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Childhood trauma is a known risk factor for trauma and stress-related disorders in adulthood. However, limited research has
investigated the impact of childhood trauma on brain structure linked to later posttraumatic dysfunction. We investigated the
effect of childhood trauma on white matter microstructure after recent trauma and its relationship with future posttraumatic
dysfunction among trauma-exposed adult participants (n= 202) recruited from emergency departments as part of the AURORA
Study. Participants completed self-report scales assessing prior childhood maltreatment within 2-weeks in addition to assessments
of PTSD, depression, anxiety, and dissociation symptoms within 6-months of their traumatic event. Fractional anisotropy (FA)
obtained from diffusion tensor imaging (DTI) collected at 2-weeks and 6-months was used to index white matter microstructure.
Childhood maltreatment load predicted 6-month PTSD symptoms (b= 1.75, SE= 0.78, 95% CI= [0.20, 3.29]) and inversely varied
with FA in the bilateral internal capsule (IC) at 2-weeks (p= 0.0294, FDR corrected) and 6-months (p= 0.0238, FDR corrected). We
observed a significant indirect effect of childhood maltreatment load on 6-month PTSD symptoms through 2-week IC
microstructure (b= 0.37, Boot SE= 0.18, 95% CI= [0.05, 0.76]) that fully mediated the effect of childhood maltreatment load on
PCL-5 scores (b= 1.37, SE= 0.79, 95% CI= [−0.18, 2.93]). IC microstructure did not mediate relationships between childhood
maltreatment and depressive, anxiety, or dissociative symptomatology. Our findings suggest a unique role for IC microstructure as a
stable neural pathway between childhood trauma and future PTSD symptoms following recent trauma. Notably, our work did not
support roles of white matter tracts previously found to vary with PTSD symptoms and childhood trauma exposure, including the
cingulum bundle, uncinate fasciculus, and corpus callosum. Given the IC contains sensory fibers linked to perception and motor
control, childhood maltreatment might impact the neural circuits that relay and process threat-related inputs and responses to
trauma.
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INTRODUCTION
Childhood trauma is a well-established risk factor for development
of trauma and stress-related disorders in adulthood. Early life
stress may interact with stressors in adulthood to increase an
individual’s risk for posttraumatic stress disorder (PTSD), major
depression, substance use, or behavioral disorders [1]. Further-
more, childhood trauma is associated with variability in brain
circuits known to play a role in PTSD, which could represent
potential neural signatures of PTSD susceptibility. However,
limited work to date has investigated neural correlates of how
earlier childhood trauma augments posttraumatic reactions after a

trauma sustained as an adult. Identifying the neurobiological
correlates of childhood trauma related risk for acute stress
reactions in adulthood may advance neuroscience-based
approaches for prediction and prevention of PTSD development.
PTSD is thought to be partially driven by dysfunction of threat

learning neurocircuitry – particularly the prefrontal cortex,
hippocampus, and amygdala – as a result of a traumatic
experience [2–4]. White matter tracts such as the cingulum
bundle, uncinate fasciculus, and fornix/stria terminalis intercon-
nect threat neurocircuitry regions and are thought to be involved
in PTSD-related dysfunction (See [5] for review), potentially due to
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experience-dependent changes in tract microstructure [6]. In line
with this reasoning, previous PTSD research has investigated
Fractional Anisotropy (FA) as one of several measures to index
white matter microstructure derived from Diffusion Tensor
Imaging (DTI). Greater FA indicates greater linearity in the flow
of water molecules due to constraint by myelinated tracts.
Individuals with PTSD show reduced FA of the cingulum bundle
and uncinate fasciculus [7–11], which interconnects the prefrontal
cortex, amygdala, and hippocampus, although there is some
heterogeneity in findings [12, 13]. Successful psychotherapy for
PTSD appears to lead to increased FA in tracts such as the
cingulum and fornix [14]. Further, studies of recent trauma
exposure suggest variability in these same tracts are related to
future development of PTSD such that lower FA is generally
related to greater PTSD symptom severity [15–18]. Taken together,
the previous work suggests white matter tracts of core threat
neurocircuitry are related to the development and expression of
PTSD symptoms.
Despite the importance of threat neurocircuitry white matter

