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Considerable racial/ethnic disparities persist in exposure to life stressors and socioeconomic resources that can directly affect threat
neurocircuitry, particularly the amygdala, that partially mediates susceptibility to adverse posttraumatic outcomes. Limited work to
date, however, has investigated potential racial/ethnic variability in amygdala reactivity or connectivity that may in turn be related
to outcomes such as post-traumatic stress disorder (PTSD). Participants from the AURORA study (n= 283), a multisite longitudinal
study of trauma outcomes, completed functional magnetic resonance imaging and psychophysiology within approximately two-
weeks of trauma exposure. Seed-based amygdala connectivity and amygdala reactivity during passive viewing of fearful and
neutral faces were assessed during fMRI. Physiological activity was assessed during Pavlovian threat conditioning. Participants also
reported the severity of posttraumatic symptoms 3 and 6 months after trauma. Black individuals showed lower baseline skin
conductance levels and startle compared to White individuals, but no differences were observed in physiological reactions to
threat. Further, Hispanic and Black participants showed greater amygdala connectivity to regions including the dorsolateral
prefrontal cortex (PFC), dorsal anterior cingulate cortex, insula, and cerebellum compared to White participants. No differences were
observed in amygdala reactivity to threat. Amygdala connectivity was associated with 3-month PTSD symptoms, but the
associations differed by racial/ethnic group and were partly driven by group differences in structural inequities. The present
findings suggest variability in tonic neurophysiological arousal in the early aftermath of trauma between racial/ethnic groups,
driven by structural inequality, impacts neural processes that mediate susceptibility to later PTSD symptoms.
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INTRODUCTION
Responses to traumatic stress vary depending on the level of prior
burden individuals bring to the traumatic event. Access to wealth
and economic resources, for example, are known protective
factors that help to ameliorate long-term social, emotional, and
financial burdens of trauma [1, 2]. In the United States, there are
clear racial and ethnic inequities in the distributions of certain
socioeconomic protective factors including educational attain-
ment, employment, and income [3, 4]. Limited research has
focused on how these observable inequities may manifest as race-
related differences in traumatic stress responses and may interact
with neurobiological mechanisms of trauma and stress-related
disorder development. Characterization of potential race-related

variation in post-trauma neurophysiology and trauma outcome
relationships is important for generating equitable research and
clinical approaches for treatment and prevention.
Neurobiological investigations have found consistent evidence

that threat neurocircuitry, and particularly the amygdala, plays a
significant role in susceptibility to adverse posttraumatic out-
comes like posttraumatic stress disorder (PTSD) [5–7]. The
amygdala is essential for learned threat responses, and it directly
mediates expression of the skin conductance response (SCR) to
threat [8, 9]. Both amygdala reactivity and SCR to threat are altered
in individuals diagnosed with PTSD [10, 11]. Specifically, amygdala
hyperreactivity to threat [6, 12] and heightened expression of SCRs
in the early aftermath of trauma [13, 14] are each associated with
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later PTSD symptom severity. Recent work demonstrates that
variability in amygdala and prefrontal cortex (PFC) activity, and
functional and structural connectivity, are associated with later
PTSD symptoms after trauma which may reflect reduced top-
down regulation of amygdala reactivity [12, 15–19]. The present
literature, therefore, suggests that amygdala function and related
psychophysiological responses are potential neurobiological
markers of trauma-related psychopathology.
Despite the potential for an amygdala-based neural marker of

PTSD susceptibility, very limited work to date has investigated
potential race/ethnicity-related variability—and the role of social
inequities—in these findings. Minoritized groups are more likely to
have previous exposure to adverse events throughout develop-
ment which are known to affect amygdala function [20]. Prior
research has demonstrated lower SCRs and startle responses in
Black individuals with both typical and PTSD samples [21–23].
However, the prior work gave limited consideration to the
potential effects of structural inequities which may contributed
to race-related differences in physiological responses. Recent
evidence suggests that disparate exposures to negative life
experiences throughout development drives both lower amygdala
reactivity and SCRs to threat in Black individuals compared to
white individuals [24]. Further, prior work observed that greater
neighborhood disadvantage is associated with greater connectiv-
ity of the amygdala and inferior parietal lobule [25]. The extant
literature thus suggests that racially/ethnically minoritized indivi-
duals may show adaptive counter-regulatory amygdala dynamics
(e.g., emotional blunting) to compensate for greater life stress. The
race-related structural inequities may partially contribute to
recently observed race-related differences in posttraumatic
symptoms in the early aftermath of trauma [26, 27]. However, to
the best of our knowledge, no prior work has directly investigated
racial/ethnic differences in connectivity of threat neurocircuitry in
the early aftermath of trauma and the potential contributions of
structural inequities.
The present multi-site study investigated potential racial/ethnic

