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Abstract
To study complex human activity and how it is perceived and remembered, it is valuable to have large-scale, well-charac-
terized stimuli that are representative of such activity. We present the Multi-angle Extended Three-dimensional Activities 
(META) stimulus set, a structured and highly instrumented set of extended event sequences performed in naturalistic set-
tings. Performances were captured with two color cameras and a Kinect v2 camera with color and depth sensors, allowing 
the extraction of three-dimensional skeletal joint positions. We tracked the positions and identities of objects for all chapters 
using a mixture of manual coding and an automated tracking pipeline, and hand-annotated the timings of high-level actions. 
We also performed an online experiment to collect normative event boundaries for all chapters at a coarse and fine grain of 
segmentation, which allowed us to quantify event durations and agreement across participants. We share these materials 
publicly to advance new discoveries in the study of complex naturalistic activity.

Keywords Action perception · Event cognition · Event segmentation · Naturalistic stimuli · Norms

Continuous experiences are parcellated into events, both dur-
ing ongoing comprehension and in memory. Investigating the 
mechanisms by which experiences are transformed into events 
is of interest for studying basic behavioral and neurocognitive 
psychological research (Butz et al., 2019; DuBrow & Davachi, 
2016; Richmond & Zacks, 2017; Schapiro et al., 2013; Shin 
& DuBrow, 2021; Zacks, Braver, et al., 2001a; Zacks et al., 
2007; Zacks & Swallow, 2007), early childhood development 
(Baldwin et al., 2001; Hespos et al., 2009; Levine et al., 2019; 
Saylor et al., 2007), healthy aging (Kurby & Zacks, 2018; 
Magliano et al., 2012; Sargent et al., 2013), and clinical popu-
lations (Eisenberg et al., 2016; Richmond et al., 2017; Sherrill 
& Magliano, 2017; Zacks et al., 2006; Zalla et al., 2004, 2013).

The study of events in perception, memory, action control, 
and reasoning is referred to as event cognition (Radvansky 
& Zacks, 2014). Event cognition research has seen vigorous 
activity in the last two decades. We believe this reflects the 

existence of many important phenomena in psychology and 
neuroscience that are hard to investigate fully without con-
sidering the dynamics and multimodal structure of events in 
experience. Research on event segmentation has established 
that events are segmented simultaneously by the mind and the 
brain on multiple timescales (Baldassano et al., 2017; Hasson 
et al., 2008; Zacks, Braver, et al., 2001a; Zacks, Tversky, et al., 
2001b). This perceptual structure is important not only for 
understanding perception, but also for understanding memory. 
Memory, like perception, is organized into events, such that 
features belonging to a common event tend to be recalled as a 
unit, and such that relations between events are represented in 
memory (DuBrow & Davachi, 2016; Lichtenstein & Brewer, 
1980; Rubin & Umanath, 2015). Event structure in perception 
determines event structure in memory: The event boundaries 
identified by viewers of an activity serve as units of organiza-
tion in memory (Ezzyat & Davachi, 2011; Michelmann et al., 
2021). These relationships lead to relationships between indi-
vidual and group differences in perception and in memory: 
People who segment activity more effectively remember more 
(Sargent et al., 2013). They are also better able to perform eve-
ryday activities (Bailey et al., 2013).

Perception and memory are both guided by knowledge—
knowledge about how categories of objects look and sound, 
about how people act and talk, about how things move and 
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change. Knowledge about events, in the form of schemas 
or scripts, is of notable importance for understanding how 
people make sense of their worlds (Abelson, 1981; Rumel-
hart, 1980). Adults depend heavily on event knowledge to 
act within and to remember everyday activities (Barbey 
et al., 2009; Graesser & Nakamura, 1982; Schacter et al., 
2017). This knowledge develops during childhood (Fivush, 
1997; Nelson, 1986), and it can be affected by neurological 
and psychiatric diseases (Grafman et al., 1993; Roll et al., 
2017; Zacks & Sargent, 2010). Event knowledge guides the 
encoding of new activities by providing scaffolds for event 
encoding (Bonasia et al., 2018; Bransford & Johnson, 1972), 
and it guides memory for activity by organizing retrieval and 
by enabling inferences about missing information (Anderson 
& Pichert, 1978; Bower et al., 1979).

The investigation of event structure in perception 
and memory requires stimuli that reflect the sequential, 
dynamic structure of activity, the patterns of correlations 
across stimulus dimensions, and the category structure of 
events. Thus, a set of naturalistic extended event sequences 
is a potentially valuable resource for psychologists and 
neuroscientists. It may also be useful for addressing issues 
of interest to researchers in the fields of machine learning 
and artificial intelligence. In particular, this stimulus set 
provides naturalistic and structured data related to several 
research areas in computer vision, including: object detec-
tion, object recognition (Liang & Hu, 2015; Russakovsky 
et al., 2015), object interaction (Li et al., 2019; Yao & 
Fei-Fei, 2010), scene segmentation (Fu et al., 2019; Zhang 
et  al., 2018), action recognition (Kuehne et  al., 2014; 
Simonyan & Zisserman, 2014), event recognition (Wang & 
Ji, 2015), and event segmentation (Aakur & Sarkar, 2019; 
Franklin et al., 2019).

