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Abstract
Studies demonstrate that individuals with diagnoses for Major Depressive Disorder (MDD), Post-traumatic Stress Disorder 
(PTSD), and Schizophrenia (SCZ) may exhibit smaller hippocampal gray matter relative to otherwise healthy controls, 
although the effect sizes vary in each disorder. Existing work suggests that hippocampal abnormalities in each disorder may 
be attributable to genetic liability and/or environmental variables. The following study uses baseline data from the Adoles-
cent Brain and Cognitive DevelopmentSM Study (ABCD StudyⓇ ) to address three open questions regarding the relationship 
between genetic risk for each disorder and hippocampal volume reductions: (a) whether polygenic risk scores (PGRS) for 
MDD, PTSD, and SCZ are related to hippocampal volume; (b) whether PGRS for MDD, PTSD, and SCZ are differentially 
related to specific hippocampal subregions along the longitudinal axis; and (c) whether the association between PGRS for 
MDD, PTSD, and SCZ and hippocampal volume is moderated by sex and/or environmental adversity. In short, we did not 
find associations between PGRS for MDD, PTSD, and SCZ to be significantly related to any hippocampal subregion vol-
umes. Furthermore, neither sex nor enviornmental adversity significantly moderated these associations. Our study provides 
an important null finding on the relationship genetic risk for MDD, PTSD, and SCZ to measures of hippocampal volume.
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Introduction

Hippocampal abnormalities are associated with a host of 
mental disorders (Heckers and Konradi 2015; Belleau et al. 
2019). The hippocampus plays a critical role in learning, 
memory, and stress responsivity, and as a result hippocampal 
abnormalities in clinical populations are thought to convey 
etiological information about the ultimate causes and con-
sequences of mental illness (Lisman et al. 2017; McEwen 

2012). Studies demonstrate that individuals with diagno-
ses for Major Depressive Disorder (MDD), Post-traumatic 
Stress Disorder (PTSD), and Schizophrenia (SCZ) may 
exhibit smaller hippocampal gray matter relative to other-
wise healthy controls (Schmaal et al. 2020; van Erp et al. 
2016; Logue et al. 2018), although the effect sizes vary in 
each disorder (Cohen’s d: SCZ = −0.46; PTSD = −0.17; 
MDD = −0.14). Existing work suggests that hippocampal 
abnormalities in each disorder may be attributable to genetic 
liability (Frodl et al. 2012; Gilbertson et al. 2002; Grotzinger 
et al. 2022) and/or environmental variables (Kronmüller 
et al. 2008; Mondelli et al. 2011).

Current knowledge regarding the relationship between 
MDD, PTSD, SCZ and hippocampal volume reductions 
is limited by several open questions. First, although hip-
pocampal volume is highly heritable in populations of 
healthy adults (Elman et al. 2019; Patel et al. 2017: ∼ 80%), 
it is not clear to what extent these findings translate to clini-
cal populations. Environmental adversity can influence the 
heritability of a phenotype in a population (Harden 2021; 
Rimfeld et al. 2018), and those with MDD, PTSD, and SCZ 
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tend to have experienced more environmental adversity rela-
tive to healthy populations (Hammen 2005; Werner et al. 
2007; Agerbo et al. 2015). Thus it is unclear whether indi-
vidual differences in genetic loci may explain hippocampal 
volume reductions in MDD, PTSD, and SCZ in the same 
way that they do in healthy populations. Second, although 
hippocampal volume is reduced in MDD, PTSD, and SCZ, 
it is unclear to what extent hippocampal volume reductions 
in each of these disorders might reflect either a shared neu-
robiological mechanism that is common across disorders, or 
a set of unique neurobiological mechanisms that are specific 
to each respective disorder. Individual differences in genetic 
risk loci for MDD, PTSD, and SCZ may capture shared and 
unique elements of the neurobiological mechanisms that 
produce hippocampal volume reductions in these disorders. 
Thus, genetically-informative studies may provide some 
clarity regarding the source of hippocampal volume reduc-
tions across MDD, PTSD, and SCZ. Lastly, it is unclear to 
what extent the genetic relationship between MDD, PTSD, 
and SCZ and hippocampal volume may be moderated by 
variables such as sex or exposure to stress (Walker and Difo-
rio 1997; McKeever and Huff 2003; Colodro-Conde et al. 
2018).