tracts, emergent research in childhood and adult trauma suggests
that PTSD-related white matter alterations may additionally occur
within other tracts [19–21]. Previous retrospective and meta-
analytic DTI studies demonstrate that childhood trauma exposure
is associated with alterations in FA both within threat neurocir-
cuitry tracts and sensory integration tracts such as the anterior
thalamic radiation, superior longitudinal fasciculus, inferior fronto-
occipital fasciculus, optic radiations, and arcuate fasciculus
[20–27]. Further, recent meta-analyses from the PGC-PTSD and
ENIGMA groups found that the largest reduction in FA for
individuals with PTSD was not within threat neurocircuitry tracts,
but instead within the tapetum of the corpus callosum [28].
Perception and integration of sensory stimuli is necessary for
appropriate threat learning [29]. The prior findings thus suggest
trauma and PTSD-related FA reductions may extend outside threat
neurocircuitry and encompass regions necessary for stimulus
perception.
Limited research exists on the interrelationship between

childhood trauma, white matter microstructure, and posttraumatic
outcomes following a more recent trauma, though it may improve
our understanding of the biological basis of PTSD. However,
previous studies have found relationships between childhood
trauma, brain structure, and stressors in adulthood [30–33]. In one
study, total childhood trauma exposure moderated the effect of
later combat exposure on FA within the hippocampal component
of the cingulum, with greater childhood trauma and combat
exposure related to decreased FA [30]. In a longitudinal study of
young adults, uncinate fasciculus FA values at baseline moderated
the relationship between recent stressors (e.g., break up with
romantic partner, failing a course, or financial problems) and
mood and anxiety symptoms at follow up among those with
higher reported childhood maltreatment [31]. Limited work,
however, has considered potential associations with white matter
tracts outside threat neurocircuitry, which may be important in
light of recent findings of PTSD-related FA reductions.
The present study investigated whether, among recent trauma

survivors, brain white matter microstructure mediated the effect
of childhood maltreatment exposure on posttraumatic dysfunc-
tion. Given prior findings in both studies on threat neurocircuitry
of PTSD and emergent work implicating sensory and other white
matter tracts, we assessed FA across white matter tracts using a
whole-brain approach following previous work by the PGC-
ENIGMA consortium [28]. We hypothesized that white matter FA
at 2 weeks post-trauma, in general, would be negatively
associated with childhood maltreatment load. We further
hypothesized that white matter FA associated with childhood
maltreatment would mediate associations between childhood
maltreatment and posttraumatic outcomes after a recent trauma.
Our findings highlight a neural pathway through which childhood

trauma may confer risk for acute stress reactions in adulthood and
shed light on white matter markers of susceptibility for PTSD.

MATERIALS AND METHODS
Participants
Participants were recruited as part of the AURORA study, a longitudinal
multisite investigation of adverse neuropsychiatric sequalae [34]. Partici-
pants included in this investigation have been reported on in previous
work [35–38]. However, the investigation described here is the first to
consider the relationships of childhood maltreatment exposure, white
matter microstructure, and later posttraumatic outcomes. As detailed in
our prior reports [34], enrollment occurred at emergency departments (ED)
and focused on those presenting within the 72 h following exposure to a
qualifying trauma (physical or sexual assault, motor vehicle accident, fall
>10 feet, mass casualty incident, or other life-threatening traumatic event
reported on a screener question and agreed upon as a plausible qualifying
event by the study staff). Participants were included if they were English-
speaking, between 18 and 75 years-old, and able to consent and follow
study procedures. Participants were recruited regardless of prior PTSD
symptoms or diagnosis and were asked to report retrospectively on prior
PTSD (and other disorders) symptoms in the emergency department.
General exclusion criteria for the AURORA study have been described
previously [34]. MRI collection exclusion criteria were having metal or
ferromagnetic implants, history of seizure or epilepsy, history of
Parkinson’s disease, dementia, or Alzheimer’s disease, current pregnancy,
and/or declining to complete the MRI. From the beginning of study
enrollment in September 2017 to July 2020, MRI data were collected within
~2 weeks of trauma exposure for 439 participants and DTI data were
available from 353 participants. Participants were excluded for MRI quality
issues (n= 37) (e.g., motion artefact, anatomical barriers, or low-quality
data). The present analyses focused on participants who completed both
DTI and the abbreviated Childhood Trauma Questionnaire (described
below) at 2-weeks and posttraumatic outcome measures at 6-months post
qualifying trauma and excluded participants missing a required ques-
tionnaire (n= 153). A total of 202 participants were retained for final
analyses. Further analyses of DTI data from a subset of 85 participants
(n= 111 collected, n= 26 excluded) collected at a 6-month follow-up
imaging session also were completed. All participants provided informed
consent as approved by the Biomedical IRB at UNC Chapel Hill through the
office of Human Research Ethics, the central IRB for all study sites.