differences in neurophysiological reactivity and connectivity that
may be related to posttraumatic dysfunction through an explora-
tory secondary analysis of the AURORA study. We assessed
peripheral expression of the emotional response to threat via skin
conductance and startle responses during acquisition of condi-
tioned threat. We also investigated amygdala reactivity to social
threat (passive viewing of fearful and neutral faces) and connectivity
during rest. We hypothesized that racial/ethnic differences would
be observed in physiological arousal and amygdala reactivity during
threat such that participants from racially/ethnically-minoritized
groups would show lowered threat reactivity compared to white
participants. We further anticipated differences between racial/
ethnic groups in amygdala connectivity patterns. In addition, we
suspected that racial/ethnic variability in amygdala connectivity
patterns would be associated with later reported posttraumatic
dysfunction at 3 and 6-months after the index trauma. Finally, we
assessed if observed race-related neurophysiological differences
were accounted for by racial inequities in socioeconomic factors
(e.g., area deprivation or income). The findings of the present study
highlight important race-related variability in brain circuits related
to PTSD development and have significant implications for the
usage of neural targets for prediction and treatment of trauma and
stress-related disorders.

METHODS AND MATERIALS
Data for the present analyses were obtained as part of the AURORA Study, a
multisite longitudinal study of adverse neuropsychiatric sequelae. Details of
the larger AURORA project are described elsewhere [28]. Briefly, trauma-
exposed participants were recruited from 22 Emergency Departments (EDs)
from across the United States. Trauma was defined as a medical incident
requiring admission to the ED, and participants who experienced events

such as a motor vehicle collision, high fall (>10 feet), physical assault, sexual
assault, or mass casualty incidents were included in the study. Other trauma
exposures were also qualifying if: (a) the individual responded to a screener
question that they experienced the exposure as involving actual or
threatened serious injury, sexual violence, or death, either by direct
exposure, witnessing, or learning about the trauma and (b) the research
assistant agreed that the exposure was a plausible qualifying event. Trauma
was a necessary inclusion criterion for the present study, and no participants
without trauma were included. Data were collected for 436 participants
recruited between 09/25/2017 and 07/31/2020 who had an MRI and
physiological data collection approximately 2-weeks after trauma exposure.
A subset of participants in the current report were also included in earlier MRI
analyses from the AURORA study though the analyses here are distinct
[7, 29, 30]. The present analyses were focused on racial/ethnic differences in
early amygdala reactivity/connectivity, and we thus excluded participants
who did not have corresponding fMRI data (n= 55). Participants were also
excluded listwise on the basis of motion or technical issues during task-fMRI
(n= 74) or rs-fMRI (n= 59) (see below and supplement) leaving n= 295
participants with complete MRI data of acceptable quality. Participants self-
reported their race/ethnicity and were coded into four categories of
“Hispanic (“Hispanic”; n= 50)”, “non-Hispanic White (“White”; n= 98)”, “non-
Hispanic Black (“Black”; n= 135)”, “non-Hispanic other-race (“Other”; n= 11)”,
and one participant with no reported race/ethnicity. For the present
analyses, we also excluded participants from the “other” or unreported racial
category due to small sample size that may impact statistical analyses. In
total, 283 participants were included in the analyses (Table 1). All participants
gave written informed consent as approved by each study site’s Institutional
Review Board.

Demographic and psychometric data collection
Initial participant demographic and psychometric data were collected
after admission to the ED which included trauma exposure type,
participant marital status, income, education level, and employment.
Participants’ home address was geocoded to derive an area deprivation
index (ADI) to reflect neighborhood disadvantage [31]. Participants’
posttraumatic symptoms were assessed within the ED (i.e., a retro-
spective report in the past 30 days prior to trauma), 2-weeks, 8-weeks,
3-months, and 6-months after trauma exposure. In the present analyses,
we focused on potential associations of 2-week fMRI measures with 3-
and 6-month symptoms. The 3- and 6-month assessments queried
participant symptoms in the past 30 days. PTSD symptoms were
assessed using the PTSD Checklist for DSM-5 (PCL-5) [32], a 20-item self-
report questionnaire on trauma symptom expression and severity.
Depression symptoms were assessed using the Patient-Reported
Outcomes Measurement Information System (PROMIS) Depression
instrument from the PROMIS short form 8b [33]. T-scores were derived
from total responses to eight items scored on a Likert scale from 1
(never) to 5 (always). Anxiety symptoms were assessed using four items
from the PROMIS Anxiety Bank [33]. Prior life trauma was assessed using
the Life Events Checklist version 5 [34]. Participant’s prior trauma
exposure was defined by (a) happened directly, (b) witnessed, (c)
happened to someone close to them, or (d) exposed to details due to
their occupation. Responses to all questions were summed to derive a
prior trauma index.