Previously developed event corpora have made major 
contributions to machine vision (see Table 1). However, 
these resources lack some features that are valuable for 
psychological research and potentially for machine vision. 
Stimulus sets collected from the wild, such as YouTube vid-
eos (Monfort et al., 2019; Zhou et al., 2018) or Hollywood 
films (Kuehne et al., 2011; Marszalek et al., 2009), often 
provide higher realism at the expense of experimenter con-
trol.1 Conversely, stimulus sets produced in a laboratory pro-
vide greater control and more precise measurements of the 
features of unfolding events, but often appear divorced from 
the realism of events as they are perceived in everyday life.

Of particular note, acquiring sequences of events that 
extend continuously for longer durations of time is challeng-
ing. For example, the Charades dataset (Sigurdsson et al., 
2016) contains a large number of action videos collected 

through Amazon Mechanical Turk. This novel approach 
generated a large set of natural actions in diverse locations, 
which were exhaustively annotated. However, the brief dura-
tions of the action videos do not permit the study of con-
tinuous sequences of actions as they naturally follow each 
other. As shown in the average sequence length column in 
Table 1, the sequences captured in event stimulus sets tend 
to be brief.

To address these limitations, we created the Multi-angle 
Extended Three-dimensional Activities (META) stimulus 
set. Our aim was to create materials that would be useful for 
a broad range of applications in fields that study dynamic 
complex event sequences, including psychology and cog-
nitive neuroscience. We sought to create highly realistic, 
continuous event sequences of extended length, with a natu-
ralistic hierarchical structure, a rich set of features, and a 
large number of sequences.

One goal was to maintain a high degree of realism. We 
aimed to create sequences that would appear natural if pre-
sented to human participants, to permit the study of the 
cognitive processing of events in a way that closely mirrors 
how this processing occurs in real everyday experiences. 
Naturalistic stimuli provide a challenging testbed for compu-
tational systems with high ecological validity for translating 
to real-world applications.

A second goal was to create continuous, temporally 
extended event sequences. Humans segment continuous 
perceptual input during observation and experience. Yet 
many existing datasets consist of brief events in isolation. 
Merging isolated events to form event sequences produces 
unnatural discontinuities between events, limiting the 
application of findings to perception in naturalistic environ-
ments. We created temporally extended continuous event 
sequences to study event structure without overt disconti-
nuities between events.

A third goal was to create stimuli with a naturalistic 
hierarchical structure. Naturally occurring behavior has 
structure at a range of timescales, producing a hierarchy 
of events and sub-events (Dickman, 1963). To capture this 
aspect of activity, we generated scripts for four classes 
of common everyday activities that naturally consist of a 
series of steps performed sequentially. One of our chapter 
types, “making breakfast,” is of the class of food prepa-
ration sequences that have been employed frequently in 
both event segmentation (Eisenberg & Zacks, 2016; Swal-
low et al., 2018) and machine learning studies (Kuehne 
et al., 2014; Stein & McKenna, 2013; Zhou et al., 2018). 
We used an algorithm to randomly select actions for the 
actor to perform (such as “jumping rope”), that comprised 
sub-chapters (such as cardio exercises), that combined to 
form complete activity sequences or chapters (such as com-
pleting a workout). Thus, we generated activity sequences 
with three hierarchical levels. Each chapter type was 

1 See Grall and Finn (2021) for a critique of using commercial media 
as “naturalistic” stimuli.



3631Behavior Research Methods (2023) 55:3629–3644 

1 3

Ta
bl

e 
1 

 S
ta

tis
tic

s o
f r

el
ev

an
t e

ve
nt

 st
im

ul
us

 se
ts

 a
nd

 th
e 

M
ET

A
 st

im
ul

us
 se

t (
in

 b
ol

d)

M
PI

I C
oo

ki
ng

 
2 

(R
oh

rb
ac

h 
et

 a
l.,

 2
01

6)

Yo
uC

oo
k2

  
(Z

ho
u e

t a
l., 

20
18

)
50

 S
al

ad
s (

St
ei

n 
&

 M
cK

en
na

, 
20

13
)

B
re

ak
fa

st 
A

ct
io

ns
 

(K
ue

hn
e 

et
 a

l.,
 2

01
4)

Co
m

pl
ex

 an
d 

Lo
ng

 A
ct

iv
iti

es
 

D
at

as
et

 (T
ay

yu
b 

et
 al

., 
20

17
)

C
ha

ra
de

s-
 E

go
 

(S
ig

ur
ds

so
n 

et
 a

l.,
 2

01
8)

C
ha

ra
de

s  
(S

ig
ur

ds
s o

n 
et

 a
l.,

 2
01

6)

ro
bo

t o
bs

er
vi

ng
 

ki
tch

en
 ac

tiv
iti

es
 

(D
uc

kw
or

th
 

et
 a

l.,
20

16
)

CA
D

- 1
20

 
(K

op
pu

la
 e

t a
l.,

 
20

13
)

M
ET

A
 S

tim
ul

us
 

Se
t

To
ta

l p
er

fo
r-

m
an

ce
 d

ur
a-

tio
n 

(h
ou

rs
)

27
17

5.
6

4
17

.4
2

2.
24

34
.7

82
.0

7
1.

39
0.

