision is being assessed
and reported within the petrology community. If mentioned at all,
precision is generally discussed with reference to repeated mea-
surements of secondary standard materials (e.g. Neave et al., 2019;
Waters et al., 2021). Although secondary standards are very helpful
to assess accuracy and drift during an analytical session, they
only provide useful insights into precision if secondary standards
and samples have similar concentrations for a given element.
This is a particular problem for Cpx, because the commonly
used Kakanui augite secondary standard has 1.2–1.3 wt% Na2O
(Fig. 6b), whereas experimental Cpx produced at <10 kbar have
median Na2O contents of only 0.55 wt% (and most crustal Cpx
have similarly low concentrations). The theoretical lines calcu-
lated for the MIT JEOL 733 show that analysis of Kakanui augite
would indicate 5–10% error, but the lower Na2O contents of crustal
Cpx yield errors of up to ∼40% (Fig. 6c). Thus, secondary standards
must only be used to estimate precision for elements where the
standard and sample have very similar concentrations.

Effect of major element variability on calculated pressures
For experiments where individual Cpx measurements within a
single experimental charge could be obtained, we calculate Cpx-
only pressures for each reported measurement (Krawczynski et
al., 2012; Blatter et al., 2013; Melekhova et al., 2015; Erdmann et al.,
2016; Neave et al., 2019). Despite the fact that Cpx within a single
experimental charge experienced a narrow range of pressures
within their capsule, calculated pressures span up to ∼4 kbar
(Fig. 7a–e). The Cpx-only barometer of Putirka (2008) shows the
widest range in most cases (red diamonds), with the barometers of
Wang et al. (2021, black dots) and Petrelli et al. (2020, cyan squares)
showing a slightly smaller range for a given experiment. The range
of calculated pressures in a single experiment is in many cases
comparable to the reported SEE on the barometer (colored error
bar). Visually, it is easy to see how this variation can lead to large
reported errors on barometers if only a small number of Cpx are
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analyzed. For example, if Neave et al. (2019) had measured just
one Cpx, the pressure calculated using the Cpx-only barometer
and thermometer of Putirka (2008, eq32a-32d) could range from
∼4 to 10 kbar. In turn, when plotted against experimental pressure
(3 kbar), this pressure calculation could lie 1 to 7 kbar off the 1:1
line. When all experiments in a test dataset are considered, these
offsets cause very large SEE estimates on the barometer.

However, it is still unclear from these discussions whether
major elements (predominantly controlled by true phase vari-
ability) or minor elements (controlled by analytical precision)
are producing this spread of calculated pressures in a single
experimental charge. Qualitatively, when we plot the calculated
pressures from five experiments against Na2O for two barome-
ters, the strong correlation between calculated pressures and Na
indicates that analytical precision is a major contributor to the
spread in calculated pressures (Fig. 7f).

To investigate the relative effect of analytical precision ver-
sus true phase variability more quantitatively, we use Monte
Carlo simulations implemented in the Python3 thermobarometry
tool Thermobar (Wieser et al., 2022b). For specific experimental
charges from Krawczynski et al. (2012) and Neave et al. (2019), we
create 5000 synthetic Cpx compositions with the concentration of
each element distributed normally about the mean composition
of the Cpx from each experiment, and the standard deviation
equal to the average reported 1 sigma error from EPMA software
for analyses from that experimental charge. Each major element
in each of the 5000 Cpx is sampled randomly from a normal
distribution. The uncoupled variations of these different oxides
means that cation sums in these simulated Cpx do not lie sub-
stantially outside the distribution of cation sums in the measured
Cpx (Supporting Fig. 18–19). We then calculate pressures and
temperatures for these synthetic Cpx using a variety of Cpx-
only barometers (Fig. 8–9). To aid visualization of the spread of
simulated pressures and temperatures, we contour the results
of the Monte Carlo simulations and overlay contours incorpo-
rating 67% and 95% of simulated pressures and temperatures
using the Python3 tool Pyrolite (Williams et al., 2020). If analyt-
ical variability is the dominant cause of pressure–temperature
variability, the Monte Carlo simulations will encompass the vari-
ability of calculated P and T for each measured Cpx composi-
tion. In contrast, if true phase variability dominates, calculated
P and T for measured Cpx compositions (yellow and red dots)
will plot well outside the PT region defined by the simulations
(Figs 8 and 9).

