Regenerative Medicine

Thorold Theunissen, PhD
Assistant Professor, Department of Developmental Biology
- Email: t.theunissen@wustl.edu
The Theunissen lab investigates the molecular mechanisms regulating distinct pluripotent stem cell states and their applications in regenerative medicine.

Tony Tsai, MD, PhD
Assistant Professor, Department of Developmental Biology; Affiliate, Department of Biomedical Engineering
- Email: tonytsai@wustl.edu
Why are tissue patterns and shapes so precisely controlled in embryos but not stem cell-derived organoids? Can we learn how to build tissues reproducibly by studying how embryos accomplish this? The Tsai lab uses zebrafish as the primary model to investigate the rules of tissue patterning and morphogenesis. They combine interdisciplinary approaches such as live embryo imaging, CRISPR genetics, single-cell genomics, mechanical assays, and computational modeling.

Fumihiko Urano, MD, PhD
Professor, Department of Medicine, Division of Endocrinology, Metabolism & Lipid Research
- Email: urano@wustl.edu
The Urano lab is currently developing regenerative and gene therapies for diabetes, retinal dystrophy, neurodegeneration, and Wolfram syndrome.

Deborah Veis, MD, PhD
Professor of Medicine
Professor of Pathology and Immunology
- Email: dveis@wustl.edu
The Veis lab studies the interaction of bone cells with invaders – either microbial or tumor cells – to understand how the microenvironment can be targeted to treat infection and bone metastasis. Current areas of focus include S. aureus osteomyelitis as well as tumor-derived extracellular vesicles (EVs), using a combination of cell culture and mouse models.

Jessica Wagenseil, DSc
Professor, Department of Mechanical Engineering and Materials Science; Affiliate, Department of Biomedical Engineering
- Email: jessica.wagenseil@wustl.edu
The Wagenseil lab studies how mechanical stimuli regulate large artery formation and remodeling in development and disease.

Ting Wang, PhD
Professor, Department of Genetics
- Email: twang@wustl.edu
The Wang lab's research is to understand the evolution and adaption of human regulatory networks, with a focus on the impact of these processes on human health and disease. In particular, we investigate the evolutionary model of mobile elements (or transposable elements) and their roles in basic biology and cancer, including their genetic and epigenetic regulation.

(Conrad) Chris Weihl, MD, PhD
Professor, Department of Neurology
- Email: weihlc@wustl.edu
The Weihl lab goal is to understand the molecular mechanisms of protein inclusion formation, disaggregation, and clearance in myodegenerative (skeletal muscle) and neurodegenerative diseases. They utilize molecular biology, cellular systems, biochemical approaches and animal models to ask and answer these fundamental questions.

Philip Williams, PhD
Assistant Professor, Department of Ophthalmology and Visual Sciences
- Email: prwillia@wustl.edu
The Williams lab is interested in selective neuronal vulnerability in degeneration and trauma. We use a combination of in vivo microscopy, transcriptomics, and viral mediated gene over expression/knockout to manipulate neurons in the retina with the long term goal of increasing neuronal survival and axon regeneration in degenerative mouse models.

Matthew Wood, PhD
Assistant Professor, Department of Surgery
- Email: woodmd@wustl.edu
The Wood lab studies treatment paradigms for peripheral nerve injury.

Hiroko Yano, PhD
Associate Professor of Neurosurgery, Neurology, and Genetics
- Email: yanoh@wustl.edu
The Yano Lab is interested in mechanisms leading to neurodegenerative diseases and brain tumors and the development of disease therapies.

Chao Zhou, PhD
Professor, Biomedical Engineering, McKelvey School of Engineering
- Email: chaozhou@wustl.edu
The Zhou lab's research interests are in optical coherence tomography, a growing technology used to perform high-resolution cross-sectional imaging using light.