6
25

.7
7

N
um

be
r o

f 
se

qu
en

ce
s

27
3

20
00

50
43

3
62

40
00

98
48

49
3

12
4

15
0

A
ve

ra
ge

 
se

qu
en

ce
 

le
ng

th
 (m

in
-

ut
es

)

5.
93

5.
27

4.
8

2.
41

2.
16

0.
52

0.
5

0.
29

0.
29

10
.3

N
um

be
r o

f 
ac

tio
n 

cl
as

se
s

59
89

17
10

44
85

15
7

15
7

11
10

46

N
um

be
r 

of
 a

ct
io

n 
in

st
an

ce
s

19
58

96
6

19
89

88
46

68
53

6
66

50
0

39
8

12
4

10
13

N
um

be
r o

f 
ac

to
rs

30
N

A
25

52
5

11
2

26
7

30
0

4
5

W
id

th
 x

 h
ei

gh
t 

pi
xe

l r
es

ol
u-

tio
n

16
24

x1
22

4
va

rio
us

64
0x

68
0

32
0x

24
0

19
20

x1
08

0
va

rio
us

va
rio

us
64

0x
48

0
32

0x
24

0
19

20
x1

08
0

M
ul

ti-
an

gl
e

√
√

√
√

√
√

√
√

√
√

D
ep

th
√

√
√

√
√

√
√

√
√

√
Fe

at
ur

es
A

ct
io

n 
an

no
ta

-
tio

n,
 h

an
d 

an
d 

po
se

 fo
r 

su
bs

et
 o

f 
fr

am
es

A
ct

io
n 

an
no

ta
-

tio
ns

, o
bj

ec
ts

A
cc

el
er

om
 

et
er

 d
at

a,
 

hi
gh

 a
nd

 lo
w

 
le

ve
l a

ct
iv

ity
 

an
no

ta
tio

n

C
oa

rs
e 

an
d 

fin
e 

ac
tio

n 
an

no
ta

tio
n

Sk
el

et
on

s, 
ac

tio
n 

an
no

-
ta

tio
n

A
ct

io
n 

an
no

ta
-

tio
n

A
ct

io
n 

an
no

ta
-

tio
n

Sk
el

et
on

Sk
el

et
on

, 
ob

je
ct

s, 
aff

or
-

da
nc

es
, s

ub
-

an
d 

hi
gh

-le
ve

l 
ac

tiv
iti

es

Sk
el

et
on

, o
bj

ec
ts

, 
hi

gh
le

ve
l 

ac
tiv

iti
es

, e
ve

nt
 

bo
un

da
ri

es



3632 Behavior Research Methods (2023) 55:3629–3644

1 3

performed multiple times by different actors in different 
settings, allowing for the study of event schemata using 
rich naturalistic stimuli (Baldassano et al., 2018; Schank 
& Abelson, 1975).

A fourth goal was to annotate each captured perfor-
mance with a rich set of features. When choosing the 
features to extract and annotate from the recordings, we 
sought to produce a set of features that would approxi-
mate those available to mid-level human visual process-
ing, including biological motion and object interactions 
(Grill-Spector & Malach, 2004). Prior work has proposed 
that this level of abstraction may be particularly useful for 
creating event models, as it provides a smoother represen-
tation of meaningful event dynamics above the noise and 
idiosyncrasies of lower-level vision (Richmond & Zacks, 
2017). To this end, we used a depth camera and skeleton 
tracking algorithm to measure skeletal joint positions in 
three-dimensional space. Further, we tracked the identi-
ties and positions of objects with which the actors inter-
acted and annotated the timings of the high-level event 
structure. We captured the performances from multiple 
camera angles to enable the study of how viewpoint 
affects the processing of naturalistic event sequences 
(Swallow et al., 2018).

In addition to the features that we created as an approxi-
mation of mid-level human vision, we also collected nor-
mative event boundaries for all chapters in the META 
stimulus set. Humans can segment ongoing experiences 
into events at multiple timescales, and tend to show sig-
nificant group-level agreement in where they identify 
boundaries (e.g., Kurby & Zacks, 2011; Zacks et  al., 
2006). Using an online sample, we collected normative 
event boundaries for all chapters in the META stimulus 
set at two grains of segmentation: coarse, or the larg-
est meaningful units of activity, and fine, or the smallest 
meaningful units of activity. These data can be used to 
generate distributions of the likelihood that participants 
identified boundaries at a coarse and fine grain, provid-
ing a psychological grounding of how people tend to seg-
ment the continuous event sequences. Thus, the normative 
segmentation data is useful for developing and evaluating 
models of how when mid-level visual features can evoke 
subjective event boundaries.

A final goal of this effort was to produce a corpus large 
enough to train computational models of event comprehen-
sion to near-human-level performance. Producing precisely 
structured but naturalistic event sequences, we were unable 
to match the total quantity of stimuli produced through 
crowdsourcing or collecting videos from online reposito-
ries; however, the current corpus is substantially larger than 
the stimulus sets typically used in psychological research. 
In total, we created over 25 hours of event sequence 
performances.

Corpus creation

Overview The META corpus consists of 150 recordings 
(ranging from 335.45 s to 1309.18 s in duration) of an actor 
performing one of four types of everyday activity: making 
breakfast in a kitchen, performing a workout, cleaning a 
room, or grooming in a bathroom. We refer to each record-
ing as a “chapter.” Each chapter was recorded with two high-
resolution video cameras and a Kinect 2 sensor (Microsoft, 
Redmond, WA), which incorporates a video camera and an 
infrared time-of-flight depth sensor. Five young adult actors 
(three male, one female, one nonbinary) 2 each performed 10 
chapters of three (out of the four total) chapter types, for a 
total of 30 chapters per actor. See Table S1 for actor demo-
graphic information. There was partial data loss for two of 
the 150 chapters, which is described in more detail in the 
“Data streams” section. A unique, naturalistically furnished 
room (kitchen, living room, bedroom, bathroom) was used 
for each chapter type that an actor performed, for a total of 
15 unique locations across the stimulus set.