Baseline surveys and socio-demographics
Participants completed a baseline assessment in the ED that included self-
reported trauma characteristics and demographic characteristics [34]. Age,
sex assigned at birth, race/ethnicity, highest education level, marital status,
employment status, and total household income were obtained in the ED
baseline surveys. Patients were also asked if they hit their head or
experienced a head injury during the event that brought them to the ED
(n= 86 endorsed).

Childhood maltreatment load
An abbreviated 11-item version of the Childhood Trauma Questionnaire—
Short Form (CTQ-SF; [39, 40]) was used to index childhood maltreatment.
Items were selected from the CTQ-SF to capture maltreatment subscales
while minimizing participant burden (individual questions selected
provided in the supplementary information). Items selected to capture
childhood maltreatment showed high internal reliability (Cronbach’s
a= 0.92). The questionnaire was administered two weeks after the
qualifying trauma. Items were self-reported on a 5-point Likert scale (0:
never, 1: rarely, 2: sometimes, 3: often, 4: very often). The maltreatment
subtypes evaluated include emotional abuse (sub-score range: 0 to 8),
physical abuse (sub-score range: 0 to 8), sexual abuse (sub-score range: 0
to 12), emotional neglect (sub-score range: 0 to 8), and physical neglect
(sub-score range: 0 to 8). Total possible summed scores ranged from 0 to
44. We indexed childhood maltreatment load as the endorsements of
moderate to extreme levels of each maltreatment subtype [41–43].
Moderate to extreme abuse or neglect for other maltreatment subtypes
were defined as a subtype score of 4 or above. Moderate to extreme sexual
abuse was defined as a sub-score of 3 or above on sexual abuse items.
These cutoffs were modified for the abbreviated assessment from clinical
cutoffs previously suggested [39]. The sum of moderate to extreme
maltreatment types was used to index total childhood maltreatment load.
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Lifetime trauma
Lifetime trauma exposure was assessed with the Life Events Checklist (LEC-
5), an established 17-item instrument assessing exposure to 17 traumatic
life events [44, 45]. Participants completed the LEC-5 at 8-weeks after their
qualifying exposure. Participants indicated if a selection of traumatic
experiences happened to them personally, if they witnessed it happen to
someone else, learned about it happening to someone close to them, or
was exposed to details about it as part of their job. A modified total LEC
score (mLEC-5, range: 0 to 17) was calculated by summing the types of
traumatic events endorsed, regardless of exposure modality. Although
participants could endorse experiencing a life event in multiple ways (e.g.,
“happened to me,” “witnessed it”), any exposure to a given traumatic life
event resulted in the maximal score of one for the modified total LEC score.

Posttraumatic outcomes
Posttraumatic dysfunction was assessed in terms of PTSD, depression,
anxiety, and dissociation symptoms at 6-months following the index
trauma. PTSD symptoms were assessed using the Posttraumatic Stress
Disorder (PTSD) checklist for DSM-5 (PCL-5), a psychometrically rigorous
20-item questionnaire on symptom presence and severity [46, 47].
Participants rated symptom severity on a scale of 0 (not at all) to 4
(extremely). Depression symptoms were assessed with the 8-item Patient-
Reported Outcomes Measurement Information System (PROMIS) Depres-
sion instrument, short form 8b [48, 49]. A total raw score was computed
from summing the individual items and then converted to a T-score [50].
Anxiety symptoms were assessed with 4-items from the PROMIS Anxiety
bank [49, 51]. Participants rated how often they felt tense, worried about
things, had trouble relaxing, or felt anxious on a scale of 1 (none of the
time) to 5 (all or almost all of the time), and item scores were summed to
create a total anxiety score. Dissociation was assessed using a modified
2-item Brief Dissociative Experiences Scale (DES-B-Modified, [52]). Partici-
pants rated how often they felt people, objects, or the world around them
seemed unreal, and how often they felt they were looking through a fog so
that people and things seemed unclear on a scale from 1 (none of the
time) to 5 (all or almost all of the time). A sum of the two questions was
used as an index of dissociation severity.

