Forbearance vs. Interest Rates:
Experimental Tests of Liquidity and Strategic Default Triggers

Deniz Aydın
Olin Business School

Motivation

What triggers default on debt obligations, and what debt relief policy best prevents it?

- Policymaking-guides design and targeting of relief policies.
- Finance-distinguishes models that emphasize solvency, liquidity, and strategic behavior.
- Macroeconomics-disciplines channels and sizes of effects of fiscal and monetary policies.

Motivation

What triggers default on debt obligations, and what debt relief policy best prevents it?

- Policymaking-guides design and targeting of relief policies.
- Finance-distinguishes models that emphasize solvency, liquidity, and strategic behavior.
- Macroeconomics-disciplines channels and sizes of effects of fiscal and monetary policies.

This paper:

- Large-scale $(N=20,944)$ experiment analyzed using the language and framework of an RCT.
- Unique 2-by-2-by-2 design-3 randomized instruments

$$
\mathbb{Z}_{i}^{R}, \mathbb{Z}_{i}^{T}, \mathbb{Z}_{i}^{F}
$$

Motivation

What triggers default on debt obligations, and what debt relief policy best prevents it?

- Policymaking-guides design and targeting of relief policies.
- Finance-distinguishes models that emphasize solvency, liquidity, and strategic behavior.
- Macroeconomics-disciplines channels and sizes of effects of fiscal and monetary policies.

This paper:

- Large-scale $(N=20,944)$ experiment analyzed using the language and framework of an RCT.
- Unique 2-by-2-by-2 design-3 randomized instruments

$$
\mathbb{Z}_{i}^{R}, \mathbb{Z}_{i}^{T}, \mathbb{Z}_{i}^{F}
$$

- Use transparent event studies to analyze the effects of policies on defaults.
- Test default models emphasizing liquidity and strategic behavior

$$
\text { Decision to Default }=\phi \underbrace{\text { Current Payments }}_{\text {Liquidity }}+\psi \underbrace{\text { PV of Future Payments }}_{\text {Strategic }}+\underbrace{\text { Other Factors }}_{\text {solvency, risk, costs }}
$$

Preview of Results

1. Solvency-face value $F V$ too high

- No! Modifications orthogonal to face value (and income, risk, costs) do affect whether/when to default.
- Rate reductions have immediate effects that persist. Forbearance has no effects beyond expiration.

Preview of Results

1. Solvency-face value FV too high

- No! Modifications orthogonal to face value (and income, risk, costs) do affect whether/when to default.
- Rate reductions have immediate effects that persist. Forbearance has no effects beyond expiration.

2. Liquidity-current payments Pay too high

- A dollar reduction in payments has the same effect through forbearance or interest rates?
- No! Rate reductions reduce payments the least but reduce defaults the most.

$$
\text { by Rate }\left(\mathbb{Z}_{i}^{R}\right)
$$

by Term $\left(\mathbb{Z}_{i}^{T}\right)$

by Forbearance $\left(\mathbb{Z}_{i}^{F}\right)$

Preview of Results

1. Solvency-face value $F V$ too high

- No! Modifications orthogonal to face value (and income, risk, costs) do affect whether/when to default.
- Rate reductions have immediate effects that persist. Forbearance has no effects beyond expiration.

2. Liquidity-current payments Pay too high

- A dollar reduction in payments has the same effect through forbearance or interest rates?
- No! Rate reductions reduce payments the least but reduce defaults the most.

3. Strategic-future payments $P V^{f u}$ too high

- News about future payments increases defaults despite ability—solvent and liquid?
- Yes! Dollar change in $P V^{f u}$ is similar to a 30-cent increase in quarterly Pay.

Preview of Results

1. Solvency-face value $F V$ too high

- No! Modifications orthogonal to face value (and income, risk, costs) do affect whether/when to default.
- Rate reductions have immediate effects that persist. Forbearance has no effects beyond expiration.

2. Liquidity-current payments Pay too high

- A dollar reduction in payments has the same effect through forbearance or interest rates?
- No! Rate reductions reduce payments the least but reduce defaults the most.

3. Strategic-future payments $P V^{f u}$ too high

- News about future payments increases defaults despite ability—solvent and liquid?
- Yes! Dollar change in $P V^{f u}$ is similar to a 30-cent increase in quarterly Pay.

4. Endogenous-heterogenous

- Whether merely postponing forbearance is effective and defaults are strategic is tightly linked to balance sheets-distress, precaution, assets.

Preview of Results

1. Solvency-face value $F V$ too high

- No! Modifications orthogonal to face value (and income, risk, costs) do affect whether/when to default.
- Rate reductions have immediate effects that persist. Forbearance has no effects beyond expiration.

2. Liquidity-current payments Pay too high

- A dollar reduction in payments has the same effect through forbearance or interest rates?
- No! Rate reductions reduce payments the least but reduce defaults the most.

3. Strategic-future payments $P V^{f u}$ too high

- News about future payments increases defaults despite ability—solvent and liquid?
- Yes! Dollar change in $P V^{f u}$ is similar to a 30-cent increase in quarterly Pay.

