Following the WUSTL Open Access Resolution, our publications are freely accessible at the following site: http://openscholarship.wustl.edu/do/search/?q=ram%20dixit&start=0&context=2356109
Preprints
2021-current
Calcutt R, Aghli Y, Arinzeh T, and Dixit R (2024). A fibrous scaffold for in vitro culture and experimental studies of Physcomitrium patens. Plant Direct. 8(2): e570
Bolhuis DL, Dixit R and Slep KC (2023). Crystal structure of the Arabidopsis SPIRAL2 C-terminal domain reveals a p80-katanin-like domain. PLoS One. DOI: 10.1371/journal.pone.0290024
Fan Y, Bilkey N, Bolhuis DL, Slep KC and Dixit R (2023). A divergent TOG domain and oligomerization contribute to SPIRAL2 function in stabilizing microtubule minus ends. Plant Cell. DOI: 10.1093/plcell/koad294
Bilkey N, Li H, Borodinov N, Levlev AV, Ovchinnikova OS, Dixit R and Foston M (2022). Correlated maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. Quantitative Plant Biology. 3, e31.
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A and Messina C (2022). Fifteen compelling open questions in plant cell biology. Plant Cell. 34, 72-102.
Calcutt R, Vincent R, Dean D, Arinzeh TL, and Dixit R (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Science Advances. 7, eabj1469.
Balkunde R and Dixit R (2021). Functional interactions between actin filaments and microtubules in plant and animal cells. In: Joseph Jez (eds.) Encyclopedia of Biological Chemistry, 3rd Edition. 5: 247-259. Oxford: Elsevier.
2017-2020
Ganguly A, Zhu C, Chen W and Dixit R (2020). FRA1 kinesin modulates the lateral stability of cortical microtubules through cellulose synthase-microtubule uncoupling proteins. Plant Cell. 32: 2508-2524.
Zhou R, Liu H, Ju T and Dixit R (2020). Quantifying the polymerization dynamics Zhou R, Liu H, Ju T and Dixit R (2020). Quantifying the polymerization dynamics of plant cortical microtubules using kymograph analysis. Methods in Cell Biology. 160: 281-293.
Martinez P, Dixit R, Balkunde RS, Zhang A, O’Leary SE, Brakke KA and Rasmussen CG (2020). TANGLED1 mediates microtubule interactions that may promote division plane positioning in maize. Journal of Cell Biology. 219: e201907184.
Balkunde R, Foroughi L, Ewan E, Emenecker R, Cavalli V and Dixit R (2019). Mechanism of microtubule plus-end tracking by the plant-specific SPR1 protein and its development as a versatile plus-end marker. Journal of Biological Chemistry, 294: 16374-16384.
Burkart G and Dixit R (2019). Microtubule bundling by MAP65-1 protects against severing by inhibiting the binding of katanin. Molecular Biology of the Cell. 30: 1587-1597.
Haswell ES and Dixit R (2018). Counting what counts: the importance of quantitative approaches to studying plant cell biology. Current Opinion in Plant Biology. 46:1-3.
Dixit R and Petry S (2018). The life of a microtubule. Molecular Biology of the Cell, 29: 689.
Fan Y, Burkart GM and Dixit R (2018). The Arabidopsis SPIRAL2 protein targets and stabilizes microtubule minus ends. Current Biology, 28: 987-994.
Nebenfuhr A and Dixit R (2018). Kinesins and myosins: molecular motors that coordinate cellular functions in plants. Annual Review of Plant Biology, Volume 69.
Ganguly A, DeMott L, Zhu C, McClosky DD, Anderson CT and Dixit R (2018). Importin-beta directly regulates the motor activity and turnover of a kinesin-4. Developmental Cell, 44: 642-651.
Ganguly A, DeMott L and Dixit R (2017). The Arabidopsis kinesin-4, FRA1, requires a high level of processive motility to function correctly. Journal of Cell Science, 130: 1232-1238.
2013-2016
Dixit R (2015). Kinesin motors: teamsters’ union. Nature Plants. doi:10.1038/nplants.2015.126
Watt D, Dixit R and Cavalli V (2015). JIP3 activates kinesin-1 motility to promote axon elongation. Journal of Biological Chemistry, 290: 15512-15525.
Zhu C, Ganguly A, Baskin TI, McClosky DD, Anderson CT, Foster C, Meunier KA, Okamoto R, Berg H and Dixit R (2015). The FRA1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiology, 167: 780-792.