The following study addresses these three open questions 
by applying polygenic risk scores (PGRS) to understand 
genetic contributions to hippocampal volume measure-
ments from the Adolescent Brain and Cognitive Develop-
ment (ABCD) study. A polygenic risk score is a measure of 
genetic risk that can be computed for an individual based 
on the weighted sum of common variant, genetic-risk loci 
that individual possesses; the relative weighting of genetic 
loci is determined by available genome wide association 
study (GWAS) summary statistics. Thus, PGRS offer a way 
to capture genetic risk in an individual without the use of a 
GWAS or family-based study design. Consequently, this tool 
offers an opportunity to investigate open questions regarding 
the relationship between individual differences in genetic 
risk for MDD, PTSD, and SCZ and associations with hip-
pocampal volume.

At present, it is not clear whether there is a link between 
the genetic contributions to MDD, PTSD, and SCZ and 
reductions in hippocampal volume. It is reasonable to 
hypothesize that such a link exists, though, given that each 
disorder is significantly heritable on the one hand, and hip-
pocampal volume is also significantly heritable on the other 
(Elman et al. 2019; Patel et al. 2017: ∼ 82%). Twin and 
family-based study designs find that SCZ is generally the 
most heritable condition of the three disorders (SCZ: Cardno 
et al. 1999: 80%; Hilker et al. 2018: 79%), while there are no 
clear differences in the magnitude of heritability estimates 
between PTSD (Sartor et al. 2012: 46%; Sartor et al. 2011: 
72% [all-female sample]), and MDD (Bierut et al. 1999: 
36–44%; Guffanti et al. 2016: 67%; Kendler et al. 1993: 

70%). When considering GWAS, SNP-based heritability 
estimates are somewhat higher for SCZ (Baselmans et al. 
2021: 26%) than PTSD (Duncan et al. 2018: 15%) and MDD 
(Duncan et al. 2018: ∼22%; Baselmans et al. 2021: 11%). 
Existing work, however, suggests that SNP-based heritability 
estimates are much higher for PTSD in females than in males 
( Duncan et al. 2018, female: 29%; male: not-significant). In 
summary, the existing literature clearly demonstrates that 
genetic inheritance confers a significant amount of risk for 
each disorder. This suggests that phenotypes associated with 
each disorder (e.g., hippocampal volume) may share at least 
some common genetic correlates with risk for each respec-
tive disorder.

Some studies have investigated links between PGRS for 
MDD, PTSD, and SCZ and hippocampal volume, how-
ever, findings from these studies are mixed: some studies 
find associations between PGRS and hippocampal volume 
(Alnæs et al. 2019; Harrisberger et al. 2016; Jalbrzikowski 
et al. 2019; Liu et al. 2020), while others fail to demon-
strate such relationships (Reus et al. 2017; null genetic 
correlations: Bahrami et al. 2022; Grotzinger et al. 2022). 
Several factors may be contributing to the lack of consist-
ency regarding these findings. First, PGRS-based studies of 
hippocampal volume typically treat the hippocampus as a 
homogeneous structure. The hippocampus, however, is com-
posed of various “subregions”, which delineate discrete sub-
sections of the hippocampus along its longitudinal axis, and 
“subfields,” which delineate discrete subsections of the hip-
pocampus along its transverse axis (Genon et al. 2021). Fur-
thermore, certain hippocampal subregions are thought to be 
uniquely affected in certain disorders (McHugo et al. 2018, 
2020), and some subregions may be uniquely associated 
with risk for developing a disorder (Sahakyan et al. 2021). 
Thus, PGRS-based studies of hippocampal volume may miss 
important subregion-specific associations by only investi-
gating total hippocampal volume. In addition, PGRS-based 
studies of hippocampal volume may also miss important 
developmental influences. For instance, PGRS-based studies 
of hippocampal volume are often conducted in populations 
of varying ages, with some studies including participants 
with decades of age difference (Reus et al. 2017; also see 
Bahrami et al. 2022; Grotzinger et al. 2022). For some disor-
ders, however, hippocampal volume reductions are thought 
to be caused by developmentally-specific neurobiological 
processes, which may not have yet occurred in all individuals 
of a given study’s sample. For instance, hippocampal volume 
reductions in SCZ are thought to be influenced by NMDA 
receptor dysfunction, which causes excitotoxic dysregula-
tion of pyramidal cell firing in the hippocampus (Lieberman 
et al. 2018), but this may only occur in post-pubertal adults 
(Olney et al. 1999). Hippocampal volume reductions in other 
disorders (e.g PTSD, MDD) are thought to be mediated by 
less developmentally specific neurobiological processes, 
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such as stress-induced HPA-axis dysregulation (Belleau 
et al. 2019; McEwen 2012; Dunsmoor et al. 2022). The fol-
lowing study investigates relationships between PGRS and 
specific hippocampal subregions, and does so in a sample 
of individuals that are all within 2 years old of one another. 
As our study is more homogeneous with respect to age, we 
may be better equipped to demonstrate relationships between 
PGRS for MDD, PTSD, and SCZ and hippocampal volume 
than previous PGRS-based studies.