Psychophysiological responses to threat
Psychophysiological data were collected during a Pavlovian fear con-
ditioning procedure within a day of the MRI session and collected outside
of the MRI scanner described in prior reports [35–37]. Briefly, a shape on a
computer screen (a blue square; CS+) was repeatedly paired with an
aversive unconditioned stimulus (US) (140 psi airblast to the larynx, 250ms
duration). A different shape (a purple triangle; CS−) was never paired with
the aversive stimulus. The paradigm included a 108 dB white noise startle
probe that elicited the eyeblink startle response. The startle probe was
presented during CS+ and CS− trials, and on its own (noise alone [NA]
trials) to assess individual baseline startle response. Following habituation,
acquisition consisted of three conditioning blocks with four trials of each
type (NA, CS+ paired with US, CS-) in each block, for a total of 12 trials of
each type. Ten minutes after acquisition, the extinction phase consisted of
four blocks with four trials of each type (CS+, CS−, NA), wherein the
airblast never occurred. There were a total of 16 trials of each type during
extinction (20 min in duration). Given the focus of the present report on
amygdala and threat reactivity, we focused on baseline startle response
(EMG activity to the probe during noise alone), tonic skin conductance
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level (SCL), and fear-potentiated startle (FPS)/SCRs to the CS+ and CS−
during the acquisition blocks. For statistical analyses, we excluded EMG
and SCL/SCR data if scores were equal to or above 3 standard deviations
from the sample mean (individually for each data-type/contrast).

Magnetic resonance imaging. Task-fMRI, rs-fMRI, and anatomical MRI data
were collected across five sites with relatively harmonized acquisition
parameters (Table S1). Results included in this manuscript come from
preprocessing performed using FMRIPREP version stable 1.2.2 [1, 2,
RRID:SCR_016216], a Nipype [3, 4, RRID:SCR_002502] based tool as in our prior
reports [7, 29, 30]. Further processing information is provided in the supplement.

Task-fMRI of amygdala reactivity
To index neural reactivity to threat, participants completed an emotional
reactivity task designed to probe reactivity to social threat cues via passive
view of fearful and neutral facial expressions. The task is described in prior
work [11, 12, 38]. Briefly, faces from the Ekman faces library were presented
in a block design (15 fear blocks and 15 neutral blocks, 10 s rest in
between) presented in a pseudorandom order. The order was counter-
balanced across participants. SPM12 was used for the initial statistical
models after using ICA-AROMA as part of the FMRIPREP pipeline [39, 40].
Emotion blocks were modeled with separate boxcar functions representing
the onset and 8 s duration of each block, convolved with a canonical
hemodynamic response function. Separate regressors for white matter,
cerebrospinal fluid and global signal were included to account for motion/
physiological noise. Amygdala reactivity from the 1st level contrasts of
fearful – neutral face conditions was extracted from the left and right
medial amygdala defined by the Brainnetome atlas [41] and used in
statistical analyses (see statistical analysis section).

Resting-state amygdala connectivity
Following ICA-AROMA, the rs-fMRI data were further processed within the
Analysis for Functional NeuroImages (AFNI) program 3dTproject to perform
linear detrending, censoring of non-steady state volumes identified by
FMRIPREP, bandpass filtering (0.01–0.1 Hz), and regression of white matter,
corticospinal fluid, and global signal to account for potential physiological
noise. The mean fMRI signal time-course was extracted separately from the
left and right medial amygdala defined by the Brainnetome atlas [41] and
Z-transformed Pearson correlation coefficients were calculated between
each ROI and the rest of the brain (i.e., two voxel-wise connectivity maps

for left/right amygdala per participant). Group-level statistical modeling
was completed in AFNI using the separate voxelwise connectivity maps.

Statistical analyses. Statistical analyses were completed using IBM SPSS
version 24, the JASP Statistical Package (https://jasp-stats.org/), and the
Analysis of Functional NeuroImages (AFNI) software package [42].
Demographic data such as grade-level, employment, marital status, and
income were dummy-coded as per our prior analyses [26]. Univariate
ANOVAs assessed racial/ethnic differences in tonic SCLs and baseline
startle responses. Post-hoc pairwise comparisons were completed for
significant omnibus effects with adjustments to degrees of freedom for
inequality of variance between groups were completed when a significant
violation was detected (e.g., Levene’s test). Repeated-measures ANOVAs
assessed racial/ethnic differences in amygdala activity for the
fearful–neutral contrast. For ANOVA models, given the pronounced
differences in prior trauma exposure (see results), we completed sensitivity
analyses with prior trauma exposure as a covariate. For non-significant
planned post-hoc comparisons, we ran confirmatory equivalence tests
(described in the supplement). Voxelwise group-level models were
completed using 3dMVM [43] in AFNI that included a factor for racial/
ethnic group. Due to collinearity between race/ethnicity and site/scanner
(as well as missing racial/ethnic categories for some sites), we did not
include a covariate of site/scanner in any analyses. For completeness, we
completed an additional 3dMVM focusing on the effects of scanner to
determine if there was overlap in the observed regions for our primary
analysis. In addition, quality control metrics of the fMRI data by site and by
racial group are provided in the supplement (see supplementary results;
Figures S1 and S2). A gray matter mask that included subcortical areas and
the cerebellum was applied to the data. Cluster-based methods for
multiple comparison correction were applied to determine the voxel
extent k needed at a cluster forming threshold of p= 0.005 to maintain
α= 0.05. Specifically, 3dFWHMx was applied to the 1st-level contrasts of
the preprocessed rs-fMRI data to derive the autocorrelation function
parameters for 3dClustSim (10,000 iterations). The minimum k for analyses
of the rs-fMRI data was 99 voxels. Given our strong a priori hypotheses
about amygdala reactivity during faces task, we also extracted beta values
for left and right medial amygdala from the Brainnetome atlas for
statistical analysis in SPSS. We further completed univariate analyses of
covariance (ANCOVA) to determine if racial/ethnic variability in amygdala
connectivity patterns were related to differential outcomes in PTSD,
depression, and anxiety symptoms at 3 or 6-months. ANCOVAs included
between subject factors for racial/ethnic group and continuous covariates