Diffusion tensor imaging
Diffusion weighted imaging (DWI) data were collected across five sites
(Table S1). Data processing was similar to prior reports [36, 53], following
the recommendations of the ENIGMA consortium (http://
enigma.ini.usc.edu/protocols/dti-protocols/). To ensure quality data, raw
data were visually inspected, and we calculated metrics of temporal signal-
to-noise ratio and outlier maximum voxel intensity as in a prior report [54].
Participants who demonstrated both: (a) TSNR values lower than 4.88 and
(b) maximum voxel intensities greater than 5000 were removed from
analyses to retain the maximum number of participants while removing
low-quality data. Briefly, motion and eddy current effects in the DWI data
were reduced using the ‘eddy’ subroutine in FSL and susceptibility effects
were corrected for using nonlinear warping of the DWI data to the
participant’s T1-weighted anatomical scan [55–57]. Tract-Based Spatial
Statistics (TBSS) processing was used as implemented in the ENIGMA-DTI
working group processing standards to extract FA values across white
matter regions [58, 59]. First, FA maps were non-linearly registered to the
standard ENIGMA FA map in Montreal Neurological Institute (MNI)
standard space [59]. The ENIGMA FA skeleton map was then projected
onto each subjects FA maps in standard space. Finally, regional FA values
were extracted from the John’s Hopkins University (JHU) White matter atlas
[60] and used in group level analyses. We also extracted axial diffusivity
(AD), radial diffusivity (RD) and mean diffusivity (MD) for exploratory
follow-up analyses (see Supplementary Information).

Statistical analysis
Statistical analyses were performed with IBM SPSS Statistics for Macintosh,
Version 28 [61]. Participant demographics, trauma histories, and symptoms
were evaluated with chi-square tests, Pearson’s correlations, and
independent sample t-tests for differences across imaging sites. Linear
regressions covarying for MRI scanner site, age, and sex at birth assessed
effects of childhood maltreatment load and posttraumatic outcomes on FA
in bilateral white matter tracts. These tests were conducted for the 18
individual white matter tracts included in the JHU atlas. FA was examined
due to its predominance in the literature. Relationships with AD, RD, and
MD were examined in exploratory follow-up analyses for significant tracts

in the FA analysis (see Supplementary information). Identical follow-up
tests evaluated the contribution of the subcomponents of tracts
significantly associated with childhood maltreatment load. A nominal
significance threshold was set at p < 0.05, 2-tailed. False discovery rate
(FDR) correction using the Benjamini–Hochberg method was used to
control for multiple comparisons and maintain α= 0.05. For statistically
significant models where subcomponent data was available (e.g., the
anterior limb of the internal capsule), identical follow-up models were
completed with separate FDR correction using the Benjamini–Hochberg
method. Linear models covarying for MRI scanner site, age, and sex at birth
evaluated effects of summed exposure to moderate to extreme threat
(physical, emotional, and sexual abuse) and deprivation (emotional and
physical neglect) components of childhood maltreatment load, as well as
their interaction, on major bilateral white matter tracts significantly
associated with childhood maltreatment load. Tracts that showed a
significant association with childhood trauma were also included in
subsequent mediation analyses, conducted using the PROCESS macro
version 4 [62], including childhood trauma load, posttraumatic outcomes
at 6-months, and a mediator of white matter microstructure. For mediation
analyses, we completed bootstrapping with 5000 permutations to obtain
95% bias-corrected confidence intervals as an inferential test of direct and
indirect effects. Lastly, univariate effects of childhood maltreatment load
on 6-month bilateral white matter tracts significantly associated with
childhood maltreatment at 2-weeks were evaluated with ANOVA, in
models covarying for scanner site, age, and sex assigned at birth.

RESULTS
Participant characteristics
Participant demographics and trauma characteristics are detailed in
Table 1. Samples from the imaging sites were well matched across
sex assigned at birth, age, educational attainment, employment,
total family income, and marital status (Table S2). Further, each MRI
scanning site sample had similar distributions of participants’
qualifying traumas and proportions of individuals who hit their
head as part of the trauma (Supplementary Information). Participant
racial/ethnic identity significantly differed by site (p < 0.001).
Childhood and lifetime trauma load among participants are

detailed in Table 2 and distribution of childhood maltreatment
load scores in Table S3. On average, participants endorsed greater
than one moderate to extreme childhood maltreatment type, with
emotional abuse (32.7%) being the most frequently endorsed
followed by sexual abuse (24.8%) and emotional neglect (24.8%).
There were no significant site differences in the prevalence of any
maltreatment subtype or the average number of moderate to
extreme maltreatment subtypes endorsed (Table S4). However,
there were significant site differences in the modified total LEC
score (p= 0.002). Associations between childhood maltreatment
load, modified total LEC score, and 6-month symptom scores at
each site are shown in Table S5. Participants did not significantly
differ in 6-month PTSD, depression, anxiety, or dissociation
symptoms across sites (Table S6). Of note, participants included
in the present analyses reported significantly lower 6-month PTSD
symptoms and total childhood trauma scores than those excluded
due to MRI issues but did not differ in childhood maltreatment
load (Supplementary Information).