For experiment Y0272–1 from Neave et al. (2019), the 95%
contour around the Monte Carlo simulation almost completely
incorporates the spread of calculated pressures and temperatures
in individual Cpx measured in that experiment for all three Cpx-
only thermobarometers (yellow dots; Fig. 8a–c, see also Support-
ing Fig. 20). Thus, while experimental products show major ele-
ment variability resulting from sector zoning (Neave et al., 2019),
the dominant control on calculated pressures and temperatures
results from analytical precision.

For Cpx-Liq calculations, no EPMA-estimates of glass analytical
uncertainties could be obtained for Neave et al. (2019), so calcula-
tions were performed using the average glass composition paired
with simulated Cpx compositions (so this calculation underes-
timated the true variability caused by analytical uncertainty).
Despite neglecting analytical variability in the glass phase, the
span of P–T in measured Cpx-Liq pairs is very similar to our Monte
Carlo simulations for Putirka’s (2008) eq 33 for temperature,
iterated with either eq 30 (Fig. 8e) or Neave & Putirka (2017) for
pressure (Fig. 8e and Fig. 8d, respectively). It is noticeable on these

figures that the machine learning-based Cpx-only and Cpx-Liq
thermobarometers from Petrelli et al. (2020) show significantly
less spread in calculated pressures and temperatures both for
measured experimental products, and our Monte Carlo simula-
tions (Fig. 8c,f). However, using a different experiment, this barom-
eter shows a much larger spread (Supporting Fig. 20), illustrating
the unintuitive behavior of regression tree machine-learning algo-
rithms versus empirical expressions.

In the experiments of Krawczynski et al. (2012), Cpx in a single
experiment have compositions such that sometimes jadeite is
calculated using Na and sometimes using Al. This complicates the
relationship between the spread of pressures and the analytical
precision because Al is mostly affected by true phase variability
(e.g. sector zoning) while Na is mostly affected by analytical
precision. Our simulations do not show the same P–T extent as
measured values. However, if one imagines shifting the simulation
away from the mean, the spread shown by Cpx where jadeite
is calculated from Na (yellow dots) is reasonably similar to the
simulation, while Cpx with jadeite calculated from Al (red dots)
lie well outside the Monte Carlo simulation (Fig. 9).

Overall, these comparisons indicate that apparent phase vari-
ability resulting from analytical precision alone can yield a wide
range of pressures. Although analytical precision seems to dom-
inate the spread of calculated pressures in experiments where
jadeite is calculated using Na, measuring sufficient Cpx to average
true phase variability is vital where jadeite is calculated from
Al. When either source of elemental variability is insufficiently
averaged by measuring a large number of Cpx, this can lead to
large calculated errors for barometers. For x-y plots of calculated
versus experimental pressure, the effect of measuring only a
single Cpx on the y axis value is easy to visualize from Fig. 8–9.

We investigate whether insufficient averaging of analytical
and/or true phase variation can explain the notable decline in the
discrepancy between predicted and experimental pressure with
increasing number of Cpx analyses per experiment (Fig. 4c-d).
We use software-reported estimates of analytical precision from
an experimental charge of Neave et al. (2019) to produce 5000
synthetic Cpx compositions. This simulates what would happen
if 5000 discrete analyses were made of entirely homogenous
experimental products, with variability in measured oxides result-
ing from counting statistics. We then calculate the composi-
tion obtained from sampling discrete numbers of Cpx (N = 1 to
N = 100), and feed these averaged compositions into various Cpx-
only barometers. We calculate the discrepancy between the cal-
culated pressure for this averaged composition, and the pressure
calculated from the mean composition of all 5000 Cpx. For each
discrete number of averaged Cpx analyses, we overlay the mean
discrepancy (blue star), and the 95% quantile (yellow star) on the
data (Fig. 10a-b). We repeat this process 700 times using a for loop
in Python, meaning we have simulated randomly sampling one
Cpx 700 different times, two Cpx 700 times, etc. A schematic show-
ing the loop and subsampling routine is provided in Supporting
Fig. 21.

