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THE BIGGER PICTURE Establishing standardized biomarkers of brain aging would have immense utility for
quantifying the risks of adverse life outcomes, which may lead to more precise and personalized interven-
tions. An increasingly common approach for deriving such biomarkers is to train machine-learning models
on a diverse set of neuroimaging features with the goal of accurately estimating a person’s biological age.
Further, the difference between biological and chronological ages has been shown to be a useful metric
that is sensitive to many phenotypes. However, no definitive guidelines exist to help researchers decide
which set of neural properties would improve model accuracy and utility. Accordingly, we conducted a sys-
tematic review of multimodal brain age studies to identify which neuroimaging features provided the largest
added value. We found that the multimodal models had an increased capacity to predict age, which did not
translate to widespread improvement in clinical utility.

Production: Data science output is validated, understood,
and regularly used for multiple domains/problems
SUMMARY

Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate
and clinically useful. One of themost common approaches has been to applymachine learning to neuroimag-
ing data with the goal of predicting age in a data-drivenmanner. Building on initial brain age studies that were
derived solely from T1-weighted scans (i.e., unimodal), recent studies have incorporated features across
multiple imaging modalities (i.e., ‘‘multimodal’’). In this systematic review, we show that unimodal and multi-
modal models have distinct advantages. Multimodal models are the most accurate and sensitive to differ-
ences in chronic brain disorders. In contrast, unimodal models from functional magnetic resonance imaging
were most sensitive to differences across a broad array of phenotypes. Altogether, multimodal imaging has
provided us valuable insight for improving the accuracy of brain age models, but there is still much untapped
potential with regard to achieving widespread clinical utility.
INTRODUCTION

Advances in computational resources and machine-learning ar-

chitecture have empowered researchers to investigate brain ag-

ing in a data-driven manner.1 It has become increasingly clear

that applying machine learning to neuroimaging data can yield

accurate estimates about the biological age of a person (i.e.,

brain age), which can serve as a biomarker for evaluating brain
This is an open access article und
health.2Many studies have demonstrated that discrepancies be-

tween brain and chronological ages (i.e., brain age gaps) can be

sensitive to differences across a variety of phenotypes, including

cognitive functioning,3 physical health,4 mental disorders,5 and

biomedical conditions.2 As such, brain age gaps can be useful

for delineating many brain-behavior relationships, which we op-

erationalize as ‘‘model utility.’’ Given the broad implications of

brain age models, it is essential to find ways of improving their
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Figure 1. Flow diagram depicting the
identification, screening, and eligibility of the
relevant studies for this systematic review
Our literature searches uncovered 197 unique
empirical records that were screened. Briefly,
studies were excluded if they did not compare
multiple brain age models using multiple imaging
sources. A total of twenty studies met the inclusion
criteria for our first study aim, and of these, ten met
our inclusion criteria for all three aims.
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clinical applicability such that they can be applied to assess the

risks of atypical neurodevelopment and age-related neurode-

generation. One promising avenue for improving brain age

models has been to combine features from multiple modalities

and across distinct types of neural properties. By generating

brain age models with complimentary information about how

the brain alters over time (e.g., brain activation and connectivity),

their predictions may capture more variation between individ-

uals.6 Motivated by the potential advantages that could be

obtained from multimodal imaging, we conducted the first sys-

tematic review of multimodal brain age studies with a specific

focus on evaluating their accuracy and utility.

The first multimodal brain age study was published on

December 25, 2011, and incorporated data from three types of

magnetic resonance imaging (MRI) sequences: T1-weighted,

T2-weighted, and diffusion-weighting scans. Brown et al.7 found

that the neural features extracted from each of these modalities

exhibited unique developmental trajectories throughout adoles-

cences. More importantly, there was an alignment between the

yearswhen a given set of features exhibited themost age-related

differences and the time when those features contributed the

most to the predictive power of theirmultimodal brain agemodel.

Further, their multimodal model explained more than 92% of the

variance in ageandyieldedmeanabsolute errors thatwereas low

as1.03 years. Theaccuracyof thismodel underscored thepoten-

tial advantages of using multimodal data. Since this initial report,

there havebeen over 200brain age-related articles that utilized or

referenced the term ‘‘multimodal,’’ a number that is increasing at

an accelerated rate each year (Figure S1). It is expected that this

trend will continue, as recent data-sharing requirements for NIH-

funded projects8 and open science initiatives9 will provide easier

access to large multimodal imaging datasets. Additionally,

continual advancements in harmonization tools may enable re-

searchers to aggregate even larger samples for training and vali-
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dating brain age models.10 These prece-

dents demonstrate the relevance for a

review about the potential benefits of using

multimodal imaging, especially in the

context of brain age modeling.