Eren EC, Dixit R and Gautam N (2015). Stochastic Models for Plant Microtubule Self-Organization and Structure. Journal of Mathematical Biology. DOI: 10.1007/s00285-015-0860-9.
Ganguly A and Dixit R (2013). Mechanisms for regulation of plant kinesins. Current Opinion in Plant Biology, 16: 704-709.
Zhang Q, Fishel EA, Bertroche T and Dixit R (2013). Microtubule severing at crossover sites by katanin generates ordered cortical microtubule arrays in Arabidopsis. Current Biology, 23: 2191-2195.
Fishel EA and Dixit R (2013). Role of nucleation in cortical microtubule array organization: variations on a theme. Plant Journal, 75: 270-277.
Dixit R (2013). Plant cytoskeleton: DELLA connects gibberellins to microtubules. Current Biology, 23: R479-R481.
2010-2012
Tulin A, McClerklin S, Huang Y and Dixit R (2012). Single-molecule analysis of the microtubule crosslinking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling. Biophysical Journal, 102: 802-809.
Eren EC, Gautam N and Dixit R (2012). Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskeleton, 69: 144-154.
Zhu C and Dixit R (2012). Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma, 249: 887-899.
Dixit R (2012). Putting a bifunctional motor to work: insights into the role of plant KCH kinesins. New Phytologist, 193: 543-545.
Zhu C and Dixit R (2011). Single molecule analysis of the Arabidopsis FRA1 kinesin shows that it is a functional motor protein with unusually high processivity. Molecular Plant, 4: 879-885..
Sun F, Zhu C, Dixit R and Cavalli V (2011). Sunday Driver /JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J, 30:3416-3429.
Eren EC, Dixit R and Gautam N (2010) A three-dimensional computer simulation model reveals the mechanisms for self-organization of plant cortical microtubules into oblique arrays. Molecular Biology of the Cell, 21: 2674-2684.
Dixit R and Ross JL (2010). Studying plus-end tracking at single molecule resolution using TIRF microscopy. In, Methods in Cell Biology. Microtubules, In vitro. Eds. John J. Correia and Les Wilson. Elsevier.
Ross JL and Dixit R (2010). Multiple color single molecule TIRF imaging and tracking of MAPs and motors. In, Methods in Cell Biology. Microtubules, In vitro. Eds. John J. Correia and Les Wilson. Elsevier.
2006-2009
Dixit R, Barnett B, Lazarus JE, Tokito M, Goldman YE and Holzbaur ELF (2009). Microtubule plus-end tracking by CLIP-170 requires EB1. Proceedings of the National Academy of Science, 106:492-497.
Perlson E, Jeong G-B, Ross J, Dixit R, Wallace K, Kalb R, and Holzbaur ELF (2009) A switch in retrograde signaling from survival to stress in rapid onset neurodegeneration. Journal of Neuroscience, 29: 9903-9917
Dixit R, Levy JR, Tokito M, Ligon LA and Holzbaur ELF. Regulation of dynactin through the differential expression of p150Glued isoforms (2008). Journal of Biological Chemistry, 283: 33611-33619.
Dixit R, Ross J, Goldman YE and Holzbaur ELF (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319:1086-1089.
Dixit R, Chang E and Cyr RJ (2006). Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Molecular Biology of the Cell, 17:1298-1305. Highlighted in the Incytes section of the March 2006 ASCB newsletter.
Dixit R, Cyr R and Gilroy, S (2006). Using intrinsically fluorescent proteins for plant cell imaging. Plant Journal, 45: 599-615.
2002-2005
Marcus AI, Dixit R and Cyr RJ (2005). Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells. Protoplasma, 226: 169-174.
Dixit R and Cyr RJ (2004). Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell, 16: 3274-3284.
Dixit R and Cyr RJ (2004). The cortical microtubule array: from dynamics to organization. Plant Cell, 16: 2546-2552.
Dixit R and Cyr RJ (2003). Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy. Technical Advances paper. Plant Journal, 36: 280-290.
Dixit R and Cyr RJ (2002). Spatio-temporal relationship between nuclear-envelope breakdown and preprophase band disappearance in cultured tobacco cells. Protoplasma, 219: 116-121.
Dixit R and Cyr RJ (2002). Golgi secretion is not required for marking the preprophase band site in cultured tobacco cells. Plant Journal, 29: 99-108. Cover of the January 2002 Plant Journal.