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The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional
architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of
functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental
patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences
in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a
large cross-sectional sample of children and adolescents (n = 628) aged 8–21 years from the Lifespan Human Connectome Project
in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as
integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where
males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence
for complex, non-linear differences in some brain systems during development.

Key words: brain development; generalised additive models; participation coefficient; resting-state functional connectivity; sex differ-
ences.

Introduction
The human brain at rest (i.e. in the absence of a specific task)
exhibits spontaneous activity. This activity, however, is not ran-
dom, as blood oxygen level dependent (BOLD) signal fluctua-
tions reflect the brain’s functional topography (Fox and Raichle
2007), with patterns of BOLD changes across brain regions coher-
ing within identifiable brain networks. Recent resting-state func-
tional connectivity (rsFC) studies have described a high degree
of similarity between network rsFC at rest and during task per-
formance, suggesting the presence of an “intrinsic” functional
architecture that underlies most (if not all) brain activity (Cole
et al. 2014; Gratton et al. 2018; Kraus et al. 2021; Krienen et al. 2014;
Seitzman et al. 2019). The development of intrinsic functional
networks is, therefore, of vital importance to understanding myr-
iad neural processes. Although many studies have investigated
age-related differences in rsFC, the literature contains key gaps,
including the need to better characterise linear versus non-linear
associations with age of within- and between-network connec-
tivity and network integration. In the present study, we aimed to
characterise both linear and non-linear age-related differences in
functional network connectivity and integration using a cross-
sectional sample diverse in race, ethnicity, and SES from the
Lifespan Human Connectome Project in Development (HCP-D).

Much of the fundamental organisation of functional brain net-
works is largely established at birth with brain regions organised
into larger-scale networks including the default mode network
(DMN), the frontal parietal network (FPN), and visual and auditory
networks (Grayson and Fair 2017). However, the development of
individual networks is a continual process as topography changes
across childhood and adolescence (Thomason et al. 2015; Keunen
et al. 2017; Gilmore et al. 2018). Research characterising these
changes has pointed to a shift from a local to a more distributed
organisation, where functional connectivity increases between
broadly distributed brain regions throughout childhood, adoles-
cence, and into adulthood (Fair et al. 2009; Supekar et al. 2009;
Menon 2013; Marek et al. 2015). Yet, there are inconsistencies in
the literature regarding the direction of these changes (Stevens
2016). For example, although some reports found that between-
network connectivity (e.g. DMN to FPN) increased with age during
adolescence (Baker et al. 2015; Marek et al. 2015; Fan et al.
2021), others have found decreases with age in between-network
connectivity during adolescence (Bernard et al. 2016; Stevens
2016; Long et al. 2017; Wig 2017). Both positive and negative rsFC
relationships with age have also been reported between subcor-
tical regions such as the dorsal striatum and various cortical
networks (Supekar et al. 2009; van Duijvenvoorde et al. 2016).
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Similarly, contrasting associations between age and rsFC between
the amygdala and cortical, subcortical, and paralimbic regions
have also been found (Gabard-Durnam et al. 2014; Alarcón et al.
2015). These inconsistencies highlight an important problem
in developmental science: How researchers theoretically model
developmental change.

Adolph and Robinson (2008) argued that a contributing
approach to such problems is the hyperfocus on (perhaps
arbitrary) starting and ending points. This practice imposes
a linear theoretical framework, where development is stable
and constant. However, development is a dynamic system, and
the shape of its change elucidates the process. Incongruities in
developmental research, therefore, may be due in part to the
assumption of linear change or difference over development,
where age-related change was only modeled linearly without
considering non-linear possibilities (Faghiri et al. 2019). Still,
non-linear tests that assume a basis function (e.g. binning,
polynomials) can mask the true pattern of change by imposing a
pre-specified set of functional forms. These predictor functions
are not defined by the data and therefore lack the flexibility
to properly identify periods of significant change. Generalised
additive modeling (GAM), which we used in the present study,
avoids this by using local penalised spline bases that flexibly
adapt to data. Other recent studies have also adopted these
modeling techniques, such as work by Pines et al. (2022), who used
GAMs in their investigation of between-network development.
GAMs do not impose a particular pre-defined relationship
function (e.g. cubic, quadratic) and are not restricted to global
polynomial bases (Wood 2004, 2006). They are, therefore, uniquely
advantageous to the characterisation of non-linear change and
difference.

Another critical source of discrepant findings faced in devel-
opmental neuroimaging studies is motion. Motion confounds
differ as a function of age, whereby children exhibit an increased
tendency for head movement during scan sessions (Satterthwaite
et al. 2019). Advancing methods to counteract motion have
resulted in a re-evaluation of earlier reported developmental
rsFC results, given the previously unrecognised influence of
small, spurious movement (Power et al. 2012, 2013; Satterthwaite
et al. 2012; Van Dijk et al. 2012). These considerations suggest
that implementing rigorous motion control and evaluating
non-linear age-related differences in rsFC might elucidate
current disagreement in the literature and provide insight into
the patterns of distinct developmental stages in rsFC brain
connectivity.

Although rsFC suggests how within- and between-network
connectivity differs over the course of development, the degree of
network integration informs how nodes within a network connect
with other brain circuits (Rubinov and Sporns 2010). In other
words, the extent to which a node establishes links between its
own network (indicating segregation) versus a different network
(indicating integration; Marek et al. 2015) is considered to reflect
integration of brain networks. This can be measured by the par-
ticipation coefficient (PC), which provides insight into how brain
networks are integrated with one another. PC is a graph theoretical
construct that quantifies a node’s connections to networks other
than its own network versus its total number of connections
(Guimerà and Amaral 2005). In a cross-sectional sample of 195
participants aged 10-26 years, Marek et al. (2015) found that
PC displayed non-linear age-related differences in the cingulo-
opercular/salience network (CON/SN), DMN, visual network (VIS),
and FPN. Specifically, PC in the CON/SN and FPN increased from