The brain age framework is an actively

evolving field with a wide array of methods

to select from for training and validating

models. Specifically, there are numerous

options to decide between the type of pre-

dictive algorithm, validation technique,

imaging modality, preprocessing pipeline,

spatial templates/atlases, and specific

neuroimaging features to extract. Thus
far, there are resources to help researchers in selecting predic-

tive algorithms11–13 and validation techniques14,15 but no defini-

tive guidelines regarding which neuroimaging modalities and

neural properties to use. This is concerning because there is a

vast number of neuroimaging-derived measurements available

for both structural and functional data (e.g., cortical thickness,

functional connectivity, mean diffusivity, etc.), thereby making

it difficult to choose the best set of features to achieve a partic-

ular goal. Additionally, recent brain age studies have demon-

strated that the most accurate models tend to not be the most

useful at detecting differences in cognitive functioning.16,17

Therefore, it is not only essential for researchers to be deliberate

when selecting neuroimaging properties but also when selecting

which performance metrics to use for evaluating their brain age

model(s). To the best of our knowledge, there are no extensive

guidelines to assist researchers in navigating thesemethodolog-

ical decisions in a principled manner. Although this systematic

review is unlikely to completely fill this gap in the literature, we

believe that examining the potential benefits of multimodal brain

age models would be a conducive starting point.

Through this systematic review, we investigated whether

multimodal brain age models had improved accuracy and utility

relative tomodels that were derived from a single imaging source

(i.e., unimodal). We explored the following aims across all rele-

vant studies using a quantitative synthesis approach.18 We first

evaluated which imaging modalities derived the most accurate

brain agemodels (e.g., lowest prediction errors between chrono-

logical and brain ages) and whether model accuracy varied with

the number of input features (aim 1). Qualitative assessments

were conducted to further understand which specific feature

types and regions of interest most contributed to the predictive

power of brain age models. Additionally, we identified several

brain age models whose predictions did not significantly vary

with age, which is a well-known issue referred to as prediction



Table 1. Study design and sample characteristics

Study

Sample

size

Age range

(years) Data source Phenotype

Validation

technique

Predictive

algorithm

Erus et al.23 621 8–22 PNC cognition 10-fold SVR

Liem et al.24 2,354 + 475 18–85 LIFE, NKI cognition 5-fold SVR + multisource RF

Richard et al.25 612 + 265 18–88 CamCAN,

StrokeMRI

cognition 10-fold GTB

Cole2 17,461 45–80 UK Biobank biomedical, cognition,

lifestyle

10-fold LASSO

de Lange et al.26 610 + 27,157 60–85 Whitehall II,

UK Biobank

biomedical repeated 10-fold GTB

Engemann et al.27 674 18–87 CamCAN anxiety, biomedical,

cognition, depression

10-fold stacked ensemble

ML (ridge + RF)

Galdi et al. (2020)28 105 0.44–0.81 local preterm/term birth repeated 5-fold ENET

Hu et al. (2020)29 178 0.08–2.33 UNC/UMN Baby

Connectome

Project

– nested CV NN

Niu et al.12 839 8–21 PNC anxiety and PTSD,

cognition

nested CV ridge, SVR,

GPR, DNN

Zhang et al. (2020)30 1,493 3–21 PING cognition 10-fold non-projective

dictionary learning

Dadi et al.31 11,175 40–70 UK Biobank cognition, neuroticism

(only for one model)

nested CV RF

Dunas et al.32 351 25–85 Betula longitudinal

study

cognition, education,

fitness

10-fold BRR, LASSO,

ENET, SVR,

RVR, GPR

Luna et al. (2021)33 489 5–17 HBN cognition, general

psychopathology

5-fold stacked ensemble

ML (GTB, GLM,

RF, MLP, SEML)

Rokicki et al.34 1,244 18–86 TOP, NorCog,

StrokeMRI

Alzheimer’s disease,

bipolar disorder,

cognitive impairment,

schizophrenia

10-fold RF

Xifra-Porxas et al.35 613 18–88 CamCAN – nested CV RF

Chen et al.36 829 14–92 local community schizophrenia 10-fold feedforward cascade

NN, GPR

Chen et al.37 636 + 482 18–88 CamCAN,

local community

biomedical, cognition 10-fold previously trained

feedforward

cascade NN

Huang et al. (2022)38 343 20–60 local community schizophrenia leave one out LASSO MLR

Ramduny et al.39 50 65–84 local community lifestyle (sleep) repeated 5-fold multiple regression

Yu et al.40 196 + 91 60–85 ADNI, local community cognitive impairment,

genetics

repeated 5-fold ridge

PTSD, post-traumatic stress disorder; CV, cross-validation. Predictive algorithms: SVR, support vector regression; RF, random forest regression;

ENET, elastic net regression; GTB, gradient tree boosting regression; LASSO, least absolute shrinkage and selection operator regression; NN, neural

network; GPR, Gaussian process regression, DNN, deep neural network; NPDL, non-projective dictionary learning; BRR, Bayesian ridge regression;