Figure 10a,b demonstrates that when only one EPMA analy-
sis is taken from a homogenous Cpx population, the calculated
pressure can differ from the pressure calculated from the true
composition by up to ±3–4 kbar for Putirka (2008; Fig. 10a) and
±2.5–3.5 kbar for Wang et al. (2021; Fig. 10b). The mean abso-
lute discrepancy for N = 1 Cpx is ±0.89 kbar for Putirka (2008)
and ±0.55 kbar for Wang et al. (2021, blue stars), while the 95%
quantile is ±2.09 kbar for Putirka (2008) and ±1.39 kbar for Wang
et al. (2021, yellow stars; Fig. 10a,b). The absolute discrepancy
from each experiment, the mean, and 95% quantiles decline very
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Fig. 7. (a–e) Pressures and temperatures calculated from individual Cpx compositions from specific experiments using Cpx-only thermobarometers
from Petrelli et al. (2020), Putirka (2008), and Wang et al. (2021). Error bars showing published/commonly quoted SEE for each thermobarometer (see
caption for Figs 2 and 3). (a) The pressures and temperatures calculated from the 42 Cpx from experiment Y0200–3 of Neave et al. (2019). The yellow
star shows the P–T conditions at which the experiment was conducted. (b) Experiment BM49 from Melekhova et al. (2015). (c) Exp CE10 from Erdmann
et al. (2016). (d) Exp 41c-110 from Krawczynski et al. (2012). (e) Exp2374 from Blatter et al., 2013. In (f), for three different experiments, we show the
strong correlation between Na2O in the Cpx and calculated pressure using the Putirka (2008) barometer (diamonds) and the Wang et al. (2021)
barometer (circles). Experiments showing a larger spread of Na2O values (Melekhova et al., 2015; Neave et al., 2019) show a much wider spread of
pressures than the Blatter et al. (2013) experiment.

rapidly between N = 1 and N = 7 Cpx. When >7 Cpx are averaged,
there are very few experiments >1.5 kbar from the mean value
calculated from all 5000 Cpx, and very few individual experiments
>1 kbar (∼5%). However, it must be remembered that we are only
simulating analytical uncertainty; analyses will also be affected
by true heterogeneity in experimental products.

To investigate the combined effect of analytical and exper-
imental variability (i.e. the measured variability in a given
experiment), we repeatedly resample the 18 reported Cpx from
experiment B1038 of Krawczynski et al. (2012), averaging different
numbers of measured Cpx compositions to create a theoretical
‘average’ composition (see supporting Fig. 22 for a schematic of
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Fig. 8. Monte Carlo simulations showing the spread of Cpx-only and Cpx-Liq pressures resulting from electron microprobe-calculated analytical
precision of experimental Cpx from Exp Y0272–1 of Neave et al. (2019). Measured Cpx compositions are overlain in (a–c), and all possible combinations
of measured Cpx and Liquids in (d) and (e). The error bar on each plot shows the reported error on each thermobarometer, and the yellow star shows
the analytical conditions. In (d–f), Monte Carlo simulations show errors for Cpx and the average glass composition. Monte Carlo simulations and
thermobarometry calculations performed in Thermobar, contours showing 67% and 95% of simulations calculated using Pyrolite. Supporting Fig. 20
shows the same plots for experiment B0184–10.

this loop). For N = 1 Cpx, the mean offsets reach ∼2 kbar, with 95%
quantiles of ∼4–5 kbar (Fig. 10c,d).

We also consider the effect of sampling on Cpx-Liq barometry,
using individual measurements of experimental Cpx and glass
from experiment B1038 from Krawczynski et al. (2012). First, we
match up all possible pairs of measured experimental Cpx and
Liq (N = 360 pairs). For each pass through the loop, we randomly

select 10 Liq that have been paired with a given Cpx, and calculate
an average Liq composition. We then consider averaging different
numbers of Cpx paired with these average Liq compositions (see
Supporting Fig. 23 for schematic of this loop). This approach of
using average liquid compositions means we are only investigat-
ing the effect of how many Cpx analyses are averaged, because
there is no clear correlation in between number of Cpx and
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Fig. 9. As in Fig. 8 but for Exp B1038 from Krawczynski et al. (2012). In (d–f), Monte Carlo simulations show errors for both Cpx and Glass. The 95%
contour using only analytical noise for Cpx (and not glass) is shown in grey for comparison with Fig. 8 (where the analytical error on glass analyses
from Neave et al., 2019 was not available).