4. Endogenous-heterogenous

- Whether merely postponing forbearance is effective and defaults are strategic is tightly linked to balance sheets-distress, precaution, assets.
- Characterize a strategic trigger whose location is influenced by distress, precaution, and assets.
- Rate reductions have effects beyond liquidity; more powerful for unconstrained.

Conceptual Framework

Institutional Details

Experimental Design

Results
Solvency Triggers
Liquidity Triggers
Strategic Triggers
Endogenous Triggers

Conceptual Framework

Effect on Payments

$$
\begin{align*}
\text { Payment } & =F V\left(\frac{1}{T}+\frac{R}{2}+\frac{R}{2 T}+\frac{R^{2} T}{12}-\frac{R^{2}}{12 T}+O\left(R^{3}\right)\right) \\
\text { Pay } & \simeq\left(\frac{1}{T}+\frac{R}{2}\right) \tag{1}
\end{align*}
$$

Pay very sensitive to forbearance, much less on the interest rate.

- Typical $R 16 \%$ APR. The typical $T 3$ years. Quarterly Pay of $\frac{1}{12}+\frac{4 \%}{2} \simeq 0.1$.
- Forbearance, postponing amortizing principal, reduces Pay 60%, to quarterly R of 4%.
- $4 p$ APR reduction (25% reduction) reduces Pay 5%.
- 10% increase in T^{\prime} (off a base of 3 years) reduces Pay 8%.

Effect on Present Value of Future Payments

$$
\begin{align*}
\text { Present Value }_{0} & =\text { Payment }\left(T-\frac{R^{*} T}{2}-\frac{R^{*} T^{2}}{2}+O\left(R^{* 2}\right)\right) \\
P V_{0} & \simeq\left(1+\left(R-R^{*}\right) \frac{T+1}{2}\right) \tag{2}
\end{align*}
$$

- Rate reductions revalue-alter PV despite keeping FV constant.
- ΔR of $4 p p$ APR equivalent in $P V$ to a write down of $\frac{1}{2} \cdot T \cdot \Delta R=6 \%$ of $F V$
- To a first-order approximation, the change in $P V$ is independent of R^{*}.
- Effects on future Pay account for more or less the entire impact.
- Reduction in Pay stream could exactly be replicated in $P V$ terms via a $F V$ write down.
- Unlike a write-down, borrowers cannot capitalize by prepaying or calling at $F V$.
- Revaluation proportional for Pay and PV, hence larger if debt has a high duration, i.e., T is large.
- Term extensions spread out payments further over time.
- Change in $P V$ proportional to $\frac{1}{2} \cdot T \cdot\left(R-R^{*}\right)$.

Current Payments and Present Value of Future Payments

Pay ${ }_{1}$ by Rate
Quarterly Payments Normalized by $F V_{0}$

$P V^{f u}{ }_{1}$ by Rate
Present Value of Future Payments Normalized by FVo

Competing Models

- Solvency: default if the face value too high.
- No credit constraints and $R^{*}=R$.
- Liquidity: default if current payments are too high.
- Affordability constraint, extreme myopia/short-effective planning horizons, or rule-of-thumb behavior.
- Strategic: default by solvent and liquid: if future payments are too high.
- Endogenous: whether defaults are strategic is linked to borrower balance sheets

Model	What triggers default?							
	$F V$	Way	$P V^{f u}$	$R \downarrow$	$T \uparrow$	F		Policy
Solvency	\checkmark							Write-down
Liquidity		\checkmark		\checkmark	\checkmark	\checkmark	Forbearance	
Strategic			\checkmark	\checkmark			Rate reduction	
Endogenous	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Heterogeneous	

Institutional Details

Macroeconomic and Institutional Details

- Macroeconomic conditions neither depression nor the transitory type.
- Banks or the government are not immediately culpable.
- Defaults best characterized as idiosyncratic.
- Unsecured loans with fixed rates, terms up to 72 months, fixed nominal payments.
- 40% total, two-thirds of non-mortgage FV outstanding to households.
- No bankruptcy protection.
- 30+ followed up via phone. 90+ forwarded to collections and reported to the credit bureau.
- Wage garnishment up to 25% of income. Seizure of cash, durables, real estate.
- At the onset, 5% of aggregate FV in non-performing status.
- Lenders have the capability to facilitate modifications.