Childhood maltreatment and white matter
Childhood maltreatment load was associated with FA of several
white matter tracts (Table 3). Following FDR correction, childhood
maltreatment load negatively varied with FA in bilateral internal
capsule (IC) at 2-weeks post-trauma, after covarying for sex
assigned at birth, scanner site, and age (Table 3). Given the
significant relationship between the IC and childhood maltreat-
ment load, we considered the contribution of the IC subcompo-
nents including the Posterior Limb of the IC (PL-IC), the
Retrolenticular Part of the IC (RL-IC), and the Anterior Limb of
the IC (AL-IC) in identical models and found childhood maltreat-
ment load significantly negatively varied with all 3 IC subcompo-
nents after FDR correction, though the PL-IC was the strongest
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contributor to the effect (Table 3; Fig. 1). Exploratory follow-up
analyses with other diffusivity metrics revealed childhood
maltreatment load was also associated with RD in the PL-IC (Table
S7). Additional statistical analyses found only the threat (physical,
emotional, and sexual abuse; β=−0.19, p= 0.01), not deprivation
(emotional and physical neglect; β=−0.05, p= 0.53), component
of childhood maltreatment load significantly contributed to the
observed effect on the IC when both dimensions were included in

an identical model as described above. The interaction between
threat and deprivation was not significant. We further conducted
sensitivity analyses to determine if associations between IC FA and
childhood maltreatment remained while controlling for prior (i.e.,
endorsed pre-trauma) PCL-5 scores or mLEC-5 scores. Inclusion of
either covariate did not impact the relationship between IC FA and
childhood maltreatment load (see Supplementary information).
We performed follow-up analyses to test whether associations

between childhood maltreatment and FA of the IC were also
observed at 6-months post-trauma. Childhood maltreatment load
negatively predicted bilateral IC FA indexed 6-months after trauma

Table 1. Demographics and trauma characteristics.

Overall
(n= 202)

Sex Assigned at
Birth, N (%)

Male 72 (35.6)

Female 130 (64.4)

Age, M (SD) – 35.4 (12.99)

Highest Grade,
N (%)

Some HS/Below 9 (4.5)

High School/GED 52 (25.7)

Some College 70 (34.7)

Associate Degree 21 (10.4)

Bachelor’s Degree 36 (17.8)

Graduate Degree 14 (6.9)

Employment, N (%) Employed 140 (69.3)

Retired 6 (3)

Homemaker 9 (4.5)

Student 9 (4.5)

Unemployed, Disabled/
Other

38 (18.8)

Total Family
Income (TFI), N (%)

TFI ≤$19000 54 (26.7)

$19001≤TFI≤$35000 69 (34.2)

$35001≤TFI≤$50000 28 (13.9)

$50001≤TFI≤$75000 19 (9.4)

$75001≤TFI≤$100000 12 (5.9)

TFI≥$100001 19 (9.4)

Race-Ethnicity,
N (%)

Hispanic 26 (12.9)

Non-Hispanic White 72 (35.6)

Non-Hispanic Black 92 (45.5)

Non-Hispanic Other 11 (5.4)

Marital, N (%) Married 36 (17.8)

Separated 3 (1.5)

Divorced 27 (13.4)

Widowed 2 (1.0)

Never Married 134 (65.8)

ED Event, N (%) Motor Vehicle Collision 151 (74.8)

Physical Assault 18 (8.9)

Sexual Assault 1 (.5)

Fall >= 10 feet 3 (1.5)

Non-motor Collision 8 (4.0)

Fall <10 / unknown 9 (4.5)

Burns 1 (.5)

Animal Related 7 (3.5)

Other 4 (2)

Hit Head, N (%) No 98 (48.5)

Yes 86 (42.6)

Missing 18 (8.9)

ED Emergency Department.

Table 2. Childhood and lifetime trauma load.

Overall (n= 202)

# Mlx Types (0–5), M (SD) – 1.21 (1.53)

Emotional Abuse, M (SD) 2.50 (2.63)

Mod-Extreme Emotional Abuse, N (%)
/ M (SD)

No 136 (67.3)

Yes 66 (32.7)

Sexual Abuse, M (SD) 1.66 (2.91)

Mod-Extreme Sexual Abuse, N (%) / M
(SD)

No 152 (75.2)

Yes 50 (24.8)

Physical Abuse, M (SD) 1.56 (2.46)

Mod-Extreme Physical Abuse, N (%)
/ M (SD)

No 158 (78.2)

Yes 44 (21.8)

Emotional Neglect, M (SD) 1.86 (2.36)

Mod-Extreme Emotional Neglect, N (%)
/ M (SD)

No 152 (75.2)

Yes 50 (24.8)

Physical Neglect, M (SD) 1.49 (2.15)

Mod-Extreme Physical Neglect, N (%)
/ M (SD)

No 168 (83.2)

Yes 34 (16.8)

CTQ Total (0–44), M (SD) – 9.91 (9.91)

mLEC-5 Score (0–17), M (SD) 6.77 (4.65)

Note: Mlx Maltreatment; CTQ Childhood Trauma Questionnaire (11 item);
mLEC-5 Score modified total Life Events Checklist Score.