Liq analyses per experiment in our compiled dataset. Depending
on the choice of barometer, mean offsets decline rapidly with
increasing N from ±2 kbar for N = 1 Cpx, with a 95% quantile of
±4–5 kbar (Fig. 10e-f).

Importantly, the large offsets for N = 2–4 Cpx highlight a partic-
ular problem that can arise when measuring only a small number
of Cpx. Specifically, when a Cpx has Na-Al contents such that the
jadeite content is zero, averaging the composition of that Cpx with
a second Cpx with Jd > 0 can result in a very low (but non-zero)

jadeite content. While Jd = 0 will return a NaN for pressure (not
a number), because most Cpx-Liq thermobarometers contain a
log term involving the jadeite content (and log(0) = NaN), the log
of a very low but non-zero jadeite content produces a very large
negative number, yielding an anomalous pressure (see Supporting
Information Fig. 24).

Our simulations (Fig. 10) demonstrate that insufficient EPMA
analyses to characterize the true composition of experimental
phases can account for the observation that experiments char-
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Fig. 10. Demonstration of the absolute pressure offset that can be introduced by measuring insufficient Cpx from any given experimental study. (a,b)
Groups of 1–100 Cpx were randomly sampled from an underlying distribution of 5000 Cpx simulated using reported EPMA errors for experiment
Y0272-1 of Neave et al. (2019). The difference in pressure calculated for each group is compared to the average pressure calculated for all 5000 Cpx,
and plotted as a single dot (see Supporting Fig. 21). (c,d) To simulate the combined influence of true phase variability and analytical errors, we
repeatedly resample and average the 18 measured Cpx from Krawczynski et al. (2012, see Supporting Fig. 22). (e,f) Random sampling of measured
Cpx-Liq pairs from Krawczynski et al. (2012, see Supporting Fig. 23). On all plots, the y-axis shows the absolute discrepancy between the pressure
calculated during each run through the loop and the average pressure. In (a–d), this is the average PT for the entire simulated cloud of Cpx, in (e,f) it is
the average for the reported mean Cpx and glass composition from the experiment. For each discrete number of Cpx, we calculate the mean (blue
star) and 95% quantile (yellow star).

acterized by a small number of analyses can show large discrep-
ancies between calculated and experimental pressures (Fig 4c,d).
Most simply, imagine that barometers perfectly predict the rela-
tionship between composition and pressure. Even in this perfect
scenario, measuring a small number of Cpx (± Liq) in each exper-

iment can result in the measured composition not being repre-
sentative of the true composition, resulting in offsets between
calculated and experimental pressures. Of course, in some cases,
a single measurement will obtain the correct value (i.e. sampling
the mean of the normal distribution by fluke), accounting for
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the fact that some experiments analyzing a small number of
Cpx show small offsets on Figs 4 and 10. However, the smaller
the number of Cpx analyses performed, the more likely it is
that the composition of the Cpx obtained differs from the true
composition. In reality, barometers are not perfectly accurate,
which explains why there are still offsets between calculated
and experimental pressure even when larger numbers of Cpx are
analyzed.

The y-axis in these subsampling simulations represents
the distance a single experiment may lie from the 1:1 line in
a plot of experimental pressure versus calculated pressure,
simply because of insufficient averaging of analytical and
experimental variability. Given that ∼43% of experiments we
have compiled performed ≤5 Cpx analyses per experiment,
even if barometers perfectly recreate the relationship between
pressure and temperature for the true composition of Cpx and
Cpx-Liq pairs from that experiment, we would expect scatter
about a 1:1 line of ±2–3 kbar based on insufficient averaging.
In reality, the scatter off the 1:1 line will be larger than this,
because insufficient averaging of experimental products affects
the calibration of barometers, as well as the assessment of these
barometers using test datasets. Thus, we suggest that insufficient
averaging of analytical precision (with a contribution from true
phase variability) is the ultimate reason barometers have SEE of
∼2–4 kbar when applied to global test datasets, regardless of the
exact calibration strategy.