It is currently not clear whether hippocampal volume 
reductions in MDD, PTSD, and SCZ are the product of com-
mon or unique neurobiological mechanisms; although our 
study does not directly measure the components of these 
neurobiological processes in those with MDD, PTSD, or 
SCZ, our study may nevertheless be able to provide insight 
through the use of PGRS. Recent Genomic SEM (Grotzinger 
et al. 2019) analyses have demonstrated that the genetic fac-
tor that captures the most variance in genetic risk for PTSD 
and MDD is largely separable from the genetic factor that 
captures genetic risk for SCZ (Grotzinger et al. 2022. As a 
result, it is possible that PGRS for SCZ may be associated 
with hippocampal volume estimates, while PGRS for PTSD 
and MDD may not demonstrate such associations (or vice 
versa). This may be expected given that different neurobio-
logical mechanisms may be accounting for hippocampal vol-
ume reductions in SCZ (Lieberman et al. 2018; Olney et al. 
1999), relative to MDD and PTSD ((Belleau et al. 2019; 
McEwen 2012; Dunsmoor et al. 2022). On the other hand, 
other evidence suggests that dysregulation in glutamatergic 
and GABAergic systems may represent a common mecha-
nism of hippocampal volume reductions in MDD, PTSD, 
and SCZ (Heckers and Konradi 2015; Belleau et al. 2019). If 
this is the case, we might expect PGRS from each disorder, 
to the extent that they relate to such common mechanisms, 
to be similarly related to hippocampal volume. Although 
our study will not be able to directly test whether different 
neurobiological mechanisms are accounting for hippocampal 
volume reductions in MDD, PTSD, and SCZ, our investiga-
tions of PGRS for each of these disorders and hippocampal 
subregion volumes may provide additional insight regarding 
this consideration.

It is also possible that the genetic link between MDD, 
PTSD, SCZ, and hippocampal volume may be moderated by 
other variables. For instance, as previously mentioned, sex 
may moderate the influence of genetic variables on disease 
risk. This hypothesis is supported by evidence that PTSD 
is more heritable in women than men (Duncan et al. 2018), 
as well as evidence that SCZ may be more prevalent in men 
than women (Abel et al. 2010). In addition, the genetic 
link between MDD, PTSD, SCZ, and hippocampal volume 
may be moderated by exposure to environmental adversity. 
This is the premise of the diathesis-stress model (Rosenthal 
1963), which proposes that psychopathological outcomes are 

the result of multiplicative interactions between genetic risk 
factors and environmental stressors. There has been broad 
support for this theory in SCZ (Pruessner et al. 2017), PTSD 
(McKeever and Huff 2003), and MDD (Colodro-Conde et al. 
2018). In addition, numerous studies have demonstrated the 
influence of chronic stress on hippocampal gray matter (e.g 
McEwen, 2012; Taylor et al. 2020). It is thus possible that 
genetic risk for MDD, PTSD, and SCZ may interact with 
exposure to environmental stressors in order to predict rela-
tive reductions in hippocampal volume. In this case, one 
might hypothesize that PGRS for several forms of psycho-
pathology may be more predictive of hippocampal volume 
reductions in the context of adversity.