RVR, relevance vector regression; GLM, general linear model; MLP, multilayer perceptron; SEML, stacked ensemble machine learning; OLS, ordinary

least squares regression; MLR, multilinear regression. Data source: PNC, Philadelphia Neurodevelopmental Cohort; PING, Pediatric Imaging, Neuro-

cognition, and Genetics Data Repository; LIFE, Leipzig Research Center for Civilization Diseases Adult Study; NKI, Nathan Kline Institute – Rockland

Sample; CamCAN, Cambridge Center for Aging and Neuroscience; TOP, Thematically Organized Psychosis study; NorCog, Norwegian Registry for

Persons Assessed for Cognitive Symptoms; ADNI, Alzheimer’s Disease Neuroimaging Initiative; HBN, Healthy Brain Network.
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bias.19 Secondly, we repeated the quantitative synthesis pro-

cedure to investigate model utility (aim 2). Subsequently, we

qualitatively evaluatedwhether the utility of brain agemodels de-

pends on the phenotype in question as well as identified which

phenotypes were most strongly correlated with brain age

gaps. Lastly, we illustrated the relationship between model
accuracy and utility both within each study and across this

body of literature (aim 3). Altogether, this review examined which

specific neuroimaging features provided the largest added value

for both model accuracy and utility. Such insight may prove use-

ful for understanding how best to model age-related pathology

using a brain age framework.
Patterns 4, April 14, 2023 3



A B Figure 2. The most accurate brain age
models were trained with multiple modalities
and the greatest number of features possible
(A) The multimodal models were the most accurate
in all but two studies. The second and third most
accurate brain age models were derived exclusively
from T1-weighted and DWI-weighted features,
respectively.
(B) Model accuracy varied as a function of the
number of features used to train each model. The
three studies that were outliers in this scatterplot
could be attributed to their use of highly dimensional
functional connectivity features, which were not as
accurate as brain morphometry or white-matter
microstructure. Scaled mean absolute errors
(MAEs) with a score of 1 were the most accurate
within a given study, while those with a 0 were the
least accurate. Each colored line represents the
average of all models from a specific study, while
the back line represents all models across all
studies.
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METHODS

This systematic review was conducted in accordance with the Preferred Re-
porting Items for Systematic Reviews and Meta-analyses (PRISMA)20 when-
ever possible. As such, our four-step PRISMA flow diagram is displayed in
Figure 1.

Information sources and search strategy
On May 16, 2022, literature searches were conducted across four databases
(Web of Science, ScienceDirect, PubMed, and Scopus) without any limits to
publication date.
We aggregated a total of 351 reports that used the term ‘‘brain age’’ in their

title, abstract, or keywords and included the term ‘‘multimodal’’ anywhere
throughout the article, including the references. The references for these arti-
cles were also screened yielding four additional relevant reports. After
removing duplicates (n = 81) and non-empirical investigations (n = 77), we ob-
tained 197 studies whose titles and abstracts were screened by one co-author
(M.M.G.). Studies were excluded if they did not train a statistical model to pre-
dict age from neuroimaging data (n = 37) or were not conducted on human
subjects (n = 6). This screening process yielded 154 studies whose full text
was independently assessed for eligibility by two authors (M.M.G. and
R.J.J.). Any discrepancies (n = 1) were discussed and resolved through
consensus.

Eligibility criteria
Given our interest in assessing whether multimodal features improved the ac-
curacy and utility of brain age models, we selected studies that developed
multiple models across a variety of modalities, with each model being derived
from a distinct set of neuroimaging features. Studies comparing the accuracy
and utility of unimodal vs. multimodal brain age models were particularly rele-
vant for this review. Therefore, we excluded all studies that only used data from
a single imaging modality (n = 81), developed only one multimodal brain age
model and did not compare with any unimodal models (n = 44), or did not
include at least one multimodal brain age model in their comparison of model
accuracy (n = 9). Ultimately, twenty studiesmet our inclusion criteria, but only a
subset of these studies evaluated both the accuracy and utility of their models.
Specifically, ten of these studies either did not evaluate individual differences
in any phenotype (n = 3) or only assessed the utility of their multimodal model
without comparing its performance with their unimodal models (n = 7). Thus,
our assessment of model utility was based on a subset of ten studies, and
our review of model accuracy utilized all twenty studies.