late childhood to middle adolescence, increased into late ado-
lescence in the VIS, and decreased throughout adolescence in
the DMN. Lopez et al. (2020) also found non-linear age-related
decreases in PC of frontal regions that were a part of the FPN
and DMN as well as dorsal attention (DAN) and ventral attention
(VAN) frontal regions but did not find evidence of increases in PC
in CON/SN frontal regions in a sample of 615 participants aged
8–21 years. Taken together, both studies show increasing segrega-
tion (i.e. decreasing PC) with age in control networks (e.g. brain
networks involved in attentional enhancement, goal-appropriate
behaviors, response inhibition, etc.), consistent with prior reports
of age-related increases in within-network rsFC of such networks
(Stevens et al. 2009; Supekar et al. 2010; Sherman et al. 2014; Far-
rant and Uddin 2015; Solé-Padullés et al. 2016). This may reflect
functional specialisation, whereby neural information is primarily
exchanged within a network ultimately reducing potential inter-
ference from other brain regions (Fornito et al. 2012; Baum et al.
2017). Alternatively, others have reported increases in DMN and
CON/SN PC, particularly during late adolescence, in relation to
increasing cognitive demands (Marek et al. 2015; Finc et al. 2017).
However, the literature describing both linear and non-linear age-
related differences in PC at the network level during development
remains sparse and in need of replication and extension.

An important caveat to consider when utilising resting-state
fMRI is how to properly interpret “connectivity” in the context of
what is known about the biological origin of these correlations.
rsFC measures are derived from regional correlations in BOLD
signals but may have contributions from physiological and neu-
rovascular processes such as cardiac and respiratory oscillations
(Birn et al. 2006; Shmueli et al. 2007; Liu 2013; Archila-Meléndez
et al. 2020). A recent editorial in Frontiers in Neuroscience by Chen
et al. (2020) outlined disadvantages related to the sensitivity and
specificity of rsfMRI, namely vascular, arousal, and physiologi-
cal oscillations that contribute to rsfMRI metrics. Acknowledg-
ing that challenges persist, advanced variance removal methods
(such as those implemented in the present study) that target sig-
nals of non-neuronal origin can improve upon these limitations.
Although we refer to rsFC measures in terms of connectivity (or
co-activation) in the present manuscript, we remind the reader
that rsFC measures represent statistical correlations in BOLD
patterns and should not be conflated with a measure of the
strength of direct anatomical connections.

The goal of the present study was to characterise age-related
differences in within- and between-network rsFC and PC in a
large cross-sectional sample of children and adolescents aged
8–21 years from the HCP-D. Given mixed findings in the literature,
we evaluated both linear and non-linear differences in rsFC.
Although most prior rsFC studies have modeled non-linearity
with polynomials, we used GAMs. With the use of local penalised
spline bases, GAMs flexibly adapt to data and are not restricted to
global polynomial bases which can be too inflexible for modeling
non-linearity (Wood 2001). Given the noted sex differences in
brain development during our sampled age range, we also
investigated sex differences in the association between age
and functional network connectivity. Previous studies report
decreased putamen-frontal medial cortex activity in boys
(van Duijvenvoorde et al. 2019), greater BOLD response in the left
putamen in girls to a categorical choice task (Korucuoglu et al.
2020), and volumetric differences such as larger putamen, insula,
and amygdalae volumes in boys (Peper et al. 2009). We therefore
assessed whether sex moderated any age-related differences in
rsFC and PC.
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Table 1. Demographic and acquisition site characteristics of the
sample. SD, standard deviation; IQR, interquartile range; SES,
socioeconomic status; UCLA, University of California, Los
Angeles; UMinn, University of Minnesota; WUSTL, Washington
University in St Louis.

Participants
(n = 628)

Mean age in years (SD) 14.7 (3.9)
Range (years) 8.1–21.9

Sex (% female) 52.7
Race (%)

Native American/Alaska native 1.8
Asian 10.3
Black/African American 18.3
Native Hawaiian/Pacific Islander 0.5
White 58.2
More than one race 8.9
Unknown 2.0

Ethnicity (%)
Hispanic 16.9

Median income ($) 110,000
IQR ($) 100,000

SES bracket (%)
Low 23.4
Medium 33.5
High 43.0

Acquisition site (%)
Harvard 34.0
UCLA 18.3
UMinn 26.3
WUSTL 21.3

Materials and methods
Sample
The present study included 628 typically developing children,
adolescents, and young adults aged 8–21 years from the HCP-D
(Harms et al. 2018; Somerville et al. 2018) (Table 1). Participants
were recruited across four sites: Harvard University, University
of California-Los Angeles, University of Minnesota and Wash-
ington University in St Louis. Exclusion criteria for recruitment
included (i) premature birth (< 37 weeks gestation); (ii) serious
neurological condition (e.g. stroke, cerebral palsy); (iii) serious
endocrine condition (e.g. precocious puberty, untreated growth
hormone deficiency); (iv) long-term use of immunosuppressants
or steroids; (v) any history of serious head injury; (vi) hospital-
isation > 2 days for certain physical or psychiatric conditions
or substance use; (vii) treatment > 12 months for psychiatric
conditions; (viii) claustrophobia; or (ix) pregnancy. Participants
provided written informed consent and assent, and parents of
participants under 18 years provided written informed consent
for their child’s participation. All methods were approved by the
Institutional Review Board at Washington University in St Louis
(IRB #201603135).

Image acquisition
Across all four acquisition sites, participants were scanned
using a Siemens 3 T Prisma whole-body scanner with a 32-
channel head coil and completed T1w (multi-echo 3D MPRAGE
sequence; 0.8 mm isotropic voxels, TR/TI = 2500/1000 ms,
TE = 1.8/3.6/5.4/7.2 ms, flip angle = 8◦, FOV = 256 × 240
× 166 mm3, matrix size = 320 × 300, 208 sagittal slices, in-
plane (iPAT) acceleration factor of 2; Mugler et al. 1990; van
der Kouwe et al. 2008) and T2w (same spatial resolution using

the variable-flip-angle turbo-spin-echo 3D SPACE sequence;
TR/TE = 3200/564 ms; same FOV, matrix, and in-plane acceler-
ation; Mugler et al. 2000) structural scans.