The following study provides a cross-sectional investi-
gation of the above three questions through the analysis of 
4,619 participants from the Adolescent Brain and Cognitive 
DevelopmentSM Study (ABCD StudyⓇ ). First, mixed-effects 
regression analyses were used to investigate the relationships 
between PGRS for MDD, PTSD, and SCZ, and subregions 
of the hippocampal longitudinal axis. This is the first study 
to investigate PGRS for these disorders in hippocampal lon-
gitudinal axis regions. Previous studies have investigated 
associations between PGRS and hippocampal transverse axis 
subregions (Alnæs et al. 2019), however recent work sug-
gests that hippocampal transverse axis segmentations may 
be invalid when using conventional MRI imaging parameters 
(Wisse et al. 2014, 2021). Therefore, transverse axis sub-
fields were not analyzed as part of this study. Second, dif-
ferential relationships between PGRS for MDD, PTSD, and 
SCZ and hippocampal subregion volumes were investigated. 
These analyses cannot provide definitive conclusions regard-
ing the mechanisms that give rise to hippocampal volume 
reductions in each disorder, however, these analyses may be 
able to contribute our understanding of these mechanisms. 
Lastly, this study investigated whether PGRS for MDD, 
PTSD, and SCZ interacted with either sex or environmental 
exposures to stress in order to predict hippocampal volume. 
These analyses examined whether hippocampal volume 
reductions commonly seen in MDD, PTSD, and SCZ may 
result from gene-environment interactions.

Materials and methods

Participants

A sample of 11,886 children who completed the baseline 
session of the ABCD Study provided data for this investiga-
tion (release 3.0 for genomic data; release 3.0 for pheno-
typic data). The ABCD Study is an ongoing longitudinal 
study of child development and health that recruited from 22 
research sites across the United States (Volkow et al. 2018). 
Participants who did not have quality controlled T1 and T2 
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structural scans (N =2,249), those whose T1 or T2 structural 
scans failed quality control checks (N = 1,108), and those of 
non-European genomic ancestry (n=5,734) were excluded 
leaving a final primary analytic sample of 4,619 participants 
of European ancestry (EA). We also conducted analyses in 
those of genomically-confirmed African-American ancestry 
(AA: 1063). Discovery GWASs of European (Trubetskoy 
et al. 2022) and African American (Bigdeli et al. 2021) 
ancestries were used to form ancestry specific polygenic risk 
scores (PGRS; see below). No other ancestries were evalu-
ated due to the lack of ancestry-specific discovery GWAS 
across all three phenotypes, the relatively small sample size 
of other ancestries in our ABCD target sample, and the poor 
predictive utility of PGRS applied across ancestries (Duncan 
et al. 2019; Martin et al. 2019).

MRI acquisition and processing

Structural T1- and T2-weighted MRI scans were acquired at 
the baseline session using harmonized pulse sequences (T1: 
TE = 2–2.9 ms, TR = 6.31–2500 ms, T1 = 1,060 ms, flip 
angle = 8 degrees, FOV = 256 x 256, resolution = 1 mm iso-
tropic, slice thickness, slices = 176–225; T2: TE = 60–565 
ms, FOV = 256 x 256, resolution = 1 mm isotropic, slices= 
176–225) across seven 3T MRI scanner models (Siemens: 
Prisma, Prisma Fit; Phillips: Achieva dStream, Ingenia, 
Signa Creator, Discovry MR 750). Acquisition details are 
provided in Casey et al. (2018). The T1 and T2-weighted 
structural scans used for this study were processed by the 
Developmental Cognition and Neuroimaging (DCAN) labs 
as part of the ABCD-BIDS Community Collection (ABCC). 
These methods are described in detail at the following web-
page: https:// colle ction 3165. readt hedocs. io/ en/ stable/.