Table 3. Significant univariate effects in childhood maltreatment load
model (2-Week).

β t-statistic FDR adjusted p-values

IC −0.21 −3.195 0.029**

—PL-IC −0.21 −3.114 0.006**

—RL-IC −0.18 −2.655 0.013**

—AL-IC −0.13 −2.237 0.026**

CR −0.14 −2.276 0.215

G-CC −0.12 −2.155 0.194

SS −0.14 −2.001 0.211

Reported tracts were significant at a nominal p < 0.05.
Benjamini–Hochberg adjusted p-values were calculated by multiplying
raw p-values by m/i (i= rank, m= total number of tests). Internal Capsule
subcomponents were included in a follow-up, identical model, and FDR
corrected with Benjamini–Hochberg. The PL-IC, RL-IC, and AL-IC were
tested in follow-up models given the significant IC effect and separately
FDR corrected. **Significant After Benjamini–Hochberg (p < 0.05) Adjust-
ment.
IC Internal Capsule, CR Corona Radiata, G-CC Genu of the Corpus Callosum,
SS Sagittal Stratum, PL-IC Posterior Limb of the Internal Capsule, RL-IC
Retrolenticular Part of Internal Capsule, AL-IC Anterior Limb of Internal
Capsule.
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(Table 4; Fig. 1). In further analyses of IC subparts, negative predictive
relationships of childhood maltreatment load with PL-IC and AL-IC
microstructure were significant following Benjamini–Hochberg FDR
correction (Table 4).

Mediation analyses: childhood maltreatment, IC
microstructure, and 6-month PTSD symptoms
Mediation analyses revealed a total effect of childhood maltreat-
ment load on PCL-5 scores at 6-months (b= 1.75, SE= 0.78. 95%
CI= [0.20, 3.29]). We found a significant indirect effect of
childhood maltreatment load on 6-month PCL-5 scores through
IC microstructure (b= 0.37, Boot SE= 0.18, 95% CI= [0.05, 0.76])
that completely mediated the effect of childhood maltreatment
load on PCL-5 scores (b= 1.37, SE= 0.79, 95% CI= [−0.18, 2.93])
(Fig. 2). Similar analyses were performed with the total childhood
maltreatment score, and we observed similar results (see Supple-
mentary information).

Fig. 1 The relationship between childhood maltreatment load and internal capsule FA values at 2-weeks and 6-months. The internal
capsule and its subcomponents are displayed on 3D rendering of human white matter tracts (A) Standardized residual plot of the regression
of Childhood Maltreatment Load on 2-Week Internal Capsule FA Values depicts the significant negative effect (B). Standardized residual plot of
Childhood Maltreatment Load on 2-Week Posterior-Limb of the Internal Capsule FA Values depicts the significant negative effect (C).
Standardized residual plot of the regression of Childhood Maltreatment Load on Internal Capsule FA Values indexed 6-months post-trauma
depicts the significant negative effect (D).

Table 4. Univariate effects in childhood maltreatment load model (6-
Month).