Table 1. Demographic characteristics of the sample.

Total Hispanic White Black
M (SD) or N (%) M (SD) or N (%) M (SD) or N (%) M (SD) or N (%)

Age 33.87 (12.47) 32.38 (12.03) 35.87 (13.65) 32.98 (11.62)

Sex at birth

Male 103 (36.40%) 25 (50%) 34 (34.69%) 44 (32.59%)

Female 180 (63.60%) 25 (50%) 64 (65.31%) 91 (67.41%)

Marital History

Current/Previous Marriage 87 (30.74%) 17 (34%) 38 (38.78%) 32 (23.70%)

Never Married 195 (68.90%) 32 (64%) 60 (61.22%) 103 (76.30%)

Missing 1 (0.35%) 1 (2%) 0 (0%) 0 (0%)

Education

High School or less 96 (33.92%) 23 (46%) 22 (22.45%) 51 (37.78%)

Some college or more 187 (66.08%) 27 (54%) 76 (77.55%) 84 (62.22%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Currently Employed

No 74 (26.15%) 14 (28%) 27 (27.55%) 33 (24.44%)

Yes 173 (61.13%) 27 (54%) 61 (62.24%) 85 (62.96%)

Missing 36 (12.72%) 9 (18%) 10 (10.20%) 17 (12.59%)

Income

<=$35 K Yearly 104 (36.75%) 13 (26%) 46 (46.94%) 45 (33.33%)

>$35 K Yearly 142 (50.18%) 29 (58%) 40 (40.82%) 73 (54.07%)

Missing 37 (13.07%) 8 (16%) 12 (12.24%) 17 (12.59%)

Area Deprivation Index (Nationally Ranked) 57.48 (30.70) 46.64 (25.54) 44.05 (24.02) 71.24 (30.02)
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for posttraumatic assessment (one for each type and timepoint) to assess
each effect for each connectivity pattern. We applied Benjamini-Hochberg
false discovery rate corrections for each analysis within each posttraumatic
assessment (i.e., correcting for 14 tests –7 connectivity patterns x 2
timepoints for PTSD, depression, and anxiety separately). Finally, to
estimate the effect of racial/ethnic disparities on brain connectivity after
accounting for demographic factors, we completed parallel mediation
models to determine if demographic factors (marital status, income,
education, employment, prior trauma, and area deprivation) mediated
race-related differences in amygdala connectivity patterns.

RESULTS
Demographic characteristics
Demographic data by racial/ethnic group are reported in Table 1.
We observed significant differences in education level [χ2= 9.90,
p= 0.007], income [χ2= 7.47, p= 0.023], and marital status
[χ2= 6.46, p= 0.040]. White participants tended to have more
education, while Black participants were more often unmarried
and—along with Hispanic participants—had lower income. No
significant difference was observed in employment within the
sample [χ2= 0.59, p= 0.745]. A significant difference in the area
deprivation index (ADI) was observed between the groups
[F(2,280)= 31.73, p < 0.001]. Post-hoc comparisons showed no
differences between Hispanic and White participants, but
significantly greater ADI in Black compared to Hispanic
[t(179)= 5.42, d= 0.91, p < 0.001] and White participants
[t(221.58)= 8.06, d= 1.07, p < 0.001]. We further observed a
significant effect of prior trauma [F(2,220)= 3.12, p= 0.046].
Post-hoc comparisons revealed White participants had greater
prior trauma exposure than Black participants [t(182)= 2.47,
d= 0.37, p= 0.015] consistent with prior research from the
AURORA study [26]. Broad-class trauma exposures by group are
presented in Table S2. Given the significant group differences in
prior trauma exposure, we conducted sensitivity analyses for
significant effects of racial/ethnic group.