Sequence generation Naturalistic action has predictable 
sequential and hierarchical constraints, but also variation. 
For example, when making toast, the bread must be placed 
in the toaster before the toaster is started, but fetching a plate 
to hold the toast could happen before fetching the bread or 
while the toast is toasting. Moreover, actions can occur in 
multiple contexts. For example, pouring water into a kettle 
might happen in the context of making coffee or making 
tea. To generate action sequences for the actors to perform 
that realized these characteristics, we created a custom sam-
pling program using a stochastic grammar for naturalistic 
combinations of actions. In other words, the program ran-
domly selected actions to have unique sequences, with the 
inclusion of rule-based limitations to avoid unnatural action 
sequences. Each chapter had three subchapters from which 
specific actions were sampled (see Fig. 1). For example, the 
breakfast chapter contained subchapters of preparing main 
dishes, preparing side items, and preparing beverages. In 
addition to these chapter-specific subchapters, there was a 
category of multichapter actions that could appear in any 
type of chapter. Each chapter was created from sampling two 
actions for each of the three subchapters (with the excep-
tion of sampling one action for the Hair Grooming subchap-
ter because this subchapter had a small number of natural 
actions that could appear together). In addition, each chapter 
included one action from the multichapter set of actions, 
for a total of 6–7 actions per chapter. Subchapter actions 

2 The actors are numbered 1, 2, 3, 4, and 6; actor number 5 left the 
project early in recording and was replaced with actor number 6.
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were contiguous in time, but the order of actions within a 
subchapter and the order of subchapters was randomized.

The specific actions that comprised each chapter were 
selected randomly, with grammatical constraints that we 
imposed to avoid unrealistic sequences of actions. Specifi-
cally, there were exclusive actions, two or more actions for 
which including more than one within the same sequence 
would appear unnatural, and there were order constraints, 
actions that would appear unnatural to follow other actions. 
Exclusive actions were making coffee or tea, making cereal 
or hot oatmeal, and drinking water and drinking a sport 
drink. Order constraint rules were that applying lotion could 
not occur before washing face or shaving face, flossing teeth 
could not appear before brushing teeth, using mouthwash 
could not appear before brushing teeth or flossing teeth, 
and applying lip balm could not appear before washing 
face, shaving face, brushing teeth, flossing teeth, or using 
mouthwash. To create sequences that fit these constraints, 
we repeatedly generated random sequences and discarded 
any that violated the grammatical rules.

Performance Actors memorized the lists of actions to per-
form for each chapter. In each chapter, the actor entered the 
room from off screen, sequentially performed the scripted 
actions without pausing recording or reviewing the scripted 
actions, then exited off screen. Actors performed each 
chapter alone, with no interactions with other actors. Each 
performance was lit with the lighting in the room and two 

professional halogen lights placed on stands. We used pro-
fessional lighting both to maintain greater uniformity in 
lighting across chapters and to improve the tracking of the 
Kinect sensor. Skeleton tracking was monitored live during 
the performance, and chapters with poor skeletal tracking 
were repeated to capture a better take.

Data streams Each performance was captured with three 
static cameras affixed to tripods. We used two Sony HD 
Handycam color cameras (model number HDR-PJ260) to 
capture each performance, each with video parameters of 
pixel resolution of 1920 × 1080, MPEG-4 codec, frame rate 
of 29.97 frames per second, and audio parameters of AC3 
codec, sample rate 48,000 Hz. These cameras were placed at 
about the height of the actor’s head and situated at an approx-
imately 90-degree angle from each other, to capture differ-
ent views of the actors performing the action sequences. In 
addition to these cameras, a Microsoft Kinect v2 camera 
was placed near one of the color cameras (see Fig. 2a–c). 
The Kinect v2 includes a color video camera and an infra-
red time-of-flight sensor to capture 3D depth data, with the 
following specifications: color camera resolution = 1920 
× 1080, color camera field of view = 84.1° × 53.8°, depth 
camera resolution = 512 × 424, depth camera field of 
view = 70.6° × 60°, frame rate = 30 frames per second. 
Due to technical errors, the Kinect v2 recording was lost 
for one of the chapters, and one of the color video cameras 
ended recording mid-performance during another chapter. 

Making Breakfast
├── Preparing Main Items
│ ├── Prepare a Bowl of Cereal
│ ├── Prepare a Bagel
│ └── Prepare Hot Oatmeal
├── Preparing Side Items
│ ├── Prepare Fresh Fruit
│ ├── Prepare Toast
│ └── Prepare Yogurt with Granola
└── Preparing Beverages
├── Prepare Orange Juice
├── Prepare Tea
└── Prepare Instant Coffee

Exercising
├── Performing Cardio Exercises
│ ├── Jump Rope
│ ├── Perform Jumping Jacks
│ └── Perform Stair Steps
├── Performing Resistance Exercises
│ ├── Perform Bicep Curls
│ ├── Perform Shoulder Presses
│ ├── Do Push-ups
│ └── Do Sit-ups
└── Taking a Snack Break

├── Drink a Sport Drink
├── Eat a Granola Bar
└── Drink Water

Cleaning a Room
├── Removing Dust
│ ├── Vacuum the Floor
│ ├── Use a Hand Duster
│ └── Use a VacuumAttachment
├── Preparing a Bed
│ ├── Put on Bed Sheets
│ ├── Put Cases on Pillows
│ └── Fold a Blanket or Comforter
└── Folding Laundry