Summary Statistics

	Unit	N	mean	s.d.	p10	p50	p90
Demographics							
Age	Years	20,944	38.0	9.8	26	37	52
Metro area (1m+)		20,944	0.23	0.42	0	0	1
Delinquent loan							
Loans (Consolidated)	Count	20,944	1.25	0.53	1	1	2
FV (Original)	TRY	20,944	15,281	11,172	4,546	12,298	29,081
FV (Remaining)	TRY	20,944	10,403	8,980	2,480	7,728	21,639
R	APR, \%	20,944	16.3	1.1	14.8	16.4	17.4
T (Original)	Months	20,944	36.8	7.7	24	36	48
T (Remaining)	Months	20,944	23.9	11.9	10	21	43
Payment	TRY	20,944	531	375	176	434	959
Pay	\% of FV	20,944	6.4	3.4	3.0	5.6	11.2
New loan							
$F V_{0}$	TRY	20,944	10,403	8,980	2,480	7,728	21,640
R^{\prime}	APR, \%	20,944	13.0	2.6	9.6	13.2	16.5
T^{\prime}	Months	20,944	41.3	14.9	18	48	61
Forbearance (Take-up)	\%	7,308	32.8	46.9	0	0	100
Payment	TRY	20,944	306	255	77	238	617
Pay	\% of FV	20,944	3.3	1.6	1.5	3.0	5.6
Balance sheet							
30+		20,944	0.89	0.31	0	1	1
90+		20,944	0.30	0.46	0	0	1
Assets (Checking)	TRY	18,715	-1,022	1,778	-2,400	-792	0
Limit (Credit Line)	TRY	18,112	5,163	8,169	650	2,750	10,800
Debt (Credit Line)	TRY	18,112	4,173	8,252	0	1,653	9,890

Experimental Design

Experimental Timeline

$\begin{aligned} & \text { Old Contract } \rightarrow \\ & \text { in Arrears } \\ & \quad(R, T) \end{aligned}$	Randomization	Refinancing	New Contract
			$\left(R^{\prime}, T^{\prime}, F\right)$
	$\mathbb{Z}^{R} \times \mathbb{Z}^{T} \times \mathbb{Z}^{F}$	$R^{\prime} \mid \mathbb{Z}^{R}$ displayed	
	(2×2×2=8 groups)	$T^{\text {Offer }} \boldsymbol{T}, \mathbb{Z}^{T}$ offered	
T^{\prime} decided			
$F \mid \mathbb{Z}^{F}$ offered			
F decided			

Selection and Randomization

- Participants are preexisting borrowers who hold an unsecured loan in arrears.
- 8 treatment legs in a 2-by-2-by-2 design.
- Draw three random numbers-to determine rate (R), term (T), forbearance (F).
- $\mathbb{Z}_{i}^{k}=1$ —High relief designation if number is above a specific threshold.
- Threshold equals 0.5 for rate and term and 0.65 for forbearance.
- Three randomized instruments for econometric evaluation:

$$
\mathbb{Z}_{i}^{R} \quad \mathbb{Z}_{i}^{T} \quad \mathbb{Z}_{i}^{F}
$$

Covariate Balance

$Y_{i}=\sum^{k \in R, T, F} \theta^{k} \mathbb{Z}_{i}^{k}+\varepsilon_{i}$											
		Age Years	Loans Consol. Count	$\begin{aligned} & \text { FV } \\ & \text { Org. } \\ & \text { TRY } \end{aligned}$	$F V_{0}$ Rem. TRY	$\begin{gathered} R \\ \mathrm{Org} . \\ \mathrm{APR}, \% \end{gathered}$	$\begin{gathered} T \\ \text { Org. } \\ \text { Months } \end{gathered}$	$\begin{aligned} & \text { Payment } \\ & \text { Org. } \\ & \text { TRY } \end{aligned}$	$\begin{aligned} & \text { Pay } \\ & \text { Org. } \\ & \mathrm{Nm} \end{aligned}$	$\begin{gathered} 30+ \\ \% \end{gathered}$	$\begin{gathered} 90+ \\ \% \end{gathered}$
	\mathbb{Z}^{R}	$\begin{aligned} & -0.22 \\ & (0.13) \end{aligned}$	$\begin{gathered} -0.0002 \\ (0.007) \end{gathered}$	$\begin{gathered} -22 \\ (155) \end{gathered}$	$\begin{gathered} 34 \\ (124) \end{gathered}$	$\begin{aligned} & 0.003 \\ & (0.02) \end{aligned}$	$\begin{gathered} 0.08 \\ (0.11) \end{gathered}$	$\begin{aligned} & -1.2 \\ & (5.2) \end{aligned}$	$\begin{aligned} & -0.08 \\ & (0.05) \end{aligned}$	$\begin{aligned} & -0.82 \\ & (0.43) \end{aligned}$	$\begin{gathered} -0.31 \\ (0.64) \end{gathered}$
	\mathbb{Z}^{T}	$\begin{aligned} & -0.07 \\ & (0.13) \end{aligned}$	$\begin{gathered} -0.01 \\ (0.007) \end{gathered}$	$\begin{gathered} -3 \\ (154) \end{gathered}$	$\begin{gathered} 105 \\ (124) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.11 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.4 \\ (5.2) \end{gathered}$	$\begin{array}{r} -0.05 \\ (0.05) \end{array}$	$\begin{aligned} & -0.10 \\ & (0.43) \end{aligned}$	$\begin{gathered} 0.67 \\ (0.64) \end{gathered}$
	\mathbb{Z}^{F}	$\begin{aligned} & -0.02 \\ & (0.14) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.008) \end{aligned}$	$\begin{gathered} 172 \\ (162) \end{gathered}$	$\begin{gathered} 170 \\ (130) \end{gathered}$	$\begin{aligned} & -0.02 \\ & (0.02) \end{aligned}$	$\begin{gathered} 0.06 \\ (0.11) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.4) \end{gathered}$	$\begin{aligned} & -0.02 \\ & (0.05) \end{aligned}$	$\begin{gathered} 0.45 \\ (0.45) \end{gathered}$	$\begin{aligned} & -0.03 \\ & (0.67) \end{aligned}$
	α	$\begin{gathered} 38.1 \\ (0.13) \end{gathered}$	$\begin{gathered} 1.26 \\ (0.007) \end{gathered}$	$\begin{gathered} 15,234 \\ (147) \end{gathered}$	$\begin{gathered} 10,274 \\ (118) \end{gathered}$	$\begin{gathered} 16.3 \\ (0.02) \end{gathered}$	$\begin{gathered} 36.8 \\ (0.10) \end{gathered}$	$\begin{aligned} & 530 \\ & (4.9) \end{aligned}$	$\begin{gathered} 6.5 \\ (0.05) \end{gathered}$	$\begin{gathered} 89.6 \\ (0.41) \end{gathered}$	$\begin{gathered} 30.3 \\ (0.60) \end{gathered}$
	N	20,944	20,944	20,944	20,944	20,944	20,944	20,944	20,944	20,944	20,944
F	p	0.40	0.33	0.77	0.48	0.60	0.58	0.78	0.28	0.19	0.72
K-S	\mathbb{Z}^{R}	0.41	1	0.59	0.46	0.92	0.91	0.74	0.18	0.88	1
	\mathbb{Z}^{T}	1	0.98	0.27	0.56	0.65	0.33	0.67	0.22	1	0.97
	\mathbb{Z}^{F}	0.77	1	0.20	0.11	0.94	1	0.12	0.41	1	1