Data extraction
Information from each study was compiled and organized into three cate-
gories. First, descriptive information regarding the study design and sample
characteristics was gathered (Table 1). These data included the sample size,
age distribution, phenotype(s), data source(s), validation technique(s), and
predictive algorithm(s). Second, the neuroimaging modalities and specific
feature types were collected (Table S1). This body of literature encompassed
data across multiple MRI sequences, positron emission tomography (PET),
magnetoencephalography (MEG), and electroencephalography (EEG). Lastly,
the relevant meta-data from each brain age model across all studies were ex-
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tracted to conduct a quantitative synthesis.18 For each brain age model, the
following information was recorded: neuroimaging modality; feature type;
number of input features; mean absolute error (i.e., operationalized as model
accuracy); Pearson correlation between chronological and brain ages; coeffi-
cient of determination between chronological and brain ages; phenotype (i.e.,
cognition, psychopathology, etc.); correlation between a phenotype of interest
and brain age gaps (i.e., operationalized as model utility); and reported effect
size metrics (i.e., Pearson correlation, Cohen’s D, etc.). This aggregated set of
information is accessible via the following GitHub repository: https://zenodo.
org/badge/latestdoi/549260376.21,22

Data synthesis
As discussed in prior reviews of the brain age framework,41 several con-
founds need to be accounted for when interpreting differences between
studies. It has been demonstrated that the accuracy of brain age models
varies as a function of sample size,42 age distribution,41 developmental
stage,43 predictive algorithm,13 and correction methods to remove predic-
tion biases.44 This heterogeneity can obscure our ability to infer how the pre-
dictive power of a brain age model is related to certain imaging modalities
and their corresponding neural properties. Additionally, brain age models
have been trained at various scales of neuroimaging data, including voxel-
level data from spatial maps,11 extracted properties from regional atlases,45

and higher-order covariance components derived via factor analysis
methods.31 To ensure that our results were not driven by these unwanted
sources of variation, we minimum/maximum (min/max) scaled the mean ab-
solute errors and the number of input features across all models within a
given study. Additionally, we reverse scored the scaledmean absolute errors
to make our results easier to interpret (i.e., being in the same direction as
model utility). Therefore, the brain age models with a score of 1 were the
most accurate within a given study, while those with a 0 were the least accu-
rate. We based our assessment of model accuracy on the mean absolute er-
rors as opposed to the coefficient of determination for two reasons: (1) it has
been demonstrated that correlations are artificially weaker when the age
range of the training and testing samples is restricted,14,15 and (2) correla-
tions between chronological and brain ages were only reported for twelve
of the twenty included studies (Table S2).

Effect measures
The studies included in this review evaluated the utility of their models across
a wide range of phenotypes (e.g., cognitive functioning, mental disorder),
consisting of dimensional and categorical measures. Consequently,
different types of effect sizes were reported, including h-statistics,24 Pear-
son correlations,25,32,39,40 Cohen’s D,34,36 and standardized beta coeffi-
cients.27,37,41 We standardized these indices by converting all measures of
effect size to Pearson correlations and subsequently taking their absolute
values. These values were used to quantify a model’s utility or more specif-
ically their capacity to detect differences for a given phenotype, regardless of
the direction of the association (Table S3). If such information could not be
extracted from a research article, it was computed from publicly available
data25,31 or the corresponding author was contacted via e-mail.27,40 As a
result, the relevant data were obtained across all twenty studies, thereby by-
passing issues of missingness.

https://zenodo.org/badge/latestdoi/549260376
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A B Figure 3. The most useful brain age models
varied from study to study
(A) Model utility varied considerably across studies,
such that no single set of features emerged as being
substantially more useful.
(B) The utility of brain age models did not vary as a
function of the number of features used to train
them. Each colored line represents the average
across all models from a specific study, while the
back line represents all models across all studies.
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Statistical analyses
R v.4.0.2.46 was used for analytical and visual purposes. Specifically, we used
software from the following packages: effectsize,47 ggplot2,48 lmer,49 and
lmerTest.50 All code and data pertaining to this review are available through
the following GitHub repository: https://zenodo.org/badge/latestdoi/
549260376.
Our first set of analyses were conducted across twenty brain age studies and

investigated differences in the accuracy of brain age models. As such, we used
mixed-effects analysis of variance to test whether model accuracy differed be-
tween imaging modalities: anovaðlmerðaccuracy � modality + ð1 j studyÞÞÞ.
Additionally, we used a mixed-effects linear model to test whether model accu-
racy varied as a functionof the number of neuroimaging features used to train the
models: lmerðaccuracy � dimensionality + ð1 j studyÞÞ. Sensitivity analyses
were conducted to further evaluate whether the potential association between
model accuracy and dimensionality was moderated by sample size,
lmerðaccuracy � dimensionality � sample size + ð1 j studyÞÞ, or imaging mo-
dality, lmerðaccuracy � dimensionality� modality + ð1 j studyÞÞ. For each
mixed-effects model outlined above, we used a random intercept that grouped
observations by the study they were obtained from.
A second set of analyses were conducted across a subset of ten studies and

investigated differences in the utility of brain age models. The same analytical
procedure that was used to investigate model accuracy was also used
to investigate model utility, except we used a random intercept that grouped
each observation by a phenotype of interest that was nested within a
given study: ANOVAðlmerðutility � modality + ð1 j study =phenotypeÞÞÞ and
lmerðutility � dimensionality + ð1 j study =phenotypeÞÞ. This change to the
random intercept was necessary to account for the fact that some studies
evaluated more than one phenotype. Lastly, a linear mixed-effects models
was also used to evaluate the relationship between accuracy and util-
ity: lmerðaccuracy � utility + ð1 j study =phenotypeÞÞ.