Hippocampal volume estimation

Segmentation of hippocampal subregions was conducted 
using both T1 and T2 images from the Freesurfer v7.0 auto-
mated hippocampal subfield segmentation tool (Iglesias 
et al. 2015). This tool yields numerous hippocampal subre-
gions as well as an aggregated measure of total hippocampal 
volume. Only the longitudinal axis subregions and total hip-
pocampal volume estimates were utilized; this study did not 
utilize hippocampal volume estimates from transverse axis 
subfields. Thus, this study involved the analysis of twelve 
hippocampal volume estimates: one estimate each for the 
hippocampal head, hippocampal body, hippocampal tail and 
whole hippocampus, with one set of these four estimates 
being obtained for both the left and right hemispheres, and 
an additional set of these four estimates being obtained by 
averaging across hemispheres.The Freesurfer hippocampal 
segmentation tool employs a probabilistic atlas built from 
a combination of 7T ultra-high field resolution, 0.13 mm3 

ex vivo, MRI scans, which were used to isolate hippocampal 
substructures, and a separate dataset of in vivo T1-weighted, 
1 mm, MRI scans of the whole brain, which were used to 
isolate the total hippocampus from surrounding neural struc-
tures (e.g entorhinal cortex, amygdala). The main body of 
this paper utilizes hippocampal subregion measures that are 
averaged across hemispheres, although analyses for left and 
right hippocampal subregions are displayed in the supple-
mentary materials.

Polygenic risk scores

The Rutgers University Cell and DNA repository (now 
known as Sampled) genotyped saliva samples from study 
participants using the Smokescreen array (Baurley et al. 
2016). We used the Rapid Imputation and Computational 
PIpeLIne for Genome-Wide Association Studies (RICO-
PILI; Lam et al. 2019) to perform quality control (QC) on 
the 11,099 individuals with available ABCD Study phase 3.0 
genotypic data, using RICOPILI’s default parameters. The 
10,585 individuals who passed QC checks were matched 
to broad self-report racial groups using the ABCD Study 
parent survey. 6,787 parents/caregivers indicated that their 
child’s race was only “white”, and 5,561 of those individu-
als did not endorse any Hispanic ethnicity/origin. Further, 
we identified 1,675 parents/caregivers who indicated that 
their child’s race was only “black”, and 1,584 of those indi-
viduals did not endorse any Hispanic ethnicity/origin. After 
performing a second round of QC on these sub-samples, 
5,556 non-Hispanic White and 1,584 non-Hispanic Black 
individuals were retained in the analyses. Principal compo-
nent analysis (PCA) in RICOPILI was used to confirm the 
genetic ancestry of these individuals by mapping onto the 
1000 Genomes reference panel, resulting in PCA-selected 
European- and African-ancestry subsets. Each ancestry sub-
set was then imputed to the TOPMed imputation reference 
panel 38. Imputation dosages were converted to best-guess 
hard-called genotypes, and only SNPs with R2 > 0.8 and 
MAF > 0.01 were kept for PGRS analyses.

PGRS were generated using the PRS-CS software pack-
age and the largest available GWASs for schizophrenia, 
depression, and PTSD in European and African American 
ancestries (Ge et al. 2019; see supplementary materials for 
characteristics of GWASs used). PRS-CS assumes a gen-
eral distribution of effect sizes across the genome, and then 
reweights SNPs based on this assumption, their observed 
effect size in the discovery GWAS, and their linkage dis-
equilibrium (LD) before averaging weights for every SNP to 
create a final score. To maximize prediction in the African 
ancestry subset of ABCD, we used PRS-CSx’s (Ruan et al. 
2022) “meta”option 23 to create polygenic risk scores that 
leveraged the larger sample size of the European ancestry 
version of the discovery GWAS by meta-analyzing those 

https://collection3165.readthedocs.io/en/stable/
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weights along with weights from the smaller, ancestry-
matched discovery GWAS. After deriving SNP weights 
using PRS-CS and PRS-CSx, we then used PLINK 1.9’s 
(Chang et al. 2015) –score command to produce PGRS in 
the ABCD sample. We scaled the PGRS to a mean of zero 
and standard deviation of one before including them in 
regression models.