Covariate Balance: Dynamic Pre-trends

Assignment of Forbearance, Interest Rates, and Term

Randomized $\mathbb{Z}_{i}^{R}, \mathbb{Z}_{i}^{T}$, and \mathbb{Z}_{i}^{F} determine rate R^{\prime}, term offer $T^{\text {offer }}$, and forbearance offer.

- Rate $R^{\prime}<R$, off a market rate lower than R.
- $\mathbb{Z}_{i}^{R}=0$ assigned 60 bps, $\mathbb{Z}_{i}^{R}=1540$ bps APR reduction.
- Bounded below by \underline{R}.
- Term extension offer, $T^{\text {offer }}>T$.
- Not the final term, but a recommendation-an encouragement. Imperfect compliance.
- Group into grids of 12 . Offer $T^{\text {offer }}$ is \bar{T}_{k} times 150% to $\mathbb{Z}_{i}^{T}=0$, and \bar{T}_{k} times 200% to $\mathbb{Z}_{i}^{T}=1$.
- $\mathbb{Z}_{i}^{F}=1$ offered forbearance.
- Postponing the payment of the principal for three months.
- Purely transitory, keeping term constant, backloading.
- In contrast to deferment, borrower responsible for interest that accrues.

First Stage: Interest Rate

by Rate $\left(\mathbb{Z}_{i}^{R}\right)$

by Term $\left(\mathbb{Z}_{i}^{T}\right)$
by Forbearance $\left(\mathbb{Z}_{i}^{F}\right)$

$\mathbb{Z}_{i}^{R}=0$ are assigned to 60 bps , and $\mathbb{Z}_{i}^{R}=1$ to 540 bps APR rate reduction.
Unannounced. $F=7,551$.
Not negotiable and cannot be changed. Bounded below by a minimum \underline{R}.

First Stage: Term

by Rate $\left(\mathbb{Z}_{i}^{R}\right)$

by Term $\left(\mathbb{Z}_{i}^{T}\right)$
by Forbearance $\left(\mathbb{Z}_{i}^{F}\right)$

Randomized term extension offer, $T^{\text {offer }}>T$.
Expected. $F=63$.
As in the wild, the borrower is not constrained in choosing T^{\prime}.

First Stage: Forbearance

by Rate $\left(\mathbb{Z}_{i}^{R}\right)$

by Term $\left(\mathbb{Z}_{i}^{T}\right)$
by Forbearance $\left(\mathbb{Z}_{i}^{F}\right)$

$\mathbb{Z}_{i}^{F}=1$ are offered forbearance. One-in-three take-up.
Unannounced. $F=2,216$.
Suspends and postpones the payment of the principal for 3 months, backloads. Not free.