Resting-state functional MRI data were acquired using T2∗-
weighted scans sensitive to the BOLD contrast with a 2D multi-
band (MB) gradient-recalled echo echo-planar imaging sequence
(MB8, TR/TE = 800/37 ms, flip angle = 52◦) and 2.0-mm isotropic
voxels covering the whole brain (72 oblique-axial slices). For all
participants included in the current study, 26 minutes of resting-
state scanning were acquired in four runs consisting of 6.5 min-
utes each. Participants viewed a small, white crosshair fixation
on a black screen and were instructed to remain still, remain
awake, and blink normally while viewing the fixation crosshair
(see Harms et al. 2018 for a detailed protocol description).

Image processing
The HCP processing pipeline has previously been described and
used extensively in the literature. Briefly, the fMRI timeseries
images were processed in the fMRI-Volume pipeline (Glasser et al.
2013), which concatenates a set of transformations to register the
fMRI timeseries to MNI152 standard space and apply them in a
one-step spline resampling (i.e. gradient non-linearity and suscep-
tibility distortion corrections, rigid body motion correction, two-
step registration to the T1w anatomical with FSL FLIRT+BBR and
FreeSurfer’s BBRegister, and non-linear T1w-to-MNI registration).
Surfaces were registered using a joint multi-modal registration
including information from areal features derived from myelin,
resting-state networks, and rfMRI visuotopic maps (Robinson et al.
2014, 2018). The ultimate output was a dense “CIFTI” timeseries
file containing the timeseries for cortical surface vertices from
both hemispheres and the timeseries for subcortical voxels con-
strained to gray matter parcels (Glasser et al. 2013).

Due to the shorter duration of resting-state scans compared
with the HCP-YA dataset (Harms et al. 2018), rest and task datasets
were concatenated, then run through the Multi-run sICA+FIX
pipeline (Glasser et al. 2018) for the purposes of denoising. For
this analysis, in addition to structured noise removal, we included
motion regression and mean grayordinate timeseries regression to
address global epochs contaminated by motion and/or respiration
(Burgess et al. 2016, Siegel 2017). Timeseries were processed by
aggressively removing all variance due to motion from the time-
series, followed by unaggressive removal of variance due to spatial
noise as detected by FIX. The mean grayordinate timeseries was
computed and removed to generate the final timeseries. For com-
puting correlations, timepoints with filtered frame displacement
(FD) > 0.2 mm were excluded from calculations. Additionally, time
points were removed if the filtered FD was ≥0.2 mm (Power
2019). Following Multi-run sICA+FIX, the resting-state data was
dissociated from the task data and parcellated, and the Fisher
z-transformed Pearson correlation (z(r)) between the timeseries
of all parcels (nodes) was computed for all participants using
a previously defined parcellation scheme (161 and 172 distinct
parcels for the left and right hemisphere, respectively; Gordon
et al. 2016) along with 19 subcortical structures (9 bilateral struc-
tures per hemisphere and 1 brainstem parcel) forming a 352 ×
352 connectivity matrix, using a combination of “Connectome
Workbench” (Marcus et al. 2011) and custom Matlab code.

Connectivity matrices were further processed using the Brain
Connectivity Toolbox (Rubinov and Sporns 2010). The PC (Guimera
and Amaral, 2005) is the ratio of the number of above-threshold
connections that a given node (parcel) has to nodes of other
networks (between-network connectivity) relative to its affiliated
network (within-network connectivity; Rubinov and Sporns 2010;

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad011/7021933 by W

ashington U
niversity at St Louis user on 06 February 2023



4 | Cerebral Cortex, 2023

Lopez et al. 2020). Per subject, each correlation matrix was thresh-
olded from 1 to 25% of the top edges in 1% increments. The
thresholded graphs were then used to compute the PC for each
node, where community assignment was defined by the original
parcellation.

Statistical analyses
We provide an overview of our general approach, followed by
a more detailed description. First, generalised additive models
(GAM) were conducted for all within- and between-network con-
nectivity and PC age-related differences based on our assumption
that differences may be non-linear. Next, smooth terms from the
GAMs were tested for non-linearity. Age-related differences that
were determined to be linear were subsequently also fit using
linear modeling. For non-linear differences, periods of significant
difference in network connectivity and PC slopes were identified.
Analyses were false discovery rate (FDR) corrected for multi-
ple comparisons. Scatterplots were created using the R package
“ggplot2” (Wickham 2016) and illustrate differences in rsFC as a
function of age, not accounting for covariates.

We analyzed the associations between age and (i) within-
network rsFC of the 12 networks in the Gordon parcellation
[default (DMN), parieto-occipital (PON), frontoparietal (FPN),
salience (SAL), cingulo-opercular (CON), medial parietal (MPN),
dorsal attention (DAN), ventral attention (VAN), visual (VIS),
somatomotor body (SmB), somatomotor head (SmH), and auditory
(AUD)]; (ii) between-network rsFC of 12 cortical networks;
(iii) between-network rsFC of 12 cortical networks to 7 subcortical
regions [amygdala (AMYG), hippocampus (HIP), nucleus accum-
bens (NAc), caudate nucleus (CN), pallidum (PAL), putamen (PUT),
thalamus (THA)], and the cerebellum (CB); (iv) between-network
rsFC of those same 7 subcortical structures to the cerebellum;
and (v) PC for the 12 cortical networks, 7 subcortical structures
and the cerebellum. In total, rsFC was FDR-corrected for 210
comparisons, and PC was FDR-corrected for 20 comparisons.
rsFC for subcortical left and right hemispheres were averaged
to produce one total rsFC metric for each subcortical structure.