├── Fold Shirts and Pants
├── Fold Socks
└── Fold Towels

Bathroom Grooming
├── Grooming Mouth
│ ├── Brush Teeth
│ ├── Floss Teeth
│ ├── Use Mouthwash
│ └──Apply Chapstick
├── Grooming Hair
│ ├── Blow-dry Hair
│ ├── Brush Hair
│ ├── Comb Hair
│ └── Use Hair Gel
└── Grooming Face

├──Wash Face
├── Shave Face
└──Apply Lotion

Multichapter Actions
├── Take a Pill
├── Perform Torso Rotations
├── Put Objects in Drawers
├── Take Objects out of Drawers
├── Clean a Surface
└── Look at a Text Message

Fig. 1  Hierarchical structure of all actions sampled to generate action sequences. For each chapter type, two actions were sampled for each 
subchapter (one action for the Grooming Hair subchapter), and one action was sampled from the Multichapter Actions set
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We used the Kinect v2’s built-in algorithms for detecting 
bodies, detecting the positions of 25 skeletal joints in three-
dimensional space, and mapping the three-dimensional joint 
positions to the two-dimensional space of the Kinect color 
camera (see Fig. 2d). Live Kinect recording was performed 
and monitored with the Microsoft Kinect Studio applica-
tion. Video, audio, depth, and 3D and 2D skeleton data were 
extracted from playback of the recorded files using custom 
scripts in the C# language.

Preprocessing of camera data The three cameras were syn-
chronized by matching the sound and visual appearance of 
the snap of a clapperboard that was visible from all three 
camera angles. Once the videos were synchronized, the 
beginning and end of each chapter was trimmed to remove 
times when crew members were audible or on screen and 
the pauses before and after the actor began to enter from off 
screen. Once trimmed, the chapter durations ranged from 
335.45 s to 1309.18 s, with M = 618.36 s and SD = 144.80 s 
(summarized by chapter type: making breakfast M = 751.83 
s, SD = 161.04 s; exercising M = 539.66 s, SD = 73.20 s; 
cleaning a room M = 607.17 s, SD = 98.11 s; bathroom 
grooming M = 537.77 s, SD = 115.40 s), as shown in Fig. 3.

Preprocessing of skeletal data We applied preprocessing 
steps to the raw skeletal data, with the goal of limiting errors 
in tracking and aligning skeletons in a common orientation 
to improve event learning. Although overall the skeleton 

tracking algorithm accurately captured actors’ skeletal poses, 
the algorithm occasionally committed errors in tracking that 
we addressed through processing the raw skeletal pose data. 
At times, phantom skeletons were detected in reflective sur-
faces and the tracked skeleton could also momentarily leave 
the actor’s body and get stuck on a surface. We coded the 
timings of these errors and filtered out phantom skeletons 
or skeletons that left the body for extended periods of time. 
When the algorithm suffered a momentary lapse in tracking, 
the body ID of the actor could be replaced by a new body ID. 
We coded these instances and merged together body IDs that 
corresponded to the same actor. We also applied 3D transla-
tion and rotation to the skeleton joint coordinates to align 
all skeletons to a common body-centric orientation. Coor-
dinates at each time point were translated to align the origin 
with the mid-spine joint, then 3D rotation was applied about 
the y-axis to align the left and right shoulder joints on a com-
mon z-plane. The result of this preprocessing was a single 
skeleton ID for each chapter with off-body times removed 
and that was synchronized to all cameras, with body-centric 
3D coordinates facing forward.

Semi‑automated object labeling In each chapter, actors 
interacted with objects to complete the actions, and under-
standing these object interactions may aid in forming event 
representations. To track the positions and identities of the 
onscreen objects, we used a combination of hand labeling 
and machine learning object tracking. First, for all three 

c) 

e) 

a) 

b) 

d) 

Fig. 2  Examples of performance capture and annotations. Each 
chapter was captured from (a, b) two HD color cameras and (c) a 
Kinect v2 camera. d Skeleton joint positions were estimated in three-
dimensional space and mapped to the two-dimensional Kinect color 

camera. e Objects were hand-coded on sampled frames from the 
videos then tracked on intervening frames with an automated track-
ing model. Bounding boxes are labeled with object identities and the 
tracking model’s confidence
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color camera angles, frames were extracted from each video 
using FFmpeg (Tomar, 2006), starting at 10 s, and at a rate 
of every 20 s3. Then, using the Python program LabelImg 
(Tzutalin, 2015), a team of seven coders (with one labeling 
per image) drew bounding boxes and labels for all objects in 
the frame. For objects that did not move across successive 
frames, the locations of bounding boxes were copied over 
from the previous frame. In total, there were 16,737 ground 
truth frames labeled, with 171,006 total instances across all 
frames of 113 classes of objects (see Table S2 for a list of 
the labeled object classes).