First Stage: Contract Terms

	R^{\prime} APR, \%	T^{\prime} Months	F^{\prime} Take-up, \%	$F^{\prime}\left(\mathbb{Z}^{F}=1\right)$ Take-up, \%
\mathbb{Z}^{R}	-3.81	0.43	0.59	1.66
	(0.03)	(0.21)	(0.38)	(1.10)
\mathbb{Z}^{T}	-0.03	2.77	0.51	1.45
	(0.03)	(0.20)	(0.38)	(1.10)
\mathbb{Z}^{F}	-0.02	-0.32	32.8	
Cons.	$0.03)$ 15.0 (0.02)	$39.22)$ (0.19)	$-0.40)$ (0.36)	31.2 (0.96)
N	20,944	20,944	20,944	7,308
F	7,551	63	2,216	2

Results

Solvency Triggers-Event Study

by Rate $\left(\mathbb{Z}_{i}^{R}\right)$
by Term $\left(\mathbb{Z}_{i}^{T}\right)$
by Forbearance $\left(\mathbb{Z}_{i}^{F}\right)$

Modifications orthogonal to the face value and other determinants of default (e.g., income, wealth, risk, costs of default) effect whether and when to default.

Solvency Triggers-Intent-to-treat Effects

	$Y_{i}=\sum^{k \in R, T, F} \theta^{k} \mathbb{Z}_{i}^{k}+f_{t}+\varepsilon_{i}$					
	Short-run			Long-run		
	$4 m$	5 m	$6 m$	9 m	12 m	15 m
Base	23\%	28\%	32\%	38\%	40\%	40\%
\mathbb{Z}^{R}	$\begin{aligned} & -2.78 \\ & (0.58) \end{aligned}$	$\begin{array}{r} -3.51 \\ (0.62) \end{array}$	$\begin{aligned} & -3.15 \\ & (0.64) \end{aligned}$	$\begin{gathered} -2.79 \\ (0.66) \end{gathered}$	$\begin{aligned} & -1.85 \\ & (0.67) \end{aligned}$	$\begin{aligned} & -2.13 \\ & (0.67) \end{aligned}$
\mathbb{Z}^{T}	$\begin{aligned} & -0.02 \\ & (0.58) \end{aligned}$	$\begin{gathered} 0.01 \\ (0.62) \end{gathered}$	$\begin{aligned} & -0.02 \\ & (0.64) \end{aligned}$	$\begin{aligned} & -0.13 \\ & (0.66) \end{aligned}$	$\begin{gathered} -0.54 \\ (0.67) \end{gathered}$	$\begin{aligned} & -0.82 \\ & (0.67) \end{aligned}$
\mathbb{Z}^{F}	$\begin{aligned} & -2.69 \\ & (0.61) \end{aligned}$	$\begin{aligned} & -2.37 \\ & (0.65) \end{aligned}$	$\begin{aligned} & -1.96 \\ & (0.67) \end{aligned}$	$\begin{gathered} 0.24 \\ (0.70) \end{gathered}$	$\begin{gathered} 0.56 \\ (0.71) \end{gathered}$	$\begin{aligned} & -0.35 \\ & (0.70) \end{aligned}$
$\mathbb{P}\left(\theta^{R}=0\right)$	<0.001	<0.001	<0.001	<0.001	0.006	0.002
$\mathbb{P}\left(\theta^{T}=0\right)$	0.98	0.99	0.98	0.85	0.42	0.22
$\mathbb{P}\left(\theta^{F}=0\right)$	<0.001	<0.001	0.004	0.73	0.43	0.62

First Stage Effects on Current and Future Payments

	Pay $_{1}$ Current	Pay_{2} Current	$\begin{aligned} & P V_{u}^{f u} \\ & \text { Future } \end{aligned}$	$\begin{aligned} & P V_{t}^{f u} \\ & \text { Future } \end{aligned}$
\mathbb{Z}^{R}	$\begin{array}{r} -0.96 \\ (0.07) \end{array}$	$\begin{array}{r} -0.85 \\ (0.06) \end{array}$	$\begin{aligned} & -6.28 \\ & (0.08) \end{aligned}$	$\begin{aligned} & -5.74 \\ & (0.12) \end{aligned}$
\mathbb{Z}^{T}	$\begin{aligned} & -0.88 \\ & (0.07) \end{aligned}$	$\begin{array}{r} 1.01 \\ (0.06) \end{array}$	$\begin{gathered} 0.49 \\ (0.08) \end{gathered}$	$\begin{gathered} 1.59 \\ (0.12) \end{gathered}$
\mathbb{Z}^{F}	$\begin{array}{r} -1.92 \\ (0.07) \end{array}$	$\begin{gathered} 0.29 \\ (0.06) \end{gathered}$	$\begin{gathered} 1.66 \\ (0.09) \end{gathered}$	$\begin{gathered} 1.63 \\ (0.13) \end{gathered}$
Cons.	$\begin{gathered} 11.6 \\ (0.06) \end{gathered}$	$\begin{gathered} 11.8 \\ (0.06) \end{gathered}$	$\begin{gathered} 92.9 \\ (0.08) \end{gathered}$	$\begin{gathered} 85.2 \\ (0.12) \end{gathered}$
N	20,944	20,944	20,944	20,944
F	401	160	2,128	816

All modifications reduce current payments—equivalent to 96 cents, 88 cents, and $\$ 1.92$ for each $\$ 100$ of face value, respectively.