RESULTS

Characteristics of included studies
Significant heterogeneity in sample characteristics and method-

ological choices was observed across all twenty studies that met

our inclusion criteria (Table 1). Specifically, a large number of

studies used open-source neuroimaging datasets, with the

most popular being from the Cambridge Center for Aging and

Neuroscience dataset51 (n = 4) and the UK Biobank52 (n = 3).

Most of the studies (n = 8) were trained and tested on cross-

sectional samples with age ranges spanning from late adoles-

cence to late adulthood (18–85 years). Datasets varied consider-

ably in size, as the smallest comprised of 50 participants, while

the largest contained 17,461. Additionally, a variety of pheno-

types were used to evaluate the utility of these models, with

the most common phenotypes relating to cognitive function

and physical fitness. Lastly, there was considerable heterogene-

ity with respect to validation methods and predictive algorithms.
Each study applied at least one of the

following statistical models on neuroimag-

ing data with the goal of continuously pre-

dicting age: seven used either regularized

(e.g., least absolute shrinkage and selec-

tion operator),53 Ridge,54 ElasticNet,55 or
non-regularized (e.g., ordinary least squares) linear regression;56

eight used support vector regression with a non-linear/radial ba-

sis kernel or tree-based algorithms (e.g., random forest);57

gradient tree boosting;58 five used a deep-learning framework

(i.e., neural networks);59 and three used an ensemble modeling

or model stacking approach60 (Table 1).

Each of these twenty studies used different imagingmodalities

and neural properties (Table S2). Briefly, all studies extracted

anatomical properties derived from T1-weighted MRI scans,

such as brain volume, cortical thickness, and surface area. Diffu-

sion-weighted imaging (DWI) was the secondmost commonmo-

dality from which indices of brain microstructure were computed

using diffusion tensor imaging61 (DTI) or neurite orientation and

dispersion density imaging62 (NODDI). The third most common

imaging modality was resting-state fMRI, except for one study

that also evaluated task-based MRI wherein participants

engaged in an emotional face matching task.63 Functional con-

nectivity was the most commonly extracted feature from fMRI

scans, as only two studies evaluated regional homogeneity64

or the amplitude of low-frequency fluctuations.65 Some addi-

tional modalities that were less common included T2-weighted

MRI, arterial spin-labeling MRI, and MEG. Nine out of these

twenty studies compared brain features from three or more im-

aging modalities.

Aim 1: Multimodal imaging improves the accuracy of
brain age models
Collectively, 117 models were developed across all twenty

brain age studies, with each model being derived from a

distinct set of neuroimaging data. Across this body of literature,

the multimodal models were the most accurate (Figure 2A;

Table S2) compared with all other groups of models that

were derived from a single imaging source (b > 0.24,

p < 0.002). This converging finding was supported by analyzing

differences within each study, as the multimodal models were

most accurate in all but two cases; even so, in those two atyp-

ical cases, the multimodal models were only slightly less accu-

rate than the anatomical models derived solely from T1-

weighted scans.39,40 Further, training brain age models with

the greatest number of features yielded the lowest prediction

errors (b = 0.52, p < 0.001; Figure 2B), and this association

was not moderated by sample size or imaging modality
Patterns 4, April 14, 2023 5

https://zenodo.org/badge/latestdoi/549260376
https://zenodo.org/badge/latestdoi/549260376


A B Figure 4. The utility of brain age models
differed between phenotype of interest
(A) The fMRI brain age models exhibited a slight
advantage in utility. However, multimodal models
yielded the strongest effect sizes when detecting
differences in chronic brain disorders, including
Alzheimer’s disease and schizophrenia.
(B) Similarly, brain age models that were derived
with a greater number of features were generally
better at detecting differences in chronic brain dis-
orders. Each colored line represents the average
across all models from a specific study, while the
back line represents all models across all studies.
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(Figure S2). In cases when less accurate or ‘‘noisy’’ features

were included, the accuracy of brain age models did not

decline.26 However, adding more features from a single modal-

ity did not benefit model accuracy as much as adding compli-

mentary information from another modality.24 Taken together,

these results indicate that both incorporating multiple modal-

ities and, to a lesser extent, increasing the number of features

were essential for improving a model’s capacity to accurately

predict age.