β t-statistic FDR adjusted p-value

IC −0.28 −2.552 0.026**

—PL-IC −0.31 −2.946 0.016**

—AL-IC −0.24 −2.318 0.031**

—RL-IC −0.21 −1.889 0.063

Benjamini–Hochberg adjusted p-values were calculated by multiplying raw
p-values by m/i (i= rank, m= total number of tests). Internal Capsule
subcomponents were included in a follow-up, identical model. The
Benjamini–Hochberg FDR-correction included all 6-month tests. **Sig-
nificant After Benjamini–Hochberg (p < 0.05) Adjustment.
PL-IC Posterior Limb of the Internal Capsule, IC Internal Capsule, AL-IC
Anterior Limb of Internal Capsule, RL-IC Retrolenticular Part of Internal
Capsule.
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Exploratory mediation analyses assessed if findings were
specific to future PTSD symptoms or if similar relationships were
observed with other posttraumatic outcomes including depres-
sion, anxiety, and dissociation (Supplementary Information; Figure
S1). Although there was a total effect of childhood maltreatment
load on 6-month PROMIS-Depression (b= 1.29, SE= 0.48, 95%
CI= [0.34, 2.24]), the indirect effect of childhood maltreatment
load on 6-month PROMIS-Depression through IC microstructure
(b= 0.15, Boot SE= 0.12, 95% CI= [−0.07, 0.39]) was not
significant and did not mediate the effect of childhood maltreat-
ment load on 6-month PROMIS-Depression scores (b= 1.14,
SE= 0.49, 95% CI= [0.17, 2.11]). There was a total effect of
childhood maltreatment load on 6-month PROMIS-Anxiety
(b= 0.43, SE= 0.20, 95% CI= [0.05, 0.82]); however, neither the
indirect effect of childhood maltreatment load on 6-month
PROMIS-Anxiety through IC microstructure (b= 0.05, Boot SE=
0.05, 95% CI= [−0.04, 0.14]) nor the direct effect of childhood
maltreatment load on 6-month PROMIS-Anxiety (b= 0.39, SE=
0.20, 95% CI= [−0.01, 0.78]) met statistical significance. No total
effect of childhood maltreatment load on dissociation emerged
(b= 0.14, SE= 0.08, 95% CI= [−0.01, 0.29]).

DISCUSSION
To our knowledge, the present study is the first to investigate the
relationship between childhood maltreatment load and white
matter microstructure with posttraumatic symptoms in the early
aftermath of trauma. We observed robust relationships between
childhood maltreatment load and fractional anisotropy (FA) in the
internal capsule (IC) in the early aftermath of an acute trauma
event (2-weeks) and 6-months later. Furthermore, variations in IC
FA values at 2-weeks fully mediated the relationship between
childhood maltreatment load and later posttraumatic symptoms
at 6-months. The mediation was specific to posttraumatic
symptoms and not observed for depressive, anxiety, or dissocia-
tive symptomatology. Given that childhood maltreatment was
related to IC microstructure at 2-weeks and 6-months following
the adulthood traumatic event, our findings may point to IC FA
values as a stable biomarker of later posttraumatic dysfunction
and suggest a potential neurobiological pathway through which
childhood trauma could confer risk for acute stress reactions in
adulthood. Additionally, this study did not reproduce effects of
white matter tracts previously found to vary with PTSD symptoms
and childhood trauma exposure, including the cingulum bundle,
uncinate fasciculus, and corpus callosum.
Our findings implicate the IC as a critical substrate for the

effects of childhood trauma on PTSD development. The IC is a
dense fiber bundle that contains several projections including the

corticospinal tract, frontopontine and corticofugal fibers, the
anterior and superior thalamic radiation, the optic radiation, and
the auditory radiation [63, 64]. Anatomically, the IC is limited
laterally by the pallidum and medially by the thalamus, the head
of the caudate nucleus, and the corticospinal tract [65]. The IC
further appears to contain fibers for both medial (hippocampal
formation, mammillary bodies, anterior thalamic nuclei, and
cingulate gyrus) and basolateral (orbitofrontal cortex, dorsomedial
thalamic nucleus, amygdala, and anterior temporal cortex) limbic
circuits [66].
The present findings may be related to dysfunctional stimulus

processing during PTSD. Although threat processing and its neural
substrates are commonly dysregulated in PTSD, these compo-
nents are dependent on the ability to perceive and integrate
sensory stimuli. Recent work suggests variability in structure of
visual processing regions, such as the ventral visual stream, is
associated with susceptibility to PTSD symptom development
[36, 67]. This pathway supports important processes, such as
object recognition, integral to threat learning and includes core
threat-related regions such as the amygdala and medial PFC [68].
In the current study, we found that higher childhood maltreat-
ment load was associated with lower FA of the IC and its
subcomponents. The IC encompasses occipital connections
between the higher order visual cortex and temporal lobe [64],
as well as components of major motor tracts and somatosensory
relays from the thalamus to the cortex [63]. Prior work found
trauma-exposed children and adults with childhood maltreatment
histories had reduced FA of the IC and its component tracts,
including the optic radiations and left anterior thalamic radiation
[25, 69]. Speculatively, reduced FA of the IC may reflect disrupted
white matter myelination and membrane integrity in fibers that
transmit visual sensory information and contribute to altered
perception and processing of threat-related information, which, in
turn, may contribute to PTSD-related disruptions. Disruption of the
IC could further be related to altered ability to consolidate,
encode, or retrieve sensory components of trauma memories
leading emotion dysregulation. In line with such reasoning,
ischemic damage to the IC can lead to cognitive and behavioral
alterations such as agitation and impaired attention [63], and deep
brain stimulation of the ventral IC/ventral striatum enhances
prefrontal cortex driven cognitive control [70]. However, corre-
sponding data on visual processing was not collected in the
present study, and specific interpretations of IC function should
thus be tempered. Taken together with prior literature, the
present results suggest childhood maltreatment has a pro-
nounced effect on IC microstructure which may confer risk for
PTSD-related dysregulation following subsequent trauma.
Of note, we did not observe effects in canonical threat circuitry