Liquidity Triggers-Payments (First-stage) vs. Defaults (Intent-to-treat)

by Rate (\mathbb{Z}_{i}^{R})

by Term $\left(\mathbb{Z}_{i}^{T}\right)$

by Forbearance $\left(\mathbb{Z}_{i}^{F}\right)$

Pay and 90+(F) by Term (Z^{\top})

Pay and 90+(F) by Forb. (Z ${ }^{F}$)

Forbearance has no effects beyond expiration. Rate reductions have immediate effects that persist. Liquidity not the sole driver-Rate cuts reduce payments the least but reduce delinquencies most.

Decision to Default $=\phi \underbrace{\text { Current Payments }}_{\text {Liquidity }}+\psi \underbrace{\text { PV of Future Payments }}_{\text {Strategic }}+\underbrace{\text { Other Factors }}_{\text {wealth, risk, costs }}$

Effect of Interest Rates on Current and Future Payments

Pay-Current Payments

Pay ${ }_{1}$ by Rate

$$
P a y \simeq\left(\frac{1}{T}+\frac{R}{2}+\frac{R}{2 T}+\frac{R^{2} T}{12}-\frac{R^{2}}{12 T}+O\left(R^{3}\right)\right)
$$

$P V^{f u}$ —Present Value of Future Payments

$$
P V^{f u} \simeq\left(1+\left(R-R^{*}\right) \frac{T}{2}+O\left(R^{* 2}\right)\right)
$$

Effects on $P V^{f u}$ account for more or less the entire impact of interest rate changes.

A Naive and Non-parametric Decomposition

Let ϕ and ψ denote the sensitivity of defaults to current and future payments.
To obtain an estimate, compare the intent-to-treat and first stage effects of \mathbb{Z}^{R} and \mathbb{Z}^{F} :

$$
\begin{aligned}
& -3.15=-0.96 \quad \phi-6.28 \\
& \underbrace{-1.96}_{\text {ITT }}=\underbrace{-1.92}_{\text {FS on Pay }} \underbrace{\phi}_{1.28}+\underbrace{}_{\text {FS on PV }} \begin{array}{c}
\text { fu } \\
\underbrace{\psi}_{0.31}
\end{array}
\end{aligned}
$$

Bivariate Wald yields 1.28 and 0.31 for ϕ and ψ.
Defaults triggered by both current and future payments; more sensitive to current payments.

$$
\frac{\psi}{\phi}=0.24
$$

News about a dollar in future equal a 24-cent increase in current payments-a strategic effect.

Strategic Triggers

	Panel A: Sensitivity$Y_{i}=\phi \mathrm{Pay}_{i}+f_{t}+\varepsilon_{i}$				Panel B: Decomposition$Y_{i}=\phi \mathrm{Pay}_{i}+\psi P V_{i}^{\text {fu }}+f_{t}+\varepsilon_{i}$			
$\begin{gathered} \text { Pay } \\ \text { Current } \end{gathered}$	$\begin{gathered} 3.31 \\ (0.72) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.74) \end{aligned}$	$\begin{gathered} 1.03 \\ (0.35) \end{gathered}$	$\begin{gathered} \text { Pay } \\ \text { Current } \end{gathered}$	$\begin{gathered} 1.11 \\ (0.29) \end{gathered}$	$\begin{gathered} 1.29 \\ (0.32) \end{gathered}$	$\begin{gathered} 1.21 \\ (0.29) \end{gathered}$	$\begin{gathered} 3.11 \\ (0.80) \end{gathered}$
				$P V^{f u}$ Future	$\begin{gathered} 0.33 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.31 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.36 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.29) \end{gathered}$
Instrument				Instrument				
\mathbb{Z}^{R}	\checkmark			\mathbb{Z}^{R}	\checkmark	\checkmark	\checkmark	\checkmark
\mathbb{Z}^{T}		\checkmark		\mathbb{Z}^{T}	\checkmark		\checkmark	\checkmark
\mathbb{Z}^{F}			\checkmark	\mathbb{Z}^{F}	\checkmark	\checkmark		
$\mathbb{P}(\phi=0)$				$\mathbb{P}(\phi=\psi=0)$	<0.001	<0.001	<0.001	<0.001
	<0.001	0.99	0.004	$\mathbb{P}(\phi=0)$	<0.001	<0.001	<0.001	<0.001
				$\mathbb{P}(\psi=0)$	0.001	0.003	<0.001	0.001
				$\mathbb{P}(\phi=\psi)$	0.017	0.007	0.008	0.015
				ψ / ϕ	0.30	0.24	0.30	0.29

Forbearance needs to reduce payments by three times to obtain the impact of rate reductions. Identified moment ψ / ϕ-dollar change in $P V^{f u}$ similar to a 30-cent increase in quarterly Pay.

Liquidity vs. Strategic Effects of Interest Rates

Total revaluation effect of interest rates—approximately $\frac{1}{2} T \Delta R$
Under perfect intertemporal substitution, more or less the entire impact through future payments.
Nevertheless, refinancing a mortgage is often interpreted as a liquidity shock.

