Over the past decade there has been a growing awareness of the disabling effects of impaired cognition in individuals with schizophrenia. Along with this new awareness has come an increasing emphasis on the importance of developing new treatments that may positively impact these cognitive deficits. During this same period, the cognitive neuroscience field has seen an explosion of technical advances and new knowledge regarding the neural basis of cognition. Sadly, the translation and application of this cutting edge knowledge and paradigm development to new drug development in schizophrenia has lagged significantly behind overall progress in cognitive neuroscience, in large part due to the lack of data on the measurement properties of tasks used in cognitive neuroscience. This concern spawned the Cognitive Neuroscience Research To Improve Cognition in Schizophrenia (CNTRICS) initiative, which conducted a series of conferences designed to develop consensus on the constructs and paradigms from cognitive neuroscience that are ripe for translation, and the validation and psychometric goals when translating such tasks for use in clinical trials contexts. The current proposal is a logical and needed extension of the CNTRICS initiative that will begin the translation process for paradigms designed to assess four of the constructs identified as being ripe for translation in the first CNTRICS meeting. We have brought together a collaborative “translation” team that represents significant expertise from the many fields necessary for the success of this endeavor, including both basic and clinical cognitive neuroscientists, psychometricians, and clinical trials specialists. We have chosen to focus on four constructs that span both early (gain control and visual integration in perception) and higher-level (goal maintenance, relational encoding and retrieval) components of human cognitive processing. By examining multiple mechanisms, we will be able to establish the generality of the translational approach we propose across different levels and types of cognitive mechanisms. Specific Aim 1 is to validate (in both individuals with schizophrenia and comparison participants) optimized versions of the paradigms that assess our four constructs of interest, as well as to examine the relationship of task performance to clinical and functional outcomes in schizophrenia. By optimization, we mean examining modifications on already validated paradigms that are designed to: 1) minimize task length; 2) simplify task administration across multiple sites; 3) maximize sensitivity and selectivity in assessing the specific cognitive mechanisms of interest; and 4) enhance reliability and minimize floor and ceiling effects. By validation, we mean ensuring that such optimizations designed to enhance the psychometric properties of the task do not alter its construct validity. Specific Aim 2 will be to assess and optimize test-retest reliability and practice effects for the task versions validated in Specific Aim 1.
You must be logged in to post a comment.