Then, using the subset of hand-labeled frames, the posi-
tions of objects were interpolated across the intervening 
unlabeled frames using a tracker called the Siamese region 
proposal network (SiamRPN, B. Li et al., 2018), imple-
mented using the Python Surrogate Optimization Toolbox 
(pySOT) of the Python library. Specifically, from hand-
labeled frames, one SiamRPN model is instantiated for each 
object. For each 10-second interval, we tracked positions of 
objects both forward and backward, and each tracker was ter-
minated when its confidence fell below a threshold. We then 
ran the Hungarian algorithm (Kuhn, 1955) to match forward 
tracks and backward tracks. We repeated forward tracking 
from the results of matching, and backward tracking from 
the following extracted hand-label frame. This process pro-
duced labels and locations for all interactive objects for all 
frames of the videos in the META stimulus set (see Fig. 2e).

Semantic embeddings of object interactions Language 
models trained on large natural datasets can provide vec-
tor embeddings of the semantic meaning of object labels. 
Here we provide one such embedded representation, though 
many other options exist. We employed the GloVe model 
(Pennington et al., 2014), trained on the Wikipedia 2014 
and the Gigaword Fifth Edition (Gigaword 5) corpora, 
comprising Wikipedia articles and newspaper articles, to 
produce 50-dimensional vector embeddings. We used these 
embeddings in two ways: to generate scene representations 
and to generate nearby-object representations. Scene vec-
tors were computed at each time point as 50-dimensional 
equal-weighted averages of the vector representations of 
all objects present in the scene. Nearby-object vectors were 
computed as weighted averages, scaled by the inverse of the 
three-dimensional Euclidean distance between the actor’s 
right hand and the depth of the object in the z dimension 
as measured with the Kinect depth camera. Thus, the scene 
vector represents a 50-dimensional general semantic embed-
ding of objects currently present in the environment, and the 
nearby-object vector represents a 50-dimensional semantic 
embedding of objects currently near the actor’s hand.

Dimension reduction of scene vectors We performed princi-
pal component analysis to reduce the dimensionality of the 
combination of features, both to reduce the computational 
complexity of the scene vectors and to reduce collinearity 
between features. We examined scree plots of principal com-
ponents computed separately for skeleton and semantic fea-
tures, and chose a number of dimensions that would preserve 
most of the original variance from the full set of features. 
We reduced the total features to 30 dimensions (14 skeleton 
dimensions, 13 semantic dimensions, 1 for object appear-
ances, 1 for object disappearances, and 1 for the correlation 

Fig. 3  a The distribution of chapter durations. b The distribution of chapter durations by chapter type

3 For the Breakfast and Exercise chapters of Actor 1 (20 chapters), 
the frames were extracted starting at 5 s and every 10 s). After 
extracting and annotating these frames, we moved to the sparser 
frame labeling rate because it produced acceptable tracking results in 
a shorter amount of time required for labeling.
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in pixel luminance between each pair of successive frames. 
In total, this procedure preserved 76 percent of the original 
variance (see supplementary materials for more details; PCA 
files are included on the Open Science Framework [OSF] 
repository: https:// osf. io/ q7yu2/). We present the 30-dimen-
sional scene vectors as one computationally tractable rep-
resentation of the activity sequences that approximates the 
level of abstraction afforded by mid-level human vision, and 
represents information that may be useful for a computa-
tional model to learn event dynamics4.

Annotation of scripted actions A human rater coded the 
start and end times of each of the scripted actions that the 
actors were asked to perform. The annotated actions had 
a median duration of 76.61 s with a standard deviation of 
54.63 s. Figure 4 shows the annotated action timings for each 
of the four chapter types.

The present study

We conducted a preregistered experiment to collect norma-
tive data representing when people perceive event bounda-
ries in the recorded activities (https:// doi. org/ 10. 17605/ OSF. 
IO/ A9GUZ). For each chapter, participants marked event 
boundaries at coarse or fine grains of segmentation. We 
predicted that for all videos, the fine segmentation condi-
tion would produce a larger number of boundaries than the 
coarse segmentation condition (i.e., a shorter mean event 
duration), and that there would be higher than chance agree-
ment across participants in the locations of event boundaries 
for both fine and coarse segmentation.

Method

Participants We recruited a total of 3090 participants: 2956 
through Amazon Mechanical Turk and 134 through the 
Washington University in St. Louis Psychological & Brain 
Sciences participant pool. Participants self-reported their 
age (median = 32 years, SD = 36.87 years), gender (1136 
female, 1196 male, and 13 other), race (57 American Indian 
or Alaska Native, 263 Asian, 625 Black or African Ameri-
can, 2190 White), and ethnicity (647 Hispanic or Latino). 
Online experiments were managed using the CloudResearch 

Fig. 4  Annotations of start and stop times for scripted actions by chapter type: a making breakfast, b exercising, c cleaning a room, d bathroom 
grooming

4 Note that in reducing the set of features to 30 dimensions, our pur-
pose was to orthogonalize the features and reduce the computational 
cost. We do not make any claim that mid-level human vision is best 
captured in a 30-dimensional space.

https://osf.io/q7yu2/
https://doi.org/10.17605/OSF.IO/A9GUZ
https://doi.org/10.17605/OSF.IO/A9GUZ
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platform (cloud resea rch. com). Participants were compen-
sated with $3 or course credit for each session of segment-
ing a single video. The following inclusion criteria were 
used when recruiting through Amazon Mechanical Turk to 
maximize data quality: workers needed to have an approval 
rate of at least 95 percent, to have completed at least 500 
jobs, and to be accessing the internet from within the United 
States. A catch question was also included on the demo-
graphic questionnaire that participants completed at the 
end of the session, which asked the participant to select 
an answer for a multiple-choice question. If participants 
answered the catch question incorrectly, their data were 
excluded from analysis. Participants who met the inclusion 
criteria were permitted to segment multiple videos, and the 
number of videos segmented per participant ranged from 1 
to 44, with a median value of 1 (see Fig. 5 for the distribu-
tion of the number of videos each participant segmented). 
Each time a participant returned to the experiment, a video 
at their assigned grain of segmentation was randomly 
selected. We continued to collect data until we obtained 
30 segmentations from unique participants for each grain 
for each video.