Implications for thermobarometry on natural
systems
The Monte Carlo simulations of calculated pressures and temper-
atures resulting from analytical uncertainty shown in Figs 7 and
8 for Cpx and Cpx-Liq are equally applicable to natural systems.
Namely, even if erupted Cpx are entirely homogenous and come
from a single magma storage region at a single pressure and tem-
perature, calculated pressures may span ∼4 kbar using Cpx-only
thermobarometry, and ∼6 kbar using Cpx-Liq thermobarometry
because of low analytical precision (assuming analytical condi-
tions similar to those used by Neave et al., 2019 and Krawczynski
et al., 2012, i.e. 100–150 nA s). When plotted in P-T space, com-
pletely random, normally distributed analytical error produces a
strongly correlated pressure–temperature array (Figs 8 and 9). It
is crucial to recognize that a wide spread of pressures calculated
for a natural system using popular Cpx-only and Cpx-Liq barom-
eters should not automatically be interpreted as representing
magma storage across a broad region of the crust (i.e. transcrustal
magma storage). Rather it should be assumed that this an arti-
fact of analytical uncertainty until proven otherwise. Specifically,
Monte Carlo simulations with errors determined from software-
calculated analytical uncertainty (rather than secondary stan-
dards) should be used to calculate the spread in pressures and
temperatures that result from analytical precision. If the spread
of pressures and temperatures from natural samples exceeds the
simulated spread (and even if it does not), the role of P–T spread
resulting from sector zoning and other disequilibrium features
should also be investigated (e.g. Hammer et al., 2016). True tran-
scrustal storage should only be invoked after ruling out these null
hypotheses.

Although the overall structure of pressure and temperature
estimates should certainly be considered, averages of many
individual measurements help to eliminate analytical and true
phase variability. For example, Putirka et al. (1996) showed that
the fit between calculated and experimental pressures are sub-
stantially improved when all experiments conducted at a given

pressure are averaged, rather than considered individually
(compare their Fig. 3a and Fig 4a). To avoid averaging out true
variations in magma storage conditions, it may be best to perform
and average multiple analyses within the core and rim of any
given Cpx (e.g. Klügel et al., 2005).

SUMMARY AND FUTURE DIRECTIONS
There is broad consensus that improved methods for estimating
the pressures of igneous processes and magma storage is vital to
advance the field of igneous petrology (Hilley et al., 2022; McGuire
et al., 2017). In the preceding sections we have highlighted a
number of sources of uncertainty affecting Cpx-only and Cpx-Liq
barometry, which are two of the most popular barometry tools.
We show that insufficient averaging of measurements made with
low analytical precision, combined with heterogeneity in experi-
mental products, and interlaboratory offsets fundamentally limit
the precision of Cpx-based barometric estimates to ±2–4 kbar for
crustal Cpx. Below, we highlight a number of ways in which we can
improve how experimental products are analyzed and reported
to improve the future calibration and application of Cpx-based
barometers. These recommendations can be summarized as: 1)
collect more counts, 2) measure more phases in each experimen-
tal charge, 3) address interlaboratory biases and 4) better data
reporting.

Can we simply collect more counts for Na in Cpx?
Our Monte Carlo simulations demonstrate that analytical preci-
sion associated with the measurement of Na2O resulting from
insufficient count times and/or beam currents is a major source
of uncertainty affecting Cpx-only and Cpx-Liq barometry. Poor
precision affects the experimental data used for barometer cal-
ibration and testing, as well as calculations of pressure in natural
sample suites. Many papers suggest that they are using such short
analysis times and low beam currents because of fears of Na
migration (e.g. Neave et al., 2019). Although beam migration is a
justifiable concern in hydrous glasses and Na-rich feldspars, to
our knowledge there are no reports of Na migration within crustal
pyroxenes.

To investigate the beam sensitivity of pyroxene, we perform
tests of Na mobility during analysis at 15 kV, and 20, 40 and
100 nA using a 1 μm spot on the Oregon State Cameca SX100. We
track changes in peak intensity, and calculated Na concentrations
using typical analytical routines for a Na-rich end-member jadeite
(∼7.1 wt% Na2O) and a Kakanui Augite with lower Na contents
(∼1.2 wt% Na2O), as well as a hydrous rhyolite glass for compari-
son.