Racial/ethnic differences in tonic physiological arousal but not
reactivity during threat learning
A paired-samples t-test revealed significantly greater SCRs to the
CS+ than the CS- [t(134)= 2.67, d= 0.23, p= 0.009] during
acquisition, confirming successful fear conditioning across the full
sample. A one-way ANOVA revealed significant racial/ethnic
differences in tonic SCLs [F(2,130)= 7.78, p < 0.001]. In sensitivity
analyses that included a covariate for prior trauma exposure (i.e.,
ANCOVA), tonic SCL still differed by racial/ethnic group
[F(2,109)= 5.90, p= 0.003]. Posthoc pairwise comparisons
revealed Black participants showed significantly lower tonic SCL
compared to White participants [t(55.76)= 3.36, d= 0.69,
p= 0.001] (Figure S3). These effects survive a Bonferroni correc-
tion (criterial p= 0.05/3= 0.016). No difference was observed
between Hispanic and White, or Hispanic and Black, participants
(all p > 0.05). Subsequently, a repeated measures ANOVA did not
reveal a significant main effect of racial/ethnic group (p= 0.216) or
racial/ethnic group by stimulus-type interaction (p= 0.820) on
SCRs during acquisition. The main effect of stimulus type
remained significant [F(1,132)= 4.93, p= 0.03]. Thus, racial and
ethnic groups differed in baseline levels of peripheral arousal, but
did not show differences in physiological reactivity during threat
acquisition after trauma exposure.
We next investigated if tonic SCL was related to demographic

factors (education, employment, marital status, income, prior
trauma, and ADI). Tonic SCL and ADI were correlated at trend-
level (r=−0.16, p= 0.076). Tonic SCL was not associated with other
demographic variables. Given the difference in tonic SCL was driven
by differences between White and Black participants, we focused a
follow-up parallel mediation analysis on these groups. A parallel
mediation analysis revealed significant total [Z-statc=−4.01,

p < 0.001] and direct [Z-statc’=−3.18, p= 0.001] effects of racial
group, but there was not a significant indirect effect [Z-statab=
−0.36, p= 0.719]. These data suggest the indexed structural
inequities do not directly mediate the differences in tonic skin
conductance between Black and White participants.

Racial/ethnic differences in baseline, but not fear-potentiated,
startle during threat learning
A paired-samples t-test revealed significantly greater FPS response
to the CS+ than the CS- [t(208)= 7.80, d= 0.54, p < 0.001] during
acquisition. A one-way ANOVA revealed significant racial/ethnic
differences in baseline startle responses [F(2,213)= 5.98,
p= 0.003]. In sensitivity analyses that included a covariate for
prior trauma exposure (i.e., ANCOVA), baseline startle responses
still differed by racial/ethnic group F(2,166)= 4.05, p= 0.019. Post-
hoc pairwise comparisons revealed Black participants showed
significantly lower baseline startle compared to White participants
[t(157.58)= 3.31, d= 0.50, p= 0.001] (Figure S3). These effects
survive a Bonferroni correction (criterial p= 0.05/3= 0.016). No
difference was observed between Hispanic and White, or Hispanic
and Black, participants (all p > 0.05). Subsequently, a repeated
measures ANOVA did not reveal a significant main effect of racial/
ethnic group (p= 0.732) or racial/ethnic group by stimulus-type
interaction (p= 0.910) on FPS responses during acquisition.
The main effect of stimulus type remained significant
[F(1,206)= 51.55, p < 0.001]. These data further confirm race-
related differences in general physiologic arousal, but not
differences in threat reactivity.
We next investigated if baseline startle response was related to

demographic factors (education, employment, marital status,
income, prior trauma, and ADI). Baseline EMG and ADI were
significantly correlated (r=−0.22, p= 0.001). Given the difference
in baseline EMG was driven by differences between White and
Black participants, we focused a follow-up parallel mediation
analysis on these groups. A parallel mediation analysis revealed
significant total [Z-statc=−3.38, p= 0.008] and a significant
indirect effect [Z-statab=−1.98, p= 0.048], but not a significant
direct [Z-statc’=−1.75, p= 0.080] effects of racial group. These
data suggest structural adversity mediates differences in baseline
startle responses between Black and White trauma survivors.

Racial/ethnic groups do not differ in amygdala reactivity to
fearful faces
A mixed measures ANOVA revealed no main effect of racial/ethnic
group, and no racial/ethnic group by hemisphere interaction, on
amygdala reactivity to threat (Fearful - Neutral faces; p > 0.05)
(Figure S4). Exploratory post-hoc analyses revealed a difference in
left amygdala reactivity between Hispanic and White participants
(t(146)= 2.35, d= 0.41, p= 0.020, uncorrected) that did not
survive multiple comparison correction. These data suggest
racial/ethnic groups do not differ in amygdala reactivity to threat.

Racial/ethnic groups differ in basal amygdala to salience
network connectivity patterns
General patterns of left and right amygdala connectivity are
presented in the supplement (Figure S5). Racial/ethnic-related
differences in amygdala connectivity during rs-fMRI are high-
lighted in Fig. 1. We observed significant differences in
connectivity patterns with the left amygdala seed to regions such
as cerebellum and dorsolateral PFC, as well as nodes in the
canonical salience network, specifically the dorsal anterior
cingulate cortex and insula (Table 2). We observed significant
differences in connectivity between the right amygdala seed to
the cerebellum. Sensitivity analyses including prior trauma
exposure as a covariate did not show a significant effect for prior
trauma exposure (all p > 0.05) and race/ethnicity remained
significant (all p < 0.05) for the observed clusters. In general,
Hispanic and Black participant groups showed higher resting-state

N.G. Harnett et al.