Procedure New participants were randomly assigned a seg-
mentation grain of “coarse” or “fine.” Following the proce-
dure used by Newtson (1973), participants were given these 
instructions (with words that differed between the coarse 
and fine conditions in brackets): “We would like you to 
watch a movie of an actor performing everyday activities. 
As you watch, we would like you to mark off each time you 
judge that the [LARGEST]/[SMALLEST] meaningful unit 

of activity has ended and another has begun. To mark off a 
boundary between two units of activity, press the SPACE-
BAR. Please be careful to press the button as close to the end 
of the unit as possible. Do not press the button in the middle 
of a unit. Before starting the main task, you will mark the 
boundaries in a brief practice video so we can make sure 
that your performance matches the typical viewer. Press the 
'Play' button when you are ready to begin.” Participants first 
segmented a practice video with a duration of 2 min 35 s in 
which a man constructs a toy boat using interlocking build-
ing blocks. If participants marked fewer than three bounda-
ries in the coarse condition or fewer than six boundaries in 
the fine condition, they received the message: “People typi-
cally identify [3–4]/[6–8] units during this practice movie. 
You identified [X] units during this movie. We will continue 
to the main task, but please attempt to identify units more 
frequently in the next movie. Remember, press the SPACE-
BAR whenever you believe that one [LARGE]/[SMALL] 
meaningful unit of activity has ended and another begins. 
Click the button below to continue.” Then participants seg-
mented one of the videos at their assigned grain. Videos 
were preloaded to the participant’s computer before play-
ing to prevent buffering lags during playback, and controls 
were disabled using JavaScript to prevent participants from 
pausing or seeking to other times while segmenting the vid-
eos. After segmenting the video, participants completed a 
demographic questionnaire that included a catch question 
as an attention check. Participants were permitted to repeat 
participation if they met the inclusion criteria. Repeat par-
ticipants did not recomplete the demographic questionnaire 
again. If participants returned within a week of their prior 

Fig. 5  Distribution of films segmented per participant

http://cloudresearch.com
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session, they did not have to recomplete the practice seg-
mentation portion of the experiment.

Analysis Data were processed using custom R scripts. From 
a set of 10,560 sessions in the raw dataset, 781 sessions were 
filtered from participants who answered the catch question 
incorrectly. Then, 306 sessions were filtered due to a lack of 
recorded button presses during the experiment. In addition 
to the exclusion criteria set in our preregistration, we applied 
two more steps to reduce the noise of data collected through 
an online sample. We measured timestamps recorded at the 
start and end of playback and compared this duration to the 
duration of the videos. If the playback timestamps deviated 
from the movie duration by more than 2.5 s, we excluded 
that viewing from analysis. This criterion removed another 
228 sessions. To further constrain the segmentation data, we 
excluded participants who identified fewer than one third or 
more than three times the median number of boundaries for 
the segmentation grain of each film, removing an additional 
1122 sessions. It was discovered that some participants were 
mistakenly assigned the same video multiple times. Remov-
ing duplicate video sessions filtered an additional 170 ses-
sions. Finally, there were cases in which despite assigning 
participants to a single grain, they completed sessions at the 
unassigned grain. Removing the sessions at the unassigned 
grain filtered an additional 21 sessions. After filtering based 
on these criteria, the resulting dataset contained 7931 ses-
sions. Applying these additional exclusion criteria did not 
change the pattern or significance of results (see supplemen-
tary materials for results using original exclusion criteria: 
https:// osf. io/ p56gh/).

In order to confirm our manipulation of the fine and 
coarse grain instructions, we tested for differences in unit 
length between coarse and fine segmentation using a lin-
ear mixed model implemented with the lmer function of 
the lme4 package in R (Bates et al., 2015)5. We tested the 
fixed effect of segmentation grain (Condition) on mean unit 
length (Mean.Length) with random effects of video (Movie) 
and participant (workerId). In Wilkinson-Rogers notation 

(Wilkinson & Rogers, 1973), the formula for this model 
is: Mean. Length ~ Condition + (1|Movie) + (1|workerId). 
We compared this model to a model without Condition to 
see whether including segmentation condition provided a 
better model fit for predicting mean unit length. We also 
compared the Condition model with models that included 
factors for Actor and Chapter Type to see whether these fac-
tors improved model fit.