Although the multimodal brain age models were most accu-

rate, certain modalities had a disproportionate impact on the

predictive power of brain age models. Specifically, models

trained on anatomical features (i.e., cortical thickness and vol-

ume) or white matter microstructure (i.e., mean diffusivity and

apparent diffusion coefficient) were consistently more accurate

than those derived from markers of brain activation (i.e., ampli-

tude of low frequency fluctuations) or functional organization

(i.e., functional connectivity; Figure 2A). Further, most of the

studies included in this review (n = 12) performed feature impor-

tance analyses to illustrate which individual regions had a

significant contribution to brain age predictions. Across these

analyses, the features that consistently had the largest impor-

tance were morphometric measurements of the precuneus, or-

bitofrontal cortex, and deep brain structures. Specifically, the

predictive power of brain age models could be most attributed

to the thalamus, striatum, cingulate, insula, ventricles, hippo-

campus, caudate, and amygdala.12,35 Additionally, the white

matter tracts that contributed the most to the predictive power

of brain age models included the corpus callosum, choroid

plexus, fornix, and uncinate fasciculus.2,26,34 Therefore, the

most accurate unimodal brain age models appeared to be

those that were based on anatomical, as opposed to functional,

MRI properties.

Another dimension of model accuracy is age-related predic-

tion bias, which is a well-known limitation of the brain age

framework.19 This bias refers to the fact that brain ages of

younger individuals are overestimated while the predictions of

older individuals are underestimated.44 Nearly all unimodal

models are universally affected by this bias,12 but it is unclear

whether multimodal models are also susceptible. Through our

review of the multimodal literature, we identified only three

models whose brain age predictions were not systematically
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biased, as their brain age gaps did not

vary as a function of age.2,35,66 A com-

monality between these three models

was that they all applied traditional ma-
chine-learning models to spatial maps from structural MRI se-

quences, primarily T1-weighted and diffusion-weighted scans.

However, other studies used similar approaches and obtained

models whose predictions were still susceptible to biases.23,32

Therefore, it is still not robustly clear whether using multimodal

imaging or certain feature types can mitigate issues of predic-

tion bias.

Aim 2: Model utility depends on both imaging modality
and the phenotype of interest
Among the ten studies that compared the utility of multiple brain

age models, a total of 55 models were developed and evaluated

using 13 distinct phenotypes (Figure S3). Similar to our assess-

ment of model accuracy, the multimodal brain age models

were the most useful across all studies, but such differences

were only statistically significant when compared with the

models trained with features derived solely from T2-weighted

or MEG scans (b > 0.22, p < 0.002; Figure 3A). Further, the utility

of all brain agemodels did not differ by the number of neuroimag-

ing features upon which they were trained (b = 0.02, p = 0.75;

Figure 3B). It is possible that significant differences in model util-

ity did not emerge (relative to model accuracy) because of the

heterogeneity in phenotypes of interest and discrepancies in

the methods used to quantify them.

To understand whether the utility of brain age models de-

pended on the phenotype in question, we narrowed our focus

on two studies that contained the largest number of pheno-

types. Rokicki et al.34 demonstrated that nearly all brain age

models were able to detect differences in Alzheimer’s disease

and schizophrenia. However, brain age models that were

derived from either multimodal features or strictly morpho-

metric features from T1-weighted MRI scans yielded the

largest effect sizes. In contrast, models that were based on

cerebral blood flow from arterial spin-labeling MRI scans

were the only ones to be significantly associated with all five

of their phenotypes, including bipolar disorder, cognitive com-

plaints, and mild cognitive impairments. These findings

partially aligned with Engemann et al.,27 who reported that

multimodal models yielded the strongest effect sizes, whereas

models derived exclusively from brain activation (via MEG) and

functional connectivity (via fMRI) were related to certain phe-

notypes that other models could not detect. Taken together,



Figure 5. Brain age models were best at
detecting differences in chronic brain
disorders
(A) Brain age models were best at detecting differ-
ences in Alzheimer’s disease and schizophrenia.
These improvements in model utility were most
prominent when using multimodal, anatomical, or
functional MRI features.
(B) As the number of features increased, brain age
models were better at detecting differences in these
chronic brain conditions, but this was not the case
when grouping together all twelve of the remaining
phenotypes.
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models derived from multimodal or morphometric brain fea-

tures appear to yield the strongest correlations among a

limited number of phenotypes, whereas those derived from

functional imaging modalities were sensitive to the largest

number of phenotypes.

To further investigate whether the utility of brain age models

depends on the phenotype in question, we assessed these re-

lationships across all ten studies using a quantitative synthe-

sis approach.18 As expected, Alzheimer’s disease and schizo-

phrenia exhibited the strongest effect sizes (Figure 4A),

especially for the multimodal, T1-weighted, or functional brain

age models. In contrast, all other phenotypes exhibited

weaker associations that were best detected by the functional

brain age models. These dynamics were also reflected in the

relationship between model utility and the number of features

used to train each model (Figure 4B). Specifically, brain age

models that used the largest number of features were more

able to detect differences in Alzheimer’s disease and schizo-

phrenia, but these relationships were stable or decreasing for

almost all other phenotypes. Therefore, it appears that model

utility depends on both the phenotype of interest and neuroi-

maging features used (Figure 5), but not all studies followed

this emerging pattern. In particular, Lange et al.26 reported

that models based on functional connectivity were the least

useful at detecting differences in alcohol use, blood pressure,

and stroke risk. It is worth noting that this study was conduct-

ed on one of the oldest cohorts, spanning from 60 to 85 years

of age, which may partly explain why their results were rela-

tively idiosyncratic.