2978

Molecular Psychiatry (2023) 28:2975 – 2984



connectivity between the amygdala seeds and these nodes than
White participants (Table 3). Although left and right amygdala
seeds both showed significant race-related connectivity patterns
with cerebellum, a subsequent conjunction analysis did not meet
a statistically significant cluster extent (k= 84). Finally, compara-
tive models focused on effects of scanner did not reveal spatial
overlap with the models focused on racial/ethnic group (Figure S6).
These results highlight race-related differences in connectivity
between the amygdala to major nodes of the salience network
that does not appear to be driven by scanner effects.
Next, we completed parallel mediation models to determine if

accounting for indices of adversity-mediated race-related differ-
ences in amygdala connectivity patterns. Adversity metrics
partially mediated the difference in amygdala-to-left insula
connectivity between White and Black participants (Table S3).
No other indirect effects were significant suggesting these metrics
did not mediate race-related differences in amygdala connectivity
patterns. Separate correlations and t-tests between the demo-
graphic variables and amygdala connectivity patterns are
described in the supplement (Table S4).

Racial/ethnic differences in connectivity and posttraumatic
outcomes
Racial/ethnic group by posttraumatic symptom interactions on
amygdala connectivity patterns are summarized in Table S5. FDR
correction using the Benjamini-Hochberg approach per posttrau-
matic cluster revealed racial/ethnic group moderated the relation-
ship between connectivity of left amygdala with right DLPFC, right
dACC, and left cerebellum, and PCL-5 scores at 3-months (Fig. 2).
Specifically, greater connectivity between the amygdala and these
regions was associated with lower PCL-5 scores for Hispanic
individuals, but greater PCL-5 scores for Black individuals. White
individuals showed no relationship between amygdala connectiv-
ity and PCL-5 scores. We then re-ran these analyses using residuals
from models of demographic factors (i.e., prior trauma, ADI,
income, education, marriage, and employment) on amygdala
connectivity to determine if accounting for structural inequities
affected the relationship. After accounting for structural inequities,
only left amygdala to left dACC connectivity was differentially
associated with 3-month PCL-5 scores between racial/ethnic
groups [F(2,181)= 3.13, p= 0.046]. These data suggest neural

Table 2. Loci of racial/ethnic differences in amygdala connectivity.

Seed Region Hemisphere k F-Statistic X, Y, Z

Left Insula Right 565 (4,520) 6.07 41, 19, −1

Left 113 (904) 4.29 −37, 14, 4

Dorsolateral PFC Right 366 (2,928) 8.66 44, 42, 12

Dorsal ACC Right 202 (1,616) 10.44 6, 20, 37

Left 142 (1,136) 6.59 −9, 29, 27

Cerebellum Left 138 (1,104) 8.62 −39, −57, −31

Right Left Cerebellum Left 306 (2,448) 8.51 −45, −59, −32

Coordinates are provided in Montreal Neurological Institute (MNI) standard space. F-statistic represents the F-value at the center of mass of the cluster. Cluster
size (k) expressed as voxels (volume in mm3).

Fig. 1 Lower amygdala to salience network connectivity in White, compared to Hispanic and Black, trauma survivors. Several brain regions
such as the dorsal anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (PFC), insula, and cerebellum showed racial/ethnic differences
in connectivity to both right (red) and left (blue) amygdala. Hispanic (green) and Black (orange) groups showed greater connectivity than
White (purple) participants. Violin plots show distribution of participant connectivity strength (dots in overlaid swarm plot) for each group.
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patterns may predict future PTSD symptom severities differently
for racial/ethnic groups and this variability is driven—in part—by
structural inequities between groups.

DISCUSSION
Despite well-documented racial inequities in societal risk and
recovery factors for PTSD, limited research has investigated how
these inequities may manifest in the neural markers of PTSD
susceptibility. The current study used multisite rs-fMRI data from the
AURORA study to identify race-related differences in amygdala
functional dynamics after trauma and the moderating role of
structural inequities. Black and Hispanic individuals displayed
heightened connectivity between the amygdala and nodes of the
salience network as well as dorsolateral PFC and cerebellum
compared to White individuals. Further, Black participants showed
lower tonic skin conductance levels (SCLs) and baseline startle
responses compared to White participants. There were no racial or
ethnic differences in amygdala, skin conductance, or startle reactivity
to threat. Accounting for structural inequities attenuated baseline
startle responses and the magnitude of racial/ethnic differences in
amygdala connectivity. Importantly, these results demonstrate that
lower socioeconomic position conveys higher resting amygdala
connectivity to the salience network, and that the racial disparities in
socioeconomic factors contribute to the appearance of race-related
differences in neurophysiological tone. The present findings are
critical for the development of generalizable neurobiological
markers of susceptibility to trauma and stress-related disorders.
Neurophysiological differences were observed in tonic arousal