Network rsFC and PC age-related differences
All age-related differences were evaluated for non-linearity using
GAMs in the R package “mgcv” version 1.8-38. With the use of
penalised splines, GAMs can flexibly model non-linear relation-
ships. Non-linearities are estimated using restricted maximum
likelihood (REML), where smooth terms are penalised for increas-
ing complexity (Wood 2001). Default “mgcv” smoothing parame-
ters were used, where k (i.e. knots) was set to 10, indicating the
maximum effective degrees of freedom (EDF) the model smooth
could use. For k = 10, the EDF for the smooth term “age” was < 3.9
for all rsFC and PC models, suggesting that this function space
was large enough for the expected wiggliness of the true function
to be accommodated (Wood 2017). rsFC was calculated as the
average of the (Fisher Z-transformed) pairwise correlations within
(e.g. DMN, FPN, CON) and between (e.g. DMN-FPN, DMN-CON) each
Gordon cortical network, subcortical region, and cerebellum. For
PC (calculations are described in the Image Processing section),
nodes (parcels) were grouped by network, and the mean network
PC was calculated for each subject. Age was entered into the GAM
as a smooth factor to capture any important non-linear patterns
over development. Covariates included sex, mean framewise dis-
placement (FD), and acquisition site. Example R syntax modeling
non-linear difference is as follows:

gam(Network ∼ s(Age) + Sex + Mean FD + Acquisition Site).

Next, a restricted likelihood ratio test was used to determine
whether the non-linearity of the GAMs was a significantly better
fit than a linear model. This was accomplished with the R package
“RLRsim” (Scheipl et al. 2008). Using the function “exactRLRT,”
non-linearity was determined by examining if the variance of
the random effect was equal to zero. If the test for non-linearity
returned a value of P < 0.05, the non-linear GAM was determined
to be the appropriate fit (Larsen et al. 2020; Vandekar et al. 2015).
This test was not adjusted for multiple comparisons.

For models where the smooth term was determined to be
non-linear, posterior simulations of the first derivative of the
spline term were generated to identify periods of change in the
slope between age and rsFC and age and PC. This was accom-
plished with the “confint.fderiv” function in the R package “gratia”
(Simpson & Singmann 2018). This function produces plots of the
first derivative of the splines (slopes) along with the 95% point-
wise confidence intervals. Periods where the confidence interval
around the first derivative excludes 0 represent the developmen-
tal periods with the strongest evidence for age-related differences
(i.e. increasing or decreasing slope).

If the GAM model was rejected by the test for non-linearity,
linear models examining age-related differences in connectivity
and PC were fit using the “lm” function in the R package “stats”
(R Development Core Team, 2020). Linear model estimated beta
values and associated P-values were investigated to determine
if the regression slopes were significantly different from zero.
Specifically, if FDR q-values (e.g. p-values corrected for multiple
comparisons) were q < 0.05, the regression slope was determined
to be significantly different from zero, indicating a difference
in connectivity over age. Standardised beta values were used to
examine the rate of change in connectivity strength and PC over
our age span.

Sex as a moderator of age-related differences in
rsFC and PC
To investigate if sex moderated the relationship between age and
rsFC and PC, an interaction term of age by sex was entered into the
model. Results were FDR-corrected for multiple comparisons (see
above for correction breakdown). Significant interaction effects
were probed via simple slopes with the “probe_interaction” func-
tion in the R package “interactions” (Long 2019).

Results
Age-related differences in within- and
between-network rsFC
Age-related differences for within- and between-network connec-
tivity were estimated for the 12 Gordon networks. Many of these
age-related differences were best captured by linear relationships
(Fig. 1). In sum, 5 within- and 14 between-cortical network
connectivity patterns displayed significant non-linear age-related
differences (Figs 2D and 3) that passed FDR correction. Most non-
linear within-network differences with age followed an inverted
U-shaped curve where rsFC increased significantly during
childhood and then either remained relatively stable or even
decreased in adolescence. In contrast, within the medial parietal
network, rsFC decreased significantly during middle adolescence
(Supplementary Fig. S1). With the exception of the visual network,
all other sensory networks followed linear within-network
rsFC patterns. Linear within-network age-related differences
in rsFC mostly decreased, whereas somatomotor body rsFC
significantly increased from ages 8–21 (Fig. 2C). Non-linear
between-network rsFC age-related differences occurred between
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Fig. 1. Linear correlation matrix of age with within- and between-cortical
network resting state functional connectivity (main and below diago-
nal, respectively). Colored boxes and legend represent standardised beta
values estimated from models that included covariates. Black outlined
boxes represent non-linear relationships with age, which were modeled
linearly here for comparison of overall magnitude of age-related differ-
ences. DMN, default mode network; PON, parieto-occipital network; FPN,
frontoparietal network; SAL, salience network; CON, cingulo-opercular
network; MPN, medial parietal network; DAN, dorsal attention network;
VAN, ventral attention network; VIS, visual network; SmB, somatomotor
body network; SmH, somatomotor head network; AUD, auditory network;
∗FDR-corrected q-values, q < 0.05; ∗∗q < 0.01; ∗∗∗q < 0.001.

higher-order cognitive, attention, and sensorimotor networks.
Specifically, CON-DAN and FPN-VAN rsFC increased significantly
from childhood to middle adolescence and remained stable into
late adolescence. The DMN displayed a period of decreasing
rsFC with both the CON and DAN from childhood to early
adolescence, followed by a period of stability into late adoles-
cence. The visual network exhibited periods of increasing and
decreasing rsFC with other sensory and motor networks during
childhood (decreasing) and late adolescence (increasing) (Fig. 3
and Supplementary Fig. S2). Linearly, rsFC increased between
sensory/motor networks and the PON, DMN, CON, DAN, and
VAN, but decreased between sensory/motor networks and the
FPN and SAL. However, the CON and DAN also displayed
decreasing rsFC with other primary sensory networks (i.e. CON-
AUD and DAN-VIS). rsFC between higher order/associative
networks linearly increased and decreased (Fig. 1), whereas linear
rsFC differences between sensory/motor networks with age all
displayed increasing connectivity.