Environmental adversity

Parent self-reported income, trauma exposure, and area dep-
rivation index were used as independent indices of environ-
mental adversity. Parent self-reported income was the com-
bined income of the primary caretaker and any additional 
household members, and was represented on a one-to-ten 
scale, with one representing incomes of less than $5,000 a 
year, and ten representing incomes greater than $200,000 
a year (Barch et al. 2016). Parent-reported child trauma 
exposure was defined as the summation of traumatic events 
endorsed on the 16 yes/no list of traumatic experiences (e.g., 
natural disaster, car accident, sexual abuse, etc.) within the 
Kiddie Schedule for Affective Disorders and Schizophre-
nia (K-SADS; Kaufman et al. 1997). The area deprivation 
index captures 17 factors associated with socioeconomic 
disadvantage given an individual’s home address, including 
median income, educational attainment levels, and rates of 
employment for a given area, among other factors (Kind 
et al. 2014; Kind and Buckingham 2018). Area Depriva-
tion scores in our sample ranged from 0 to 100 (Median 
= 32) with higher scores reflecting greater socioeconomic 
disadvantage (i.e worse socioeconomic status). These indi-
ces were selected due there use in previous studies that have 
investigated relationships between environmental adversity 
and hippocampal volume (Botdorf et al. 2022; Hanson et al. 
2011; Taylor et al. 2020).

Statistical analyses

Linear mixed effects models were used to assess the rela-
tionship between PGRS and hippocampal subregion vol-
umes. Thirty-six models were run; each model analyzed 
the association between one of three PGRS scores and one 
of twelve hippocampal volume measures (i.e the left, right, 
and hemisphere-aggregated hippocampal head, body, tail, 
and whole hippocampus). The influence of participant age, 
participant sex at birth, total brain volume, and each of ten 
ancestral genomic principal components were included as 
covariates in each model. Given that prior work (Kraus et al. 
2019; Bossini et al. 2007; Vermetten et al. 2003, though see 
Vythilingam et al. 2004; Godlewska et al. 2014 for counter-
examples) provides some indication that psychiatric treat-
ment, most notably the use of selective serotonin reuptake 
inhibitors (SSRIs) may be related to hippocampal volume, 

both prenatal SSRI exposures and childhood use of SSRIs 
were included as covariates. These two variables were 
coded as discrete, binary, variables. Approximately 3% of 
the European American (N = 124) and 2% of the African 
American sample (N = 25) reported prenatal exposure to 
SSRIs. Approximately 3% of the European American (N 
= 102) and 2% of the African American sample (N = 16) 
reported childhood SSRI use. In these models, PGRS for 
MDD, PTSD, and SCZ were included as fixed effects, and 
the influence of data collection site was modeled as both a 
random intercept and random slope on the effect of PGRS 
on each hippocampal subregion volume. Participant family 
was not included as a random effect as the majority of our 
sample was composed of families with only one child, which 
precluded estimating the influence of family as a random 
variable. In each model, PGRS were standardized, while all 
other variables were untransformed. In secondary analyses, 
we tested whether PGRS-hippocampal associations (n=36) 
were moderated by environmental adversity (n=3: income, 
trauma exposure, area deprivation index) in 108 additional 
independent models estimating the associations between the 
PGRS-by-environmental adversity interaction terms and hip-
pocampal volumes.Test of statistical significance for each 
effect were performed by using the Sattherwaite degrees of 
freedom method via lmerTest, with multiple comparisons 
being corrected using the Benjamini-Hochberg method, 
which accounts for the false-discovery rate across repeated 
statistical tests (Benjamini and Hochberg 1995).

Results

The associations between PGRS for SCZ, MDD, and PTSD 
and aggregated hippocampal volume measures in those of 
European Ancestry are displayed in Table 1. Associations 
between PGRS, covariates, and volume estimates from the 
left hippocampus, right hippocampus, and aggregated hip-
pocampus are displayed in the supplementary materials 
(Table S2-S4), along with correlations among the predic-
tors (e.g PTSD-PGRS), covariates (e.g sex, Total Brain 
Volume), and outcome measures (e.g left hippocampal 
head) (Table S5). There were no statistically significant 
associations between any of the PGRS and the aggregated 
hippocampal volume measures (displayed in Table 1), or 
between the PGRS and either the left or right hippocampi 
(displayed in Table S2-S4). These null relationships can be 
visualized in the supplementary materials (Figure S1). Fur-
thermore, the effects of PGRS or the effects of PGRS and 
their interactions did not explain more than a tenth of a per-
cent of variance in any of the statistical models ( R2 < 0.001 ). 
These effects contrast with those of the full models, which 
explained a sizeable amount of variance in hippocampal vol-
ume in many cases. The full model explained approximately 
44% of variance in hippocampal head volume ( R2 ≈ 0.44), 
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35% of variance in hippocampal body volume ( R2 ≈ 0.35), 
19% of variance in hippocampal tail volume ( R2 ≈ 0.19), and 
45% of variance in whole hippocampal volume ( R2 ≈ 0.45)