between racial/ethnic groups, specifically with race-related varia-
bility in amygdala connectivity to the insula, dACC, dlPFC, and
cerebellum. Of note, the insula and dACC are thought to be part of a
salience network that directs attention towards biologically relevant
stimuli [44, 45]. Given the role of the amygdala in threat learning and
expression, increased amygdala-salience network connectivity may
be thought to represent heightened emotional readiness for
impending threat that potentiates physiological arousal. Prior
research has observed greater amygdala-salience network connec-
tivity in those with PTSD compared to those without, which may
suggest that this connectivity pattern is indicative of emotion
dysregulation [46]. However, Black participants showed lower SCLs
and baseline startle responses compared to White participants
indicative of lower tonic physiological arousal. The lower physiolo-
gical tone is more suggestive of desensitization to threat which is in
line with previous neurophysiological research in Black individuals,
which has found amygdala sensitization to threat cues as well as
lower observed rates of internalizing disorders in Black individuals
[47–50]. In fact, prior work has found that increased connectivity
between the salience network and other brain regions in those with
a history of childhood maltreatment is related to increased
psychological resiliency [51]. It is noteworthy however that Hispanic
participants were not significantly different from Black or White

participants in analyses of SCLs and baseline startle responses. Prior
work in non-psychiatric samples has found that Hispanic individuals
may show blunted startle responses compared to non-Hispanic
individuals [52]. Despite the behavioral differences, Black and
Hispanic individuals both showed heightened connectivity of the
amygdala compared to White individuals which may suggest groups
engage in similar adaptive neural strategies to mitigate the
deleterious effects of race/ethnicity-related stressors. The current
results may therefore suggest the neurophysiological profiles are
indicative of differential emotion regulation approaches wherein
Black and Hispanic groups utilize amygdala-salience network
connectivity to promote regulated emotion at baseline.
Neuroimaging studies on the brain health consequences of

racial discrimination lend some support to the hypothesis of
baseline emotion regulation as a correlate of greater amygdala-
salience network connectivity in Black individuals. Greater
endorsement of discrimination is associated with greater
amygdala to dACC and insula (i.e., salience network) connectivity
in Black older adults [53]. Further, a prior study found that
trauma-exposed Black women with more experiences of racial
discrimination had increased response in threat processing
network regions that accompanied relatively better performance
on an emotional stroop task that included threatening
distractors [54]. Relatively less work on the neurobiological
consequences of discrimination and race-related stress has been
completed in Hispanic individuals although exposed to race/
ethnicity-related stressors such as discrimination [55]. Racial
discrimination is a component of multi-level racism that is often
experienced by minoritized groups. Structural and systemic
inequities in income, education, and other socioeconomic
factors are considered components of structural racism [56].
One speculative hypothesis then is that the present racial/ethnic
differences in neural connectivity are a result of chronic,
repeated racism-related stress throughout development. These
findings may help to contextualize lower acute and chronic
posttraumatic psychopathology symptoms after trauma [26, 57].
Taken together, individuals exposed to factors related to multi-
level racism show greater amygdala-salience network connec-
tivity that may allow for greater emotion-regulation during tasks
that also contributes to general desensitization, including lower
levels of resting peripheral arousal. However, it should also be
noted that racial discrimination is associated with increased
depressive symptoms [58] and thus more research is needed at
the intersection of racism, neurobiology, and psychiatry to fully
understand neural associations of racial health disparities.
Importantly, the race/ethnicity-related differences in neural
connectivity patterns observed herein may also have implica-
tions for neuromodulatory-based treatments. For example, dlPFC
to amygdala connectivity is a suggested prognostic marker of
PTSD, and modulating this connection may be a mechanism for
early evidence of transcranial magnetic stimulation (TMS)
efficacy in PTSD [7, 17, 59]. However, based on our results,

Table 3. Post-hoc tests of race-related differences in amygdala connectivity.

Hispanic vs. White Hispanic vs. Black White vs. Black

Amygdala Seed Node t-statistic (Cohen’s d) p-value t-statistic (Cohen’s d) p-value t-statistic (Cohen’s d) p-value

Left Right Insula 3.85 (0.67) <0.001 −0.13 (−0.02) 0.991 −5.19 (−0.70) <0.001

Left Right DLPFC 5.07 (0.97) <0.001 1.33 (0.20) 0.38 −4.98 (−0.67) <0.001

Left Right dACC 2.56 (0.44) 0.029 −1.19 (−0.19) 0.458 −4.84 (−0.67) <0.001

Left Left Cerebellum 1.43 (0.25) 0.329 −2.19 (−0.35) 0.075 −4.59 (−0.62) <0.001

Left Left dACC 3.21 (0.58) 0.004 −0.14 (−0.02) 0.989 −4.38 (−0.58) <0.001

Left Left Insula 3.40 (0.60) 0.002 0.23 (0.04) 0.97 −4.16 (−0.55) <0.001

Right Left Cerebellum 3.64 (0.64) <0.001 0.10 (0.02) 0.994 −4.63 (−0.59) <0.001

Bold values indicate post-hoc tests survive a Bonferroni correction (0.05 / 21 comparisons= 0.002) for multiple comparisons.
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disparate rates of exposure to early life stressors may affect
generalizability of such neuromodulatory targets for different
racial/ethnic groups particularly when considering additional
socioeconomic barriers to treatment.
Of note, we observed no differences in brain or behavioral