As with age-related differences in cortical connectivity, many
age-related differences in connectivity between cortical networks
and subcortical and cerebellar regions were best characterised by
linear relationships (see Fig. 4 for indication of those that passed
FDR correction). Results revealed significant linear declines in
rsFC between sensory/motor networks and both the PAL and
THA, whereas significant linear increases in rsFC were observed
between sensory/motor networks and both the AMYG and HIP
(Fig. 4A).

Cerebello-striatal-thalamic circuits linearly increased in rsFC
with higher-order cognitive and association networks. Interest-
ingly, cortical-thalamic rsFC all displayed linear differences,
where rsFC decreased between the thalamus and both cortical
attention and sensory/motor networks with increasing age.
Subcortically, between cerebello-striatal-thalamic circuits largely
increased in rsFC with increasing age (Fig. 4B). Additionally, 26
connectivities between cortical networks, subcortical structures,

and cerebellum, and 5 within and between subcortical structures
and cerebellum displayed significant non-linear age-related
differences (Fig. 4A). Non-linear between cortico-subcortical
rsFC largely occurred between subcortical structures and
cortical sensory, motor, and attention networks with periods of
significantly decreasing connectivity (Supplementary Fig. S3).
In contrast, the nucleus accumbens exhibited periods of both
increasing rsFC with sensory/motor networks from childhood
to early adolescence and decreasing rsFC with sensory/motor
networks for a short period during middle adolescence. Non-
linear age-related differences within subcortical rsFC were
exclusive to within the AMYG, HIP, and CB, as well as between
the AMGY-CB and HIP-CB (Fig. 5B and Supplementary Fig. S4).

To illustrate connectivity differences by discrete developmen-
tal stage, we performed a series of supplementary analyses. See
Supplementary Materials for complimentary results and associ-
ated figures (Supplementary Statistical Analyses and Results and
Supplementary Figs. S5A–C and S6).

Age-related differences in PC
PC associations with age were estimated for the 12 Gordon net-
works, 7 subcortical structures, and the cerebellum. Four network
PCs (VIS, SmB, SmH, and AUD) displayed non-linear differences
(Fig. 6). Amygdala and hippocampal PC age-related differences
were also non-linear. Periods of significant change identified from
posterior simulations of the first derivative of the spline term
“age” are displayed in Supplementary Fig. S7 and show a signif-
icant decrease in rsFC between AMYG-CB from 12 to 21 years.
Additionally, between HIP-CB rsFC displayed an initial period of
increasing connectivity from 8 to 12 years followed by a period of
decreasing connectivity from 18 to 20 years.

Significant linear decreases in network PC across our sampled
age span were seen in the DMN, PON, SAL, MPN, DAN, and VAN
(Fig. 7). Subcortically, NAc and PAL PCs displayed significant linear
decreases with age. In contrast, CN, THA, and CB PCs displayed
significant linear increases with age (Fig. 7B). Results were FDR-
corrected for multiple comparisons.

Sex moderates the relationship between age and
putamen PC
There was a significant interaction between age and sex for puta-
men PC (β = −0.60, q = 0.002.) To decompose this interaction, sim-
ple slopes were examined. Males displayed a significant increase
in putamen integration (i.e. increasing PC) as they aged (t = 3.25,
P < 0.001). There was no significant difference in putamen PC with
age for females (t = −1.95, p = 0.05) (Fig. 8). There were no other
significant age by sex interactions for rsFC or PC.

Discussion
The present study evaluated age-related differences in within-
and between-network rsFC and network-level PC. Current liter-
ature reports conflicting results regarding the directionality of
functional connectivity developmental differences (Hwang et al.
2013; Satterthwaite et al. 2013; Gu et al. 2015; Gracia-Tabuenca
et al. 2021). Although sample composition and other method-
ological differences may influence these diverging results, testing
brain maturation trajectories for non-linearity can potentially
reduce these biases (Zuo et al. 2017). Development is complex and
does not unfold in fixed, uniform epochs. With this knowledge, it
is important that we statistically treat these processes as such and
acknowledge that patterns of age-related difference may reveal
significant mechanistic information (e.g. plasticity of network
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Fig. 2. (A) Age by sex sample distribution. (B) Gordon 333 parcellation adapted from Gordon et al. (2016). (C) Linear within-network age-related differences
in rsFC of the six networks with a statistically significant (FDR-corrected) linear relationship with age. (D) Non-linear within cortical network age-related
differences in rsFC for the 6 networks with a statistically significant non-linear relationship with age, based on a restricted likelihood ratio test of the
GAM. rsFC, resting state functional connectivity. Shaded bands around lines represent 95% confidence interval. Scatterplots represent differences in
rsFC as a function of age and do not account for covariates.

Fig. 3. Non-linear between cortical network rsFC. DMN, default mode network; PON, parieto-occipital network; FPN, frontoparietal network; SAL, salience
network; CON, cingulo-opercular network; MPN, medial parietal network; DAN, dorsal attention network; VAN, ventral attention network; VIS, visual
network; SmH, somatomotor hand network; SmM somatomotor mouth network; AUD, auditory network; rsFC, resting state functional connectivity.
Shaded bands around lines represent 95% confidence interval. Scatterplots represent differences in rsFC as a function of age and do not account for
covariates.
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Fig. 4. (A) Linear correlation matrix of age with between cortico-subcortical rsFC. (B) Linear correlation matrix of age with within- (main diagonal)
and between-subcortical network (below diagonal) rsFC. Colored boxes and legend represent standardised beta values. Black outlined boxes represent
non-linear relationships with age, which were modeled linearly here for comparison. ∗FDR-corrected q-values, q < 0.05; ∗∗q < 0.01; ∗∗∗q < 0.001. DMN,
default mode network; PON, parieto-occipital network; FPN, frontoparietal network; SAL, salience network; CON, cingulo-opercular network; MPN,
medial parietal network; DAN, dorsal attention network; VAN, ventral attention network; VIS, visual network; SmB, somatomotor body network; SmH,
somatomotor head network; AUD, auditory network; AMYG, amygdala; HIP, hippocampus; NAc, nucleus accumbens; CN, caudate nucleus; PAL, pallidum;
PUT, putamen; THA, thalamus; CB, cerebellum.