Aim 3: The accuracy and utility of brain age models are
not related
Our review suggests that multimodal brain age models are almost

always the most accurate but are not necessarily the most sensi-

tive to differences across a variety of phenotypes. Such finding

aligns with a developing narrative in the brain age literature that

the accuracy and utility of brain agemodels are two unrelated per-

formancemetrics.16,17 Mixed-effects models were used to further

evaluate this notion across all brain age models from the ten

included studies in this review. As expected, the utility of these

models did not vary as a function of their accuracy (b = �0.02,
p = 0.73; Figure 6). This result was further

supported when evaluating each study

individually, as the data from one study

suggested that model utility was better

when accuracy was worse (b = �0.54,
p = 0.04),26 and all other studies did not display any substantial

trends or associations (b < �0.33, p > 0.07).

DISCUSSION

This systematic review demonstrated that feature selection has a

large downstream impact on both the accuracy and utility of

brain agemodels. Yet, we could not identify a single set of neuro-

imaging features that led to uniform improvements across all

performance metrics and conditions, indicating that unimodal

and multimodal models each have distinct use cases. Indeed,

these findings have been echoed in prior studies. Liem et al.24

was one of the first studies to conclude that multimodal models

were best at predicting age, while specific imaging modalities

were superior at detecting differences in pathology. Despite

mounting evidence, there is a persisting assumption across

several studies that the most accurate brain age models will

have the most potential for detecting differences in a given

phenotype of interest. As a point of illustration, seven of the

twenty studies in this review only evaluated the utility of their

most accurate model, which in all cases was trained using multi-

modal features. This approach has also led to researchers to

exclusively use T1-weighted and diffusion-weighted MRI scans

when developing brain age models36 since such modalities

have been shown to have the largest contribution to a model’s

predictive power.2,67 However, our review suggests that model

accuracy does not necessarily provide meaningful insight about

clinical utility (e.g., detection of age-related pathology). Taken

with prior studies,16,17 it appears that the most accurate models

tend to not be the most useful. Yet, it is not robustly clear how

accurate brain age predictions should be to increase a model’s

capacity for detecting individual differences.68 These results

highlight that a more exhaustive approach may be necessary

when making comparisons between brain age models. For

instance, evaluations of brain age models should go beyond

comparing mean absolute errors and also evaluate their models’

utility across a variety of phenotypes. Given that our results

regarding model utility were relatively more variable across

studies and based on a limited number of observations

(Figure S4), we believe that further evaluating the clinical applica-

tions of unimodal vs. multimodal models remains a top priority.
Patterns 4, April 14, 2023 7



Figure 6. The utility of brain age models did
not vary as a function of their accuracy
Each point represents the accuracy and utility of a
given model, which is color coded by the study it
was gathered from. The black line denotes the
relationship between accuracy and utility across all
models from all ten studies. Scaled MAEs with a
score of 1 were the most accurate within a given
study, while those with a 0 were the least accurate.
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Additionally, we observed that the utility of brain age models

largely depended on the phenotype of interest. In particular, brain

age models were best able to explain differences in chronic brain

disorders, including Alzheimer’s disease and schizophrenia.34We

propose three potential reasons as to why these specific pheno-

types yielded the strongest correlations with brain age gaps. First,

Alzheimer’s disease and schizophrenia are progressive in nature,

as the onset and severity of symptoms are robustly associated

with age.69,70 Secondly, both forms of pathology disrupt multiple

facets of cognition and mental health, which may be easier to

quantify or diagnose.71 Lastly, Alzheimer’s disease and schizo-

phrenia havebeen shown to have severe andwidespread impacts

on the brain,72,73 potentially making brain age prediction more

sensitive to disruptions associated with these two illnesses.

Further, the widespread brain atrophy associated with each of

these illnesses is reflected by a considerable shrinkage in brain

volume,74 which is a feature type that is heavily weighted bymulti-

modal brain age models. Altogether, these factors may each

contribute to patients with Alzheimer’s disease and schizophrenia

having larger brain age gaps that widen overtime.42,75 Neverthe-

less, it could be beneficial for additional studies to disentangle

which of these three possibilities most substantially improved

the utility of brain age models.