In addition, interactions between PGRS and several 
additional variables on aggregated hippocampal vol-
ume measures are displayed in Table 1. Interactions that 
involved left and right hippocampal measures are dis-
played in the supplementary materials (Table S2-S4). 
There were no statistically significant interactions 
between PGRS for any of the disorders and either sex, 
trauma exposure, income, or area deprivation index. 
This was the case for the left, right, and aggregated hip-
pocampal volume measures. One of the strongest interac-
tions was between the SCZ PGRS and trauma exposure; 
increases in rates of trauma exposure were non -sig-
nificantly associated with decreases in the association 
between SCZ PGRS and the hippocampal head ( � = −0.31 
(0.11); � = 2.73; P value = 0.01). In addition, increases 

in trauma exposure were associated with decreases in the 
association between SCZ PGRS and whole hippocampal 
volume ( � = −0.42 (0.19); � = −2.53; P value = 0.01). 
Although these statistical effects are intriguing, they are 
still considerably above our false discovery rate adjusted 
alpha value ( � ≈ 0.0005).

Sample characteristics and sampling bias

Given the number of null findings, follow up analyses were 
conducted in order to investigate whether sample charac-
teristics may be contributing to possible type II errors. 
For instances, our analyses were necessarily restricted to 
only those with usable MRI data, which may have inad-
vertently removed certain subjects from our sample in a 
way that introduced bias. Independent samples t-tests were 
conducted in order to investigate whether individuals with 
usable-quality T1 and T2 MRI images had lower polygenic 
risk for psychopathology than those whose data failed 

Table 1  PGRS Fixed Effects in sample from European Ancestry from Mixed Effects Models

Schizophrenia Major Depression Post Traumatic Stress Disorder

Beta (Standard Error) T Statistic P Value Beta (Standard Error) T Statistic P Value Beta (Standard Error) T Statistic P Value