Fig. 5. (A) Non-linear differences between cortico-subcortical and cortico-cerebellum rsFC. Plots are aggregated by subcortical region. (B) Non-linear
differences within and between subcortico-cerebellum rsFC. rsFC, resting-state functional connectivity. Shaded bands around lines represent 95%
confidence interval.

malleability with increasing age; Ailion et al. 2022). Therefore,
we estimated linear and non-linear age-related differences in
rsFC and integration. Six main observations emerged from this
study: (i) within- and between-network connectivity displayed
both linear and non-linear age-related differences; (ii) within-
network rsFC in cognitive control networks (i.e. DMN, FPN,
and CON) increased from childhood to early adolescence,
whereas from middle to late adolescence, within-network rsFC

for many association networks (i.e. PON, MPN, SAL, CON, and
DAN) decreased; (iii) between-network rsFC of cortical networks
and subcortical regions varied significantly by developmental
stage, where sensorimotor networks increased in rsFC with the
amygdala and hippocampus at each stage of development but
decreased in rsFC with cerebellar-striatal-thalamic circuits from
early to late adolescence; (iv) network-level PC largely displayed
linear age-related differences, with the exception of non-linear
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Fig. 6. Non-linear differences in cortical and subcortical PC. PC, participation coefficient. Shaded bands around lines represent the 95% confidence
interval.

differences in the visual, somatomotor body, somatomotor head,
and auditory networks and subcortically in the hippocampus
and amygdala; (v) differences in PC mostly occurred between
childhood to early adolescence; and (vi) males displayed a
significant increase in putamen integration over our sampled age
span.

Age-related differences in rsFC
Our results show both linear and non-linear age-related dif-
ferences in rsFC. Non-linear within-network differences were
observed in cognitive control and visual networks and included
the default, frontoparietal, cingulo-opercular, medial parietal,
dorsal attention, and visual networks. The default, frontopari-
etal, cingulo-opercular, dorsal attention, and visual networks
increased significantly in within-network rsFC from our earliest
sampled age of 8 to 11–13 years (Fig. 2). Similar increases in
within-network rsFC have been reported previously through the
early adolescent period (van Duijvenvoorde et al. 2016; Jiang et al.
2018; Fan et al. 2021) and might reflect enhanced specialisation
and segregation of neural circuits that facilitate internal
cognition, such as working memory, and control of executive
functions. During childhood and adolescence, the ability to
exercise cognitive control increases, though its development is
highly protracted and continues into adulthood (Somerville and
Casey 2010). Our results support the current literature regarding
observed increases in connectivity within control networks during
this developmental period. However, we found that these age-
related patterns were non-linear in nature, potentially reflecting
more complex age-related periods of functional refinement. As
participants reached late adolescence, we found evidence for
decreased within-network rsFC by the developmental stage. These
differences were exclusive to executive and attentional control
networks. This pattern has previously been documented in other
developmental rsFC studies and has been hypothesised to mirror
the pruning and refinement of signal transmission (Stevens et al.
2009; Uddin et al. 2011; Marek et al. 2015).

Cortically, non-linear age-related differences in connectivity
were observed between higher-order cognitive networks and
between primary sensory and motor networks (Fig. 3). The human
brain is a complex non-linear system in which age-related
changes are adaptive, dynamic, and variable (Bullmore and
Sporns 2009; Hutka et al. 2013). Connectivity between spatially
distinct networks may provide the foundation for information
processing. These complex systems and their functions are
ultimately shaped by interactions between their component
parts, which modify with age as a product of experience. In the
present study, non-linear and linear cortico-cortical connectivity
differences observed between cognitive networks varied by
developmental stage, largely decreasing in strength. This pattern
might be indicative of age-related increases in connection
efficiency (Cherniak 1994; Achard and Bullmore 2007). However,
between sensory, motor, and attention network connectivity
displayed a generally increasing trend, both linearly and non-
linearly, over our age span (Figs. 1 and 3). This was particularly
apparent from middle to late adolescence (Fig. 3). Significant
non-linear rsFC increases between primary networks during this
developmental period were exclusive to between VIS and SmH,
SmB, and AUD networks (Supplementary Fig. S2). This suggests
increased differentiation of a sensory and motor circuit during
the latter part of adolescence. Váša et al. (2020) found that
sensory and motor regions were strongly connected by age 14 but
continued to increase into early adulthood, ultimately reflecting
a conservative (e.g. prolonged) maturation.

Cortico-subcortical age-related differences in rsFC also
displayed variable patterns (Figs. 4 and 5). Interestingly, many
non-linear cortical–subcortical connectivity differences were
observed between subcortical regions and primary sensorimotor
and attention networks. This suggests that some long-range
connections between primary cortical networks and subcortical
regions mature non-incrementally, with variable periods of
significant increases and decreases in connectivity. Significant
linear age-related differences in rsFC also occurred largely
between cortical primary sensorimotor and attention networks

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad011/7021933 by W

ashington U
niversity at St Louis user on 06 February 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad011#supplementary-data


Ashley Sanders et al. | 9

Fig. 7. (A) Linear differences in cortical PC. All plots represent significant linear differences that passed FDR correction. (B) Linear differences in
subcortical PC. All plots represent significant linear differences that passed FDR correction. PC, participation coefficient; shaded bands around lines
represent the 95% confidence interval.

and subcortical regions. From childhood to early adolescence, sen-
sorimotor and auditory networks increased in connectivity with
the amygdala, hippocampus, and nucleus accumbens (Fig. 5A
and Supplementary Fig. S5B). With the exception of the nucleus
accumbens, these connections continued to increase from early
to middle adolescence and again from middle to late adolescence.
Communication between the hippocampus and amygdala with
sensory and motor regions is hypothesised to support the
modulation of subjective sensorial experiences induced by
emotions (Toschi et al. 2017). These networks co-activate during
emotion processing, potentially facilitating action readiness and
adaptive responses to affective stimuli (de Gelder et al. 2004;
Pichon et al. 2009; Schürmann et al. 2011; Grèzes et al. 2014).