We measured agreement in segmentation between partici-
pants separately for each combination of chapter and seg-
mentation grain. We binned the segmentation data into 1-s 
bins, and then computed the correlation coefficients between 
a single participant’s binned segmentation and the propor-
tional binned segmentation of all other participants who seg-
mented that chapter at that grain. This process was repeated 
with each participant as the left-out binned segmentation for 
comparison. Because participants identified different num-
bers of boundaries, the range of possible correlation values 
will be different across participants. This makes it difficult, 
for example, to compare a participant who identified a small 
number of boundaries that aligned with popular segmenta-
tion bins to a participant that identified a large number of 
boundaries with more inconsistent alignment with popular 
segmentation bins. We employed a method developed by 
Kurby and Zacks (2011) to correct for the differences in pos-
sible correlation values at the given number of boundaries. 
For each number of boundaries, we computed the highest 
possible correlation value (i.e., if the boundaries occurred 
at the highest-agreement time bins) and the lowest possi-
ble correlation value (i.e., if the boundaries occurred at the 
lowest-agreement time bins). We then scaled the correla-
tion coefficients from zero to one based on the minimum 
and maximum correlations possible for the given number of 
boundaries and the group distribution. To test whether the 
observed level of agreement was better than would be pre-
dicted by chance, we calculated the mean scaled correlation 
for coarse and fine segmentation, and created null distribu-
tions by sampling with replacement 100 times the number of 
participants per cell and shuffling the unit lengths of marked 
events. We computed z statistics for the observed agreement 
relative to the null distribution and converted the z scores to 
p-values using a normal distribution to test for significance.

Results and discussion

Participants identified events with a shorter mean duration 
at a fine grain than at a coarse grain As expected, the mean 
event unit length for the fine condition (median = 23.45 
s, SD = 14.81 s) was shorter than for the coarse condition 
(median = 58.60 s, SD = 27.60 s), replicating prior research 
(Kurby & Zacks, 2011; Swallow et al., 2018; Zacks, Tversky, 

Fig. 6  a Mean event unit lengths were longer for the coarse segmen-
tation condition than the fine segmentation condition. Each point 
depicts the mean unit length for a single session of a participant. The 
difference between coarse and fine boundary unit lengths was also 
observed across b actors and c chapter types

◂

5 Testing the skewness of the event length distribution revealed a 
small positive skew (skewness coefficient of 1.03). As this level of 
skew does not exceed cutoffs typically used for approximating a nor-
mal distribution, e.g., skew < 1.5 (Tabachnick et al., 2019), we do not 
transform the data in the reported results. Repeating the analysis with 
log-transformed event lengths did not change the pattern or signifi-
cance level of the results.

https://osf.io/p56gh/
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et al., 2001; Zacks & Swallow, 2007). Including segmenta-
tion condition when modeling the mean unit length signifi-
cantly fit the data better than omitting segmentation condi-
tion (with segmentation condition AIC = 68772, without 
segmentation condition AIC = 69839, χ2 = 1069.4, df = 1, p < 
.001). Adding the actor to the model with segmentation con-
dition did not significantly improve the model fit (p = .45), 
but adding chapter type did (with segmentation condition 
and chapter type AIC = 68712, with segmentation condition 
AIC = 68772, χ2 = 65.574, df = 3, p < .001). See Fig. 6 for 
the comparison of unit lengths by segmentation condition, 
chapter type, and actor. In comparison to the distribution 
of annotated scripted action durations, the distribution of 
coarse event unit lengths overlaps, with a shorter median 
unit length, indicating that the largest subjective units of 
activity that participants identified tended to be smaller than 
the scripted actions performed by the actors.

Participants showed higher than chance level agreement for 
fine and coarse segmentation Participants showed moderate 
agreement in where they identified boundaries, and agree-
ment was better for fine segmentation (mean scaled r = 0.51) 
than for coarse segmentation (mean scaled r = 0.41). This 
level of inter-subject agreement was significantly better than 
the chance level (fine and coarse p < .001) predicted by 
the null distribution generated from shuffling the event unit 
lengths (see Fig. 7 for agreement values and Fig. 8 for exam-
ples of coarse and fine event boundaries).

The results of the segmentation experiment provided 
normative boundaries at both a fine and a coarse grain of 

segmentation. For both grains, agreement between partici-
pants was significantly greater than agreement predicted 
by chance. This level of agreement was similar to the level 
of agreement reported in other experiments with videos of 
everyday events (Kurby & Zacks, 2011; Zacks et al., 2006), 
and was significantly higher than chance, even when using 
a conservative method for permuting the null distribution 
that preserves the unit lengths of the observed human event 
boundaries. When using these segmentation data for applica-
tions in the study of events, group-binned boundaries may be 
thresholded to produce discrete boundaries of higher agree-
ment among participants, or the continuous distribution of 
participant boundaries over time may be used as a measure 
of boundary likelihood (Ben-Yakov & Henson, 2018).

Conclusion

Here we report a large, naturalistic corpus of recordings of 
everyday activities, using video camera and depth image 
recording with dense annotation. We have included a set of 
features and annotations of the META stimulus set that we 
believe are useful in the comprehension of unfolding events. 
In sharing these materials publicly, it is our hope that others 
will create additional features and annotations to improve 
upon those that we have provided, expanding the useful-
ness of this tool. For example, to complement the high-level 
scripted action annotations, it would be useful to code tim-
ings and descriptions of fine-grained actions performed by 

Fig. 7  For both fine- and coarse-grained segmentation, agreement 
between participants was significantly better than chance. Violin plots 
depict null distributions generated from repeatedly shuffling the order 
of event unit lengths for each video and computing agreement. Points 

depict the observed agreement (as scaled correlation coefficients) 
between participants for each video, with the mean observed agreement 
across all videos shown as rings with white centers
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the actors, as well as precise contacts and transformations 
performed on objects. By creating event sequences that are 
more realistic, of a longer duration per chapter, and richly 
annotated, we aim to advance the capabilities of tools avail-
able for investigating the continuous dynamic events. We 
hope that the META stimulus set will be useful for a broad 
range of applications for researchers who study dynamic 
complex events.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 022- 01980-8.
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