Strategic effects equivalent to a deferral program that reduces monthly payments by 5% of average monthly household disposable income. $-0.30 \times 6.28 \% \times \frac{10,403}{3,844}$.

Balance Sheet Effects-Late Payments and Other Accounts

Panel A: Late Payments						
	$0+$	$30+$	$120+$	$150+$	Panel B: Other	
	$30+$	$90+$				
Base	58%	38%	30%	30%	4%	1%
\mathbb{Z}^{R}	-3.58	-3.53	-3.00	-3.17	-0.11	-0.01
	(0.68)	(0.67)	(0.63)	(0.63)	(0.25)	(0.14)
\mathbb{Z}^{F}	-3.80	-3.08	-1.87	-1.62	0.84	0.28
	(0.71)	(0.70)	(0.66)	(0.66)	(0.27)	(0.14)
Pay	1.81	1.69	1.07	1.00	-0.26	-0.09
Current	(0.31)	(0.31)	(0.29)	(0.29)	(0.12)	(0.06)
$P V^{f u}$	0.29	0.30	0.31	0.35	0.06	0.02
Future	(0.11)	(0.11)	(0.10)	(0.10)	(0.04)	(0.02)
$\mathbb{P}(\psi=0)$	0.008	0.004	0.002	<0.001	0.13	0.43
$\mathbb{P}(\phi=\psi)$	<0.001	<0.001	0.02	0.04	0.014	0.11
ϕ / ψ	0.16	0.18	0.29	0.35	<0	<0

Early-cycle more sensitive to forbearance and current payments-i.e., driven by liquidity.
Late-cycle is more sensitive to rate reductions and future payments-i.e., strategic.

Robustness-Discounting

R^{*}	Constant			Hyperbolic		Hetero. Old R_{i}	Expected $\mathbb{E}[P V]$
	0\%	24\%	48\%	$\beta=0.9$	$\beta=0.8$		
Pay Current	$\begin{gathered} 1.15 \\ (0.29) \end{gathered}$	$\begin{gathered} 1.10 \\ (0.30) \end{gathered}$	$\begin{gathered} 1.07 \\ (0.30) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.29) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.29) \end{gathered}$	$\begin{gathered} 1.12 \\ (0.29) \end{gathered}$	$\begin{gathered} 1.79 \\ (0.33) \end{gathered}$
$\begin{gathered} P V^{f u} \\ \text { Future } \end{gathered}$	$\begin{gathered} 0.25 \\ (0.07) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.37 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.41 \\ (0.13) \end{gathered}$	$\begin{gathered} 0.32 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.22) \end{gathered}$
$\begin{array}{r} \mathbb{P}(\psi=0) \\ \mathbb{P}(\phi=\psi) \\ \psi / \phi \end{array}$	$\begin{gathered} <0.001 \\ 0.003 \\ 0.22 \end{gathered}$	$\begin{gathered} 0.002 \\ 0.026 \\ 0.32 \end{gathered}$	$\begin{gathered} 0.017 \\ 0.078 \\ 0.36 \end{gathered}$	$\begin{gathered} 0.001 \\ 0.025 \\ 0.33 \end{gathered}$	$\begin{gathered} 0.001 \\ 0.040 \\ 0.37 \end{gathered}$	$\begin{gathered} <0.001 \\ 0.015 \\ 0.29 \end{gathered}$	$\begin{gathered} 0.001 \\ <0.001 \\ 0.40 \end{gathered}$

Endogenous Triggers

Determinants of the shape of default region in models macroeconomists routinely use:

- Distress
- Precaution
- Assets

Endogenous Triggers-Heterogeneity in Intent-to-treat Effects

	Panel A: Distress Days Late			Panel B: Precaution Times Binding			Panel C: Assets Checking Balances		
	(A1)	(A2)	(A3)	(B1)	(B2)	(B3)	(C1)	(C2)	(C3)
	90+	31-90	< 30	\emptyset	High	Low	\emptyset	Low	High
Frac.	0.30	0.59	0.11	0.14	0.43	0.43	0.10	0.45	0.45
Base	32\%	36\%	11\%	28\%	35\%	29\%	30\%	32\%	32\%
\mathbb{Z}^{R}	$\begin{aligned} & -4.72 \\ & (1.16) \end{aligned}$	$\begin{array}{r} -2.41 \\ (0.86) \end{array}$	$\begin{array}{r} -1.50 \\ (1.29) \end{array}$	$\begin{aligned} & -5.43 \\ & (1.68) \end{aligned}$	$\begin{aligned} & -2.04 \\ & (1.00) \end{aligned}$	$\begin{array}{r} -3.38 \\ (0.95) \end{array}$	$\begin{array}{r} -3.27 \\ (1.93) \end{array}$	$\begin{array}{r} -2.47 \\ (0.96) \end{array}$	$\begin{array}{r} -3.72 \\ (0.95) \end{array}$
\mathbb{Z}^{F}	$\begin{aligned} & -4.55 \\ & (1.21) \end{aligned}$	$\begin{aligned} & -1.29 \\ & (0.90) \end{aligned}$	$\begin{gathered} 0.53 \\ (1.36) \end{gathered}$	$\begin{aligned} & -3.52 \\ & (1.75) \end{aligned}$	$\begin{aligned} & -1.74 \\ & (1.05) \end{aligned}$	$\begin{aligned} & -1.63 \\ & (1.00) \end{aligned}$	$\begin{aligned} & -3.58 \\ & (2.04) \end{aligned}$	$\begin{array}{r} -1.89 \\ (1.00) \end{array}$	$\begin{aligned} & -1.67 \\ & (1.00) \end{aligned}$
$\mathbb{P}\left(\theta^{R}=0\right)$	<0.001	0.005	0.25	0.001	0.04	<0.001	0.09	0.01	<0.001
$\mathbb{P}\left(\theta^{F}=0\right)$	<0.001	0.15	0.70	0.045	0.10	0.10	0.08	0.06	0.10