Connectivity between these networks starts to mature prior
to childhood and shapes social-emotional behaviors (Gabard-
Durnam et al. 2018). Our results suggest that communication
between these circuits continues to strengthen into late ado-
lescence, reflecting developmental stimulus-response learning
that guides appropriate behavioral reactivity to environmental
conditions. Conversely, we found decreased rsFC between
sensory and motor networks and cerebellar-striatal-thalamic
circuits. This was particularly evident from early to middle
adolescence and again from middle to late adolescence. Col-
lectively, these networks communicate to support goal-directed
behaviors, movement execution, and habit formation (Doyon
et al. 2003; Rădulescu et al. 2017). The observed developmental
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Fig. 8. The moderating role of sex in the relationship between putamen
PC and age.

stage-dependent decreases in rsFC between these networks in the
present study suggest significant connection refinement, where
communication becomes increasingly efficient with age.

Subcortically and in the cerebellum, rsFC displayed non-
linear age-related differences between the hippocampus and
cerebellum, and between the amygdala and cerebellum (Fig. 5B).
From middle to late adolescence, rsFC between the amygdala
and cerebellum decreased significantly. A small (n = 15)
study published in 2018 by Habas described an intrinsically
connected network between the cerebellum and amygdala
in adults, and suggested that this circuit may be implicated
in sensorimotor, emotional, and motivational assimilation of
somatosensory stimuli (Habas 2018). Therefore, our results
suggest that circuits involved in such integrations mature into
late adolescence, supporting cognitive processes involved in
information processing. Striatal-thalamic regions increased in
connectivity with the cerebellum at each stage of development,
particularly from early to middle adolescence and from middle to
late adolescence (Fig. 4B and Supplementary Fig. S5B). Animal
models have provided support for the idea that cerebellar-
striatal circuitry is mediated by nuclei in the thalamus (Ichinohe
et al. 2000). While regions involved in these circuits support
sensory and motor control, they are also critical for cognitive
functions, language processing, and affective control (Doya
2000; Laforce and Doyon 2001; Booth et al. 2007; Ide and Li
2011). These processes are developmentally complex and display
increased efficiency through adolescence and early adulthood
(Kail and Ferrer 2007; Luna et al. 2010; Kar et al. 2013). Taken
together, the observed increases in cerebellar-striatal-thalamic
rsFC complement the developmental maturation of behaviors
associated with these circuits.

Age-related differences in network integration
Cortical and subcortical PCs displayed both linear and non-linear
differences over our age span. Cortically, non-linear age-related
differences included visual, somatomotor head, somatomotor
body, and auditory networks (Fig. 6). The non-linear nature of cor-
tical sensory and motor network integration (as measured by PC)
was similarly seen in their between-network rsFC strength. These

results point to periods of visual, auditory, and somatomotor head
network segregation (e.g. network nodes linking primarily to other
nodes within their home network) and a period of somatomotor
body integration (e.g. network nodes establishing links to other
networks). Visual, auditory, and somatomotor head network
segregation largely occurred from childhood to early adolescence
and suggests that this developmental period is characterised
by sensorimotor circuit modularisation (Supplementary Fig. S7).
These results are supported by the current literature, which
indicates that primary sensory and motor regions are relatively
specialised prior to childhood (Lyall et al. 2015; Gao et al.
2017, 2019; Grayson and Fair 2017). Significant linear age-
related decreases in cortical PC were observed in the default,
parieto-occipital, salience, medial parietal, and ventral attention
networks (Fig. 7A). These cortical networks appear to become
increasingly segregated from childhood through late adolescence,
potentially reflecting within-network fine-tuning of specialised
functions.

Subcortically, non-linear PC differences were observed in the
amygdala and hippocampus (Fig. 6). Significant decreases in
PC for these areas were mainly observed during the transition
from childhood to early adolescence—a pattern similarly noted
in cortical networks. This early segregation coupled with the
observed non-linear age-related differences in PC suggests
a pattern by which primary sensory and motor networks,
hippocampus, and amygdala increase nodal connectivity within
their home networks but vary in their integration with outside
networks through adolescence. Alternatively, the caudate,
thalamus, and cerebellum displayed linearly increasing integration
with remote networks (Fig. 7B). These results are consistent
with prior studies showing that both subcortical structures and
the cerebellum contain integrative hubs (Hwang et al. 2017;
Garrett et al. 2018; Greene et al. 2020). Greene et al. (2020)
found that the caudate and thalamus were highly integrated
with the default and control networks and suggested that
this integration may occur via cortico-striato-thalamo-cortical
loops. Supporting this hypothesis, we found that cerebellar-
striato-thalamic circuits increased in connectivity with the
default, parieto-occipital, and medial parietal networks from
early to middle adolescence and again from middle to late
adolescence. These hubs are ultimately integral for large-
scale systems that support stimulus feedback and higher-order
cognition.

Finally, we found a significant moderating effect of sex in the
relationship between age and putamen PC. Specifically, putamen
integration significantly increased with age for males. There was
no significant difference in putamen PC over the age span for
females. The extant literature points to differential trajectories of
putamen development by sex, though these findings are primarily
volumetric in nature. Wierenga et al. (2018) found that in a sample
aged 3–21 years, males showed greater variability in putamen
volume than did females. They postulated that these differences
may relate to male-biased disorders, such as schizophrenia. Taken
together, these results provide support for male-specific differ-
ences in putamen development warranting further research into
both mechanisms by which this may occur and behavioral and/or
clinical relevance.