reactivity to threat after trauma exposure across the racial/ethnic
groups. Amygdala reactivity before or in the early aftermath of
trauma is predictive of later PTSD symptoms [6, 12] and was a
feature of biotypes of posttraumatic sequalae in previous work
from the AURORA study [29]. Similarly, SCR and FPS appear to be
reproducible physiological markers of PTSD susceptibility
[10, 13, 14]. These findings may suggest that measures of threat
reactivity obtained relatively soon after trauma may be more
generalizable markers of trauma outcomes. However, stimuli used

to index amygdala reactivity to threat predominately consisted of
white faces which may elicit differing responses from each racial/
ethnic group due to in-group/out-group effects [60]. Though
similar results were observed using non-racial stimuli during
Pavlovian conditioning in the present study, it is possible that a
balanced mixed-race stimulus set may have led to different results
and may be more ecologically valid. Additional research is needed
using balanced stimulus sets to fully explore potential race-related
differences in threat reactivity in the early aftermath of trauma.
Several limitations should be noted for the present investigation.

First, our sample was limited to racial/ethnic groups of Hispanic,
non-Hispanic White, and non-Hispanic Black. The present sampling
did not allow for a more nuanced breakdown of racial or ethnic
categories which may influence the current findings. Second, the

Hispanic individuals White individuals Black individuals

Fig. 2 Amygdala connectivity shows differential associations with PTSD symptom development across different races/ethnicities. Racial/
ethnic group moderated the relationship between amygdala connectivity to the right dorsolateral prefrontal cortex (DLPFC), right dorsal
anterior cingulate cortex (dACC), and left cerebellum. Hispanic individuals (blue) showed negative relationships between connectivity and
post-traumatic stress disorder (PTSD) symptoms at 3-months, White individuals (orange) showed an orthogonal relationship, and Black
individuals (green) showed a positive relationship. Dots represent individual data points, and the solid lines represent the linear lines of best
fit. Shaded areas represent the 95% confidence interval of the linear line of best fit.
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present study only included participants who had experienced a
DSM-5 criterion A traumatic event. It is technically and ecologically
difficult to recruit previously trauma-unexposed individuals or recruit
individuals right before trauma given both the preponderance of
trauma in the US and lack of knowledge as to which individuals will
soon experience trauma. However, the current and prior work
suggests that pre-traumatic psychopathology symptoms vary
between racial/ethnic groups, which may be related to pre-
traumatic variability in amygdala connectivity. Thus, neuroimaging
in the pre-traumatic period, perhaps in pre-post first-responder or
military deployment studies, may be useful for understanding race-
related differences in neural connectivity and psychiatry disorders.
We also note that the socioeconomic factors assessed here may not
fully capture the degree of structural inequities between racial/
ethnic groups relevant for neuropsychiatric research. Exploratory
analyses revealed that ADI—a neighborhood-level measure—was
more consistently associated with connectivity patterns than
individual socioeconomic measures (Table S3). Emergent research
suggests that multidimensional indices of structural inequities, such
as those that account for differential exposure to pollutants, may be
particularly important for understanding health disparities [61].
Further research is needed that combines granular assessments of
structural inequities with neuroimaging in the early aftermath of
trauma to understand racial/ethnic disparities in PTSD development.
It is also prudent to note that the present analyses were completed
as a secondary analysis within the AURORA dataset. Although the
largest study of its kind, sampling was limited to five imaging sites
which may limit generalizability to participants from other regions.
Likewise, the parent study was not specifically designed to
investigate other sources of race-related stress (e.g., racial discrimi-
nation). Further research including participants from other areas
with more in-depth demography is needed to confirm and extend
the present findings. Finally, physiological and rs-fMRI data were not
collected concurrently in the present study. Continuous psychophy-
siological measurement during fMRI may allow for better identifica-
tion of race-related brain-behavior differences important for
understanding posttraumatic psychopathology.
In conclusion, the present study identified racial/ethnic

variation in amygdala connectivity at rest and tonic physiologi-
cal arousal during a threat conditioning task, however, no
differences were observed between racial/ethnic groups in
reactivity to threat. The racial/ethnic variability in amygdala
connectivity was also related to expression of PTSD symptoms at
3-months and was partially attributable to the differences in the
assessed socioeconomic factors. Our findings have important
implications for the development of generalizable neuroimaging
markers of posttraumatic dysfunction, and for the usage of
neuromodulatory treatments in the aftermath of trauma. Full
consideration of the ways in which systemic inequities may
produce racial/ethnic variability in neural connectivity after
traumatic stress will be necessary for equitable neuroscience-
based treatment outcomes.
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