Peak intensities in the hydrous rhyolite glass show a rapid
decrease with increasing exposure, even at 20 nA, as is widely
documented (e.g. Morgan & London, 2005; Fig. 11a, black trian-
gles). The jadeite is significantly less beam-sensitive, with peak
counts only decreasing by 15%–20% after ∼5 minutes (and only
at 40 and 100 nA; Fig. 11a,b). In contrast, we see no evidence for
a decrease in Na peak intensities collected on the Kakanui augite
even at 100 nA over ∼6 minutes (Fig. 11b).

We also perform six repeated analyses at 100 nA at the same
stage position on the jadeite and Kakanui augite, with a total
beam-on time of ∼60 s per analysis. Peak count times were Na
(3.3 s), Ca (10 s), Al (10 s), Si (10 s) and Ti (10 s). We plot the
concentration of each element against the average beam-on time
for each analysis. For the jadeite, the concentration of Na2O
declines reasonably coherently by ∼10% after ∼6 minutes of beam
exposure (Fig. 11c). For the Kakanui Augite there is no coherent
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Fig. 11. Investigation of Na migration. (a,b) Tracking the number of counts on the Na peak with increasing beam exposure on a hydrous rhyolite, a
jadeite and a Kakanui augite. Polynomial fits are included through the data to help with visualization. Note the compressed y-axis scale on b. (c,d)
Change in elemental concentration for six repeated quantitative analyses on the same location in jadeite versus Kakanui augite. The approximate
beam exposure time is shown as a secondary axis (although different elements were acquired at slightly different points during each acquisition).

decrease in Na2O, with concentrations varying well within the
expected threshold given the low count time (Fig. 11d). Further
details of additional tests are provided in the supporting infor-
mation (Supporting Figs S25–30). Overall, we conclude that in
pyroxenes with relatively low Na2O contents, there is no need
to restrict count times or beam currents, as Na migration seems
negligible.

Given the lack of measurable Na migration in natural Cpx, we
suggest that the simplest way to increase precision on reported

Na in future experiments and natural samples is a combination
of longer count times and/or a higher beam current during Cpx

analyses. Increasing the count time at a specific beam current is

the best strategy if the interaction volume needs to be minimized
(e.g. for analyses of small experimental products), while increas-
ing the beam time and current together is most efficient if a tiny
interaction volume is not critical.

In many analytical routines, increasing the count time on Na
will not increase the total analytical time if other spectrometers
are already counting minor elements for longer (e.g. Cr and Mn
on the LIF). Additionally, in a number of studies, Na and Al are
both being measured on the TAP or LTAP (e.g. Krawczynski et al.,
2012; Hammer et al., 2016; McCane, 2022; Wieser et al., 2022a), with

Al being counted significantly longer than Na, despite its higher
concentration in Cpx. If total analytical time is an issue, count
times can be adjusted on the TAP/LTAP to count for longer on Na
instead.

Although secondary standards have great utility for assessing
accuracy and drift, they should only be used to assess precision
if the standard has a very similar elemental concentration to
the analyte. If elements are present in lower concentrations in
natural samples, software-calculated precisions should be used
to assess uncertainties resulting from counting statistics. Overall,
we suggest that users optimize their EPMA acquisition parameters
to achieve <5% precision for the range of Na2O contents found in
their samples.

Perform more measurements in each
experimental charge.
Analytical noise is particularly problematic for calibration
datasets if only a small number of Cpx in each experiment
are measured. The large number of experiments performing <5
individual Cpx measurements, combined with low precision on
Na2O measurements, explains why no Cpx-based barometers can
predict pressure in a global dataset of experiments with errors
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smaller than ±2–5 kbar (despite many different calibration strate-
gies, Wieser et al., 2023). Even if analytical precision is improved
by increasing the number of counts, performing multiple Cpx
analyses remains vital to minimize the effects of experimental
heterogeneity (e.g. sector zoning, Neave et al., 2019). This is partic-
ularly true if jadeite is calculated from Al, or when using Cpx-Liq
barometers relying on Al content (e.g. eq32c, Putirka, 2008) as
Al and other major elements in Cpx and glass are influenced
more by true experimental phase variability than analytical
uncertainty.