Although Alzheimer’s disease and schizophrenia were best

captured bymultimodal brain agemodels, it appeared that these

models were not as useful in detecting differences in other phe-

notypes. Our interpretation of these results is that multimodal

brain age models most heavily weigh the features that can accu-

rately predict age, regardless of their clinical relevance. As a

consequence, some features with little clinical significance still

had an outsized contribution to brain age predictions, including

the corpus callosum, choroid plexus, lateral ventricles, and cer-

ebellum.76 In contrast, numerous subcortical structures of the

limbic system were also heavily weighted by brain age models,

including the thalamus, hippocampus, and amygdala.12,35

Each of these structures plays a crucial role in facilitating cogni-

tive functioning77 and emotional regulation.78 Further, abnormal-
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ities in themorphometric measurements of

hippocampus and amygdala are robust

biomarkers of both Alzheimer’s disease72

and schizophrenia.43 These findings may

help to decode why multimodal models

were sensitive to these chronic brain disor-

ders, but ways to systematically improve

their utility to detect other phenotypes

remain unclear.

Aside from chronic brain disorders, all

other phenotypes were robustly associ-

ated with brain age models that were
derived solely from fMRI features. Nearly all the included

studies reported that features of brain activation or functional

organization encoded unique information that was useful in

detecting individual differences.27,34 However, when func-

tional features were combined with metrics of brain morphom-

etry or white-matter microstructures, we observed a reduction

in model utility. This consequence might have occurred

because multimodal brain age models more heavily prioritize

structural features due to their robust associations with age

and reliability across the lifespan.35 Although functional brain

features have a limited capacity to accurately predict age,

they appear to be more sensitive to transitory life events or

state-like phenotypes.26 It is possible that fMRI features

were more sensitive to earlier indicators of pathology because

they are more malleable and likely to precede changes in brain

structure.79 Taken further, these precedents suggest that fMRI

features could be more useful in predicting pathology directly.

Future longitudinal studies are needed to determine how

structure and function dynamics across time may lead to

differences in the utility of these machine-learning frame-

works. Altogether, fMRI features appear to have the most

potential for developing brain age models with widespread

utility.

This systematic review contains several limitations. Ac-

counting for all unwanted sources of variation when making

inferences between brain age studies can be challenging

because of differences in sample characteristics and method-

ological decisions.41 We addressed these challenges by min/

max scaling the mean absolute errors and the number of fea-

tures used for each model from a given study, thereby placing

emphasis on within- and across-study differences. Therefore,

our conclusions that are based on these standardized metrics

may be confounded by differences between studies, such as

sample demographics, clinical phenotypes, social factors,

data quality, model complexity, and regularization techniques.

For example, differences in regularization techniques can

largely influence the accuracy and utility of brain age models
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as well as the stability of the model weights.15 Further, our

quantitative synthesis was limited in statistical power, espe-

cially when evaluating the utility for a given set of neuroimag-

ing features by specific phenotypes of interest. At times, we

only had access to the results of a single study, such as those

from Rokicki et al.,34 which was the only multimodal study to

evaluate Alzheimer’s disease, bipolar disorders, and cognitive

complaints. Given these limits in statistical power, it was not

feasible to employ formal meta-analysis methods like those

used for quantifying the heterogeneity between studies.80

Nevertheless, it was encouraging that our findings overlapped

with unimodal brain age studies that were not included in this

review, but also demonstrated that brain age gaps were most

sensitive to differences in chronic brain disorders, including

Alzheimer’s disease and schizophrenia.6,42

Since the first multimodal brain age study was published in

2011, the enthusiasm for using multimodal imaging has only

increased. Theoretically, providing brain age models with com-

plimentary information about brain development should result

in more nuanced predictions that can better reflect individual dif-

ferences. In practice, the primary advantage of multimodal

models was an increased capacity to predict age, which did

not translate to widespread improvements in their utility. These

conclusions build upon prior demonstrations that themost accu-

rate models tend to not be the most useful.16,17 Additionally, it

could be argued that providing brain age models with a larger

feature space makes them more susceptible to issues of overfit-

ting.81 Taken together, we believe that more creative ap-

proaches are needed to further maximize the benefits that brain

age models could leverage from multimodal imaging. One

possible avenue could be to apply a fitness function to a set of

brain age gaps with the goal of maximizing the separability be-

tween individuals based on a selected distance criterion. This

approach has been shown to improve sensitivity to Alzheimer’s

disease82 and could have greater implications if applied to multi-

modal models. However, researchersmust consider whether the

added benefits of multimodal brain age models outweigh the

costs of limited transferability.83–85 Specifically, more data will

need to be collected for a multimodal model to be applied, which

is not always feasible, especially in clinical settings. Further,

more work is needed to evaluate higher-order features of brain

networks. For example, the edge strength was the most

commonly used fMRI feature across this body of literature. It is

unknown whether indices of graph theory86 or network cohe-

sion87 could lead to even greater improvements in model utility.

To conclude, multimodal imaging has provided us with valuable

insight for improving the accuracy of brain age models, but there

is still much untapped potential in regard to achieving wide-

spread clinical utility.
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