Borrowers not in default do not find forbearance attractive as it only alters the timing of repayment.
Rate reductions are more effective for participants who can intertemporally substitute.

Endogenous Triggers-Heterogeneity in Treatment Effects

	Panel A: Distress Days Late			Panel B: Precaution Times Binding			Panel C: Assets Checking Balances		
	(A1)	(A2)	(A3)	(B1)	(B2)	(B3)	(C1)	(C2)	(C3)
	90+	31-90	< 30	\emptyset	High	Low	\emptyset	Low	High
Frac. in Bin	0.30	0.59	0.11	0.14	0.43	0.43	0.10	0.45	0.45
Pay Current	$\begin{gathered} 2.40 \\ (0.55) \end{gathered}$	$\begin{gathered} 0.66 \\ (0.38) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.70) \end{gathered}$	$\begin{gathered} 2.19 \\ (0.87) \end{gathered}$	$\begin{gathered} 0.79 \\ (0.46) \end{gathered}$	$\begin{gathered} 1.09 \\ (0.42) \end{gathered}$	$\begin{gathered} 2.08 \\ (0.91) \end{gathered}$	$\begin{gathered} 1.04 \\ (0.45) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.43) \end{gathered}$
$P V^{f u}$ Future	$\begin{gathered} 0.39 \\ (0.18) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.14) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.22) \end{gathered}$	$\begin{gathered} 0.43 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.17) \end{gathered}$	$\begin{gathered} 0.39 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.19 \\ (0.30) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.16) \end{gathered}$	$\begin{gathered} 0.44 \\ (0.15) \end{gathered}$
$\mathbb{P}(\psi=0)$	<0.001	0.08	0.91	0.012	0.08	0.009	0.02	0.02	0.02
$\mathbb{P}(\psi=0)$	0.03	0.04	0.29	0.078	0.22	0.01	0.53	0.15	0.003
$\mathbb{P}(\phi=\psi)$	<0.001	0.38	0.85	0.071	0.26	0.13	0.06	0.12	0.26
ψ / ϕ	0.16	0.43	2.88	0.20	0.26	0.35	0.09	0.22	0.45
Strategic	0.55	0.73	0.98	0.58	0.63	0.73	0.47	0.57	0.77

Endogenous Triggers-Heterogeneity in Treatment Effects

Distress, precaution, and assets all determine the location of the liquidity trigger.

Endogenous Triggers-Heterogeneity in Strategic Effects of Interest Rates

For early-cycle delinquencies, 98% of the effects of interest rates is through strategic channels.

Concluding Remarks

Debt relief experiment to study default triggers and policy to prevent it.

- Liquidity is not the sole trigger
- Strategic borrowers default in response to changes orthogonal to solvency and liquidity.
- Endogeneity of triggers-whether defaults are strategic is tightly linked to balance sheets.

Characterize single strategic trigger whose location is influenced by distress, precaution, and assets.

Concluding Remarks

Debt relief experiment to study default triggers and policy to prevent it.

- Liquidity is not the sole trigger
- Strategic borrowers default in response to changes orthogonal to solvency and liquidity.
- Endogeneity of triggers-whether defaults are strategic is tightly linked to balance sheets.

Characterize single strategic trigger whose location is influenced by distress, precaution, and assets.

Rate reductions are substantially more powerful for unconstrained borrowers.

Concluding Remarks

Debt relief experiment to study default triggers and policy to prevent it.

- Liquidity is not the sole trigger
- Strategic borrowers default in response to changes orthogonal to solvency and liquidity.
- Endogeneity of triggers-whether defaults are strategic is tightly linked to balance sheets.

Characterize single strategic trigger whose location is influenced by distress, precaution, and assets.

Rate reductions are substantially more powerful for unconstrained borrowers.

In future work, it would be valuable to ask:

- Are commonly used calibrations compatible with the shape of the default region?
- Studying liquidity and strategic effects for nondelinquent refinancing.

Thank you!