Quantify and resolve interlaboratory offsets for
glasses and silicate minerals
Even if analytical conditions are optimized to make measure-
ments more precise, and a larger number of products are mea-
sured in each experiment, interlaboratory offsets may still intro-
duce random, or even systematic offsets into barometry calibra-
tions. To properly resolve the extent of interlaboratory biases, we
suggest that mineral round-robins are conducted on the current
generation of EPMAs at institutions which are contributing a
significant amount of experimental data (and ideally between
all laboratories). Such round-robins will be vital to determine
whether our assumption that mineral offsets may be as large
as offsets measured for glasses is correct. It may be that by
applying such corrections, more precise barometry calibrations
can be obtained.

Longer-term, it is not practical to rely on large round-robins
among all possible EPMA labs that may wish to perform mineral-
melt barometry on natural samples, or conduct experiments
used to calibrate these expressions. These interlaboratory biases
highlight the need for the development of a new generation of
homogenous reference materials to replace the heterogeneous
NMNH standards. One recent suggestion, put forward in an open
letter to the microanalysis community with over 90 co-signers
(https://probesoftware.com/smf/index.php?topic=1415.0), is to
create a global reference set of high purity, stoichiometric end-
member synthetic compositional standards in approximately
500 to 1000 gram quantities. This would ensure that every e-
beam microanalysis laboratory in the world could readily obtain
sufficient material to last decades of polishing, use, repolishing
and reuse. Even better, such synthetic standard materials can
always be reproduced in the future as necessary, since they would
be selected such that their synthesis would be well-constrained
by both purity and thermodynamics. These efforts are being
formalized within the focused interest group microanalytical
standards committee of the Microbeam Analysis Society (https://
the-mas.org/about-us/focused-interest-group-figmas/).

Better reporting of compositional, analytical and
metadata
It may be possible to improve barometry calibrations by excluding
experiments with numbers of analyses below a certain threshold,
or experiments where phases were only briefly characterized to
identify phase occurrence, rather than to provide reliable phase
compositions. At a minimum, filtering based on numbers of anal-
yses will require this information to be copied over from pdf
tables in papers and entered into the LEPR dataset. However, to
evaluate analytical noise within a single experiment rigorously,
we also need an estimate of the analytical precision. For example,
it may be more rigorous to include an experiment where only two
Cpx were measured but at high precision (e.g. Na = 10%) versus
an experiment with five Cpx with low analytical precision (e.g.
Na = 50%; Fig. 6b). However, this information cannot be obtained

for the majority of the LEPR database, particularly as many of
the EPMA instruments used for these measurements have been
decommissioned.

Thus, for future experimental work, we suggest that authors
report the following information:

1) The beam current, voltage, crystal, primary calibration
material, and peak and background count times for every
element;

2) The software-calculated 1 sigma value for each analysis;
3) The elemental data for every spot analysis of every phase in

each experimental charge and every natural mineral analy-
sis, rather than providing a mean composition and standard
deviation;

4) Detailed information on how thermal gradients were
assessed, and any friction corrections.

Providing this information will allow future attempts at cali-
brating barometers to better filter the underlying data. We also
encourage authors to think carefully about the influence of minor
elements such as Cr on Cpx phase stability (Voigt et al., 2017) and
to carefully report whether an attempt was made to measure
an element but it was below the detection limit, or whether no
measurement attempt was made. If an element was below detec-
tion limit, and an estimate of the detection limit is provided, the
number can be more reliably imputed than when no information
is given.

Remeasure existing experimental products
We recognize that experimental studies are seldom performed
with the sole aim of calibrating thermobarometers. Instead, the
authors may have simply wanted to constrain a phase diagram, so
only a small number of Cpx were analyzed in each experiment to
confirm phase occurrence, and there was no reason for analytical
conditions to be optimized for low concentration components like
Na2O, or to measure all elements (e.g. Cr2O3 in Cpx and glass).
Although it will require a significant community effort to find and
share the experimental charges, this is likely much less effort than
redoing experiments from scratch, and it would be worthwhile
to reanalyze a large proportion of the experimental charges com-
piled in LEPR. This would take advantage of the higher precision
of modern EPMA instruments (compare the precision of the old
and new MIT JEOL on Fig. 6c) and help to fill in the large amount
of missing data in LEPR (Cr2O3, H2O, P2O5, etc). Ideally, reanalysis
would take place on a single EPMA instrument or on a set of
instruments where secondary standards are exchanged to correct
for interlaboratory biases.