Regarding statistical versus clinical significance, most of our
findings are small in effect size (see Supplementary Fig. S1 and
S2). Although results reported here are statistically significant
and survived correction for multiple comparisons, further inves-
tigation is necessary to evaluate whether these differences have
behavioral or cognitive implications.
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rsFC and PC—incongruencies?
Readers might wonder why some networks, such as the parieto-
occipital, displayed age-related decreases (or increases) in both
within-network rsFC and PC. Although this could be interpreted
as inconsistent, it is important to consider certain confounds
and mathematical properties inherent to such measures. First, PC
considers both the between and within network weights in its cal-
culation. One can have both decreasing within-network rsFC and
decreasing between-network PC if the decreases between networks
are larger than the decreases within. Additionally, while rsFC
quantifies the magnitude of the node’s correlation, PC measures
the diversity/distribution of the node’s connections (Power et al.
2013). Second, rsFC is strongly related to a network’s community
size (Bertolero et al. 2017). The parieto-occipital network, for
example, is comprised of eight parcels in total, making it among
the smaller Gordon networks. These factors can result in (i) a weak
or non-significant correlation between network rsFC and PC, and
(ii) a correlation that is positive or negative. We therefore argue
that these considerations (among others) make the seemingly
contradictory rsFC and PC results for some communities possible
and, in some cases, likely.

Limitations
A primary limitation of the present study is its cross-sectional
design. This precluded us from analyzing within-person changes
in rsFC and PC across our age span, which is necessary for
capturing true developmental change. However, longitudinal data
collection is now complete in the HCP-D and thus a longitudinal
analysis will be possible in the future once all imaging sessions
are processed. A second limitation is that participants younger
than 8 years of age were excluded from the present study due to
differences in collection protocol (Harms et al. 2018). Furthermore,
some primary sensory and motor regions reach maturity during
the first 2 years of life (Lyall 2014; Gao et al. 2019). Thus, we
were unable to characterise developmental differences prior to
age 8 that likely contribute to maturational differences. Third,
children have a higher propensity for movement while in the
scanner, sometimes resulting in spurious functional connectiv-
ity effects. Although we implemented rigorous motion control,
motion-related effects on rsFC might still impact the observed
age-related differences in functional connectivity.

Conclusions
The results presented here illustrate unique information about
linear and non-linear differences within- and between-network
resting-state connectivity and network integration. Prior work
characterising these age-related modifications has largely either
assumed a linear change over development or modeled non-linear
change with polynomials. Here, we used GAM, which uses local
penalised spline bases to flexibly adapt to data. These are not
restricted to global polynomial bases which can be too inflexible
for modeling non-linearity (Wood 2001). We found evidence for
both linear and non-linear differences in connectivity cortically,
subcortically and in the cerebellum from ages 8 to 21 years. Corti-
cally, within-network rsFC increased in higher-order cognitive net-
works from childhood to early adolescence and decreased from
middle to late adolescence, whereas between-network connec-
tivity showed variable patterns across the developmental period.
Primary sensory networks increased in rsFC with the amygdala
and hippocampus at each developmental stage and decreased
in rsFC with cerebellar-striatal-thalamic circuits from early to

late adolescence. Subcortically, rsFC between the cerebellum and
striatal-thalamic networks increased at each stage of develop-
ment.
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ome.org/study/hcp-lifespan-development/document/hcp-develo
pment-20-release. This release includes cross-sectional visit
1 (V1) preprocessed structural and functional imaging data,
unprocessed V1 imaging data for all included modalities
(structural, resting state fMRI, task fMRI, diffusion, and ASL), and
non-imaging demographic and behavioral assessment data from
652 HCP-Development (HCP-D, ages 5–21) healthy participants.
This manuscript used data from 628 HCP-D, some of which are
not currently available for download.
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Váša F, Romero-Garcia R, Kitzbichler MG, Seidlitz J, Whitaker KJ,
Vaghi MM, Kundu P, Patel AX, Fonagy P, Dolan RJ, et al. Con-
servative and disruptive modes of adolescent change in human
brain functional connectivity. Proc Natl Acad Sci USA. 2020:117(6):
3248–3253. https://doi.org/10.1073/pnas.1906144117.

Wickham H. ggplot2: elegant graphics for data analysis. New York, NY:
Springer-Verlag; 2016. ISBN 978-3-319-24277-4, https://ggplot2.
tidyverse.org.

Wierenga LM, Sexton JA, Laake P, Giedd JN, Tamnes CK. Pediatric
Imaging Nu, and Genetics Study. A key characteristic of sex
differences in the developing brain: Greater variability in brain
structure of boys than girls. Cereb Cortex. 2018:28(8):2741–2751.

Wig GS. Segregated Systems of Human Brain Networks. Trends
Cogn Sci. 2017:21(12):981–996. https://doi.org/10.1016/j.tics.2017.09.
006.

Wood SN. Mgcv: GAMs and generalized ridge regression for R. R news.
2001:1(2):20–25.

Wood SN. Stable and efficient multiple smoothing parameter
estimation for generalized additive models. J Am Stat Assoc.
2004:99(467):673–686.

Wood SN. Generalized additive models: an introduction with R. Boca
Raton, London, New York: Chapman and Hall/CRC; 2006.

Wood S. Generalized additive models: An introduction with r. Gener-
alized Additive Models. 2017:10:9781315370279.

Zuo XN, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP. Human
connectomics across the life span. Trends Cogn Sci. 2017:21(1):
32–45. https://doi.org/10.1016/j.tics.2016.10.005.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad011/7021933 by W

ashington U
niversity at St Louis user on 06 February 2023

https://doi.org/10.1002/hbm.20673
https://doi.org/10.1002/hbm.20673
https://doi.org/10.1371/journal.pbio.1000157
https://doi.org/10.1016/j.neuroimage.2010.04.009
https://doi.org/10.1016/j.dcn.2014.09.001
https://doi.org/10.1111/ejn.13544
https://doi.org/10.1523/JNEUROSCI.4465-11.2011
https://doi.org/10.1016/j.neuroimage.2015.04.069
https://doi.org/10.1016/j.neuroimage.2015.04.069
https://doi.org/10.1073/pnas.1906144117
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.1016/j.tics.2017.09.006
https://doi.org/10.1016/j.tics.2016.10.005

	 Age-related differences in resting-state functional connectivity from childhood to adolescence
	 Introduction
	 Materials and methods
	 Results
	 Discussion
	 Conclusions
	 Acknowledgments
	 CRediT authors statement
	 Supplementary material
	 Funding
	 Data availability