often associated with PTSD. Past studies have not typically
considered childhood maltreatment when evaluating white
matter markers of PTSD susceptibility [15–18], and it is possible
that reduced IC FA may be a sequela of childhood maltreatment
exposure. Moreover, although we analyzed imaging data from
over 200 participants, we could have been underpowered to
detect all effects with our unbiased whole-brain analytic approach.
There are likely different biological subtypes of PTSD that are not
accounted for here and such heterogeneity may have decreased
our ability to detect associations in other tracts. For example,
subtypes that show stronger intrusive symptoms or disruptions in
emotional memory may be more associated with canonical threat
neurocircuitry. Notably, varied white matter microstructure in the
IC and its component tracts has been previously implicated in
PTSD [11], with recent works suggesting a role in predicting PTSD
in the acute aftermath of trauma exposure [16] and in treatment
response [71]. Further investigation of the role of childhood
maltreatment load in the relationship between white matter
microstructure and PTSD development might assist in developing
robust predictive models.

Fig. 2 Mediation model of the effect of childhood maltreatment
load on 6-month PCL-5 through Internal Capsule FA values
indexed 2-weeks post-trauma. The indirect effect is significant
based on a 5000 permutation, bootstrapped 95% confidence
interval (i.e., path ab; b= 0.37, Boot SE= 0.18, 95% CI= [0.05,
0.76]), completely mediating the effect of childhood maltreatment
load on PCL-5 scores (i.e., path c'; b= 1.37, SE= 0.79, 95%
CI= [−0.18, 2.93]).
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The findings of the current work should be interpreted with
several considerations. First, we assessed childhood maltreatment
load with a retrospective self-assessment. Since we did not query
the age participants experienced childhood trauma, we could not
assess the role of the developmental timing of trauma on the
observed effects. Future longitudinal work is needed to investigate
white matter microstructural variability in children and recently
traumatized adults with more granular information on childhood
trauma exposure and timing. Further, although we used items from
the childhood trauma questionnaire, which is itself a validated and
broadly used tool, and prospective research suggests the reliability
of such retrospective reporting [40, 72–74], we were unable to
administer the full questionnaire as to minimize participant burden
within the parent study. It would also be beneficial to investigate
these associations in longitudinal studies of childhood trauma as
opposed to using purely retrospective reports. Secondly, data that
could be related to hypothesized contributions of the IC to sensory
processes were not available, and thus the specific functional role
of variability within IC microstructure in relation to PTSD is unclear.
Future research considering the specific targets and functional
outcomes of variable IC microstructure among those with child-
hood trauma would further clarify the present findings. Lastly, our
analyses do not consider potential protective or socioeconomic
factors that may contribute to early life stress load or resiliency. We
did, however, consider the site at which MRI scanning occurred,
which largely accounted for participant race and ethnicity. Given
the relationships between racial discrimination, neighborhood
disadvantage, and socioeconomic status with white matter
microstructure [75–77], a critical next step will be to understand
how these factors and protective agents impact white matter
markers of PTSD susceptibility. As participants in this work reported
substantial childhood maltreatment and low levels of PTSD
symptoms prior to the presenting trauma, resiliency factors may
be especially critical to decipher. Relatedly, it will also be important
to consider potentially salient factors such as prenatal exposures
and genetics.
The present study of recent trauma survivors examined the

relationship of childhood maltreatment load with white matter
microstructure and posttraumatic symptoms in the early after-
math of trauma. Childhood maltreatment load stably, inversely
varied with the FA of the IC following the acute trauma event.
Further, the FA of the IC in the early aftermath of an acute trauma
event mediated the relationship between childhood maltreatment
load and PTSD symptoms 6-months following the adulthood
trauma exposure. These findings suggest a unique role for IC
microstructure as a neural pathway between childhood trauma
and future PTSD symptoms following a recent trauma. Further-
more, these data suggest DTI imaging may assist in revealing
neural signatures of risk for later stress-related dysfunction in
those with earlier childhood trauma.
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