CONCLUSIONS
In their current state, Cpx-based barometers struggle to precisely
and accurately constrain the location of magma storage in the
crust (with errors of ±2–5 kbar, ± 8–19 km), In addition to fun-
damental thermodynamic limitations, we suggest that the poor
performance of barometers results from the fact that the true
composition of Cpx in experiments has not been precisely deter-
mined, because insufficient analyses were conducted to average
out low analytical precision and true phase variability. Calibrating
and testing Cpx-based barometers has been further hindered by
interlaboratory offsets during EPMA analyses, and large amounts
of missing elemental data reported by experimental studies. We
suggest that pressures calculated from individual Cpx analyses
in both experiments and natural samples must be evaluated in
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the context of the expected range of pressures obtained from
the propagation of analytical errors for that specific study. To
invoke true transcrustal storage, it must be demonstrated that the
range of calculated pressures greatly exceeds that expected from
analytical precision alone.

We believe a new generation of more precise barometers
could be calibrated through a community effort to obtain
an experimental dataset, which properly averages analytical
imprecision (for low concentration elements such as Na2O)
and true phase variability (e.g. Al2O3 concentrations affected
by sector zoning). There is growing recognition in the Machine
Learning community that big data are not as important as good
data. In a recent interview (2022), Machine Learning expert
Andrew Ng states ‘In many industries where giant datasets
simply do not exist, I think the focus has to shift from big
data to good data.’ We suggest that the same reasoning
should be applied to petrological thermobarometers. Ideally,
an independent high quality test dataset would be isolated
during model calibration and tuning to allow robust estimates
of the precision that can be expected when these meth-
ods are applied to ‘unknown’ samples. Improving Cpx-based
barometers is vital for reliable interpretation of a volcanic
plumbing system geometry (e.g. distinguishing between a single
reservoir, discrete reservoirs, and true transcrustal magmatic
systems).

DATA AND CODE AVAILABILITY
Jupyter Notebooks used to produce Figs 2–11 in this paper have
been uploaded to Penny Wieser’s GitHub (https://github.com/
PennyWieser/BarometersBehavingBadly_Wieser2022), archived
on Zenodo: https://zenodo.org/badge/latestdoi/571745416. These
Jupyter Notebook read from the following supporting Excel files,
also available on GitHub and zenodo:

• Supporting_Data_1.xlsx – Contains Interlaboratory offsets
from Gale et al. (2013), the Cpx calibration dataset used by
Keith Putirka which we use to examine the prevalence of
missing data, and the compilation of Cpx-Liq experiments
used in this study (i.e. ArcPL).

• Supporting_Data_2.xlsx – Analysis of individual phases from
the experiments of Krawczynski et al. (2012).

• Supporting_Data_3.xlsx – Estimates of analytical precision
from a subset of experimental analyses by Krawczynski et al.
(2012),

• Supporting_Data_4.xlsx – All Cpx-bearing experiments from
the LEPR (downloaded in 2021).

• Supporting_Data_5.xlsx – Analysis of individual phases from
the experiments of Neave et al. (2019).

• Supporting_Data_6.xlsx – Analysis of individual phases from
the experiments of Erdmann et al. (2016), from their support-
ing information

• Supporting_Data_7.xlsx – Analysis of individual phases from
the experiments of Melekhova et al. (2015).

• Supporting_Data_8.xlsx – Analysis of individual phases from
the experiments of Waters et al. (2021).

• Supporting_Data_9.xlsx – Analysis of individual phases from
the experiments of Blatter et al. (2013)

• Supporting_Data_9.xlsx – Analysis of individual phases from
the experiments of Blatter et al. (2013)

• Supporting_Data_10.xlsx – Investigation of Na migration on
the OSU SX100
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