Effect of Polygenic Risk Score
 Head 2.31 (4.90) 0.47 0.64 −3.45 (5.04) −0.68 0.50 8.88 (5.20) 1.71 0.09
 Body −1.87 (2.97) −0.63 0.53 −0.49 (3.15) −0.15 0.88 0.47 (3.13) 0.15 0.88
 Tail 0.26 (2.02) 0.13 0.90 1.29 (2.10) 0.62 0.54 −0.73 (2.23) −0.32 0.75
 Whole 0.45 (8.20) 0.06 0.96 −2.93 (8.41) −0.35 0.73 8.54 (8.72) 0.98 0.33
Interaction with Income
 Head 0.00 (0.01) 0.35 0.73 0.00 (0.01) 0.03 0.98 0.01 (0.01) 1.09 0.28
 Body 0.00 (0.01) 0.12 0.90 0.00 (0.01) −0.09 0.93 0.02 (0.01) 1.89 0.06
 Tail 0.01 (0.01) 1.51 0.13 0.01 (0.01) 0.96 0.34 0.01 (0.01) 2.04 0.04
 Whole 0.01 (0.02) 0.63 0.53 0.00 (0.02) 0.22 0.82 0.04 (0.02) 1.83 0.07
Interaction with Sex
 Head 1.97 (2.10) 0.94 0.35 0.02 (1.99) 0.01 0.99 −0.26 (2.42) −0.11 0.92
 Body 0.61 (1.27) 0.48 0.63 −0.87 (1.20) −0.72 0.47 −2.20 (1.47) −1.50 0.13
 Tail −0.60 (0.86) −0.70 0.49 −0.61 (0.81) −0.75 0.45 −1.78 (0.99) −1.81 0.07
 Whole 2.03 (3.52) 0.58 0.57 −1.42 (3.32) −0.43 0.67 −4.21 (4.05) −1.04 0.30
Interaction with Trauma Exposure
 Head −0.31 (0.11) −2.73 0.01 −0.08 (0.11) −0.66 0.51 −0.24 (0.12) −2.02 0.04
 Body −0.12 (0.07) −1.71 0.09 −0.12 (0.07) −1.67 0.10 −0.05 (0.07) −0.74 0.46
 Tail −0.06 (0.05) −1.21 0.23 −0.07 (0.05) −1.41 0.16 −0.01 (0.05) −0.12 0.91
 Whole −0.48 (0.19) −2.53 0.01 −0.25 (0.19) −1.32 0.19 −0.30 (0.20) −1.53 0.13
Interaction with Area Deprivation Index
 Head 7.94 (4.77) 1.66 0.10 5.83 (4.72) 1.23 0.22 −4.34 (4.78) −0.91 0.36
 Body 4.48 (2.89) 1.55 0.12 5.18 (2.86) 1.81 0.07 −0.61 (2.89) −0.21 0.83
 Tail 1.57 (1.94) 0.81 0.42 1.17 (1.92) 0.61 0.54 0.40 (1.95) 0.20 0.84
 Whole 14.07 (7.99) 1.76 0.08 12.08 (7.90) 1.53 0.13 −4.66 (8.00) −0.58 0.56
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quality control procedures. These analyses revealed that 
individuals whose MRI data failed quality control checks 
had significantly higher PGRS for MDD ( � = −3.74, p < 
0.02e− 2, df = 496.53) relative to those whose MRI data 
that passed quality control checks. There were no differ-
ences between these samples with regard to SCZ-PGRS 
( � = −0.54, p-value = 0.59, df = 482.14) or PTSD-PGRS 
( � = −1.78, p-value = 0.07, df = 493.86).

Analysis of African American ancestral group

Although our primary analyses utilized data only from 
those of European Ancestry, secondary analyses were con-
ducted in those of African-American ancestry with valid 
hippocampal volume segmentations (n = 1063). Results 
from these analyses are displayed in Table 2. Similar to 
analyses conducted in those of European ancestry, no 
PGRS score was predictive of hippocampal subregion vol-
ume. These null relationships can be visualized in Supple-
mentary Figure 2, which shows scatter plots of raw scores 
from PGRS and hippocampal volume measures in those of 

African American Ancestry. Given that GWAS summary 
statistics for psychopathology in those of African-Ameri-
can Ancestry were computed using underpowered sample 
sizes, results from these analyses should be interpreted 
with extreme caution.

Discussion

The current study found no evidence that polygenic risk 
for SCZ, MDD, or PTSD and their interactions with adver-
sity during early life (i.e., income, trauma, area depriva-
tion) are associated with hippocampal volumes during 
middle childhood. Despite the large heritability of hip-
pocampal volume (Elman et al. 2019; Patel et al. 2017: 
∼ 80%), and the association of hippocampal volume with 
MDD, PTSD, and SCZ, which are also largely heritable 
(Baselmans et al. 2021), genetic liability to SCZ, MDD, 
and PTSD, as captured through the use of contemporary 
polygenic risk scores, does not seem to be shared with hip-
pocampal volume during early life. It remains possible that 
these null findings are developmentally constrained or are 

Table 2  PGRS Fixed Effects in sample from African American Ancestry from Mixed Effects Models

Schizophrenia Major Depression Post Traumatic Stress Disorder

Beta (Standard Error) T Statistic P Value Beta (Standard Error) T Statistic P Value Beta (Standard Error) T Statistic P Value

Effect of Polygenic Risk Score
Head −6.46 (13.45) −0.48 0.63 −3.49 (14.16) −0.25 0.81 6.78 (13.71) 0.49 0.62
 Body −11.96 (9.12) −1.31 0.19 3.84 (9.58) 0.40 0.69 −4.70 (14.50) −0.32 0.75
 Tail −5.38 (6.48) −0.83 0.41 17.78 (6.66) 2.67 0.01 0.32 (6.57) 0.05 0.96
 Whole −23.58 (24.41) −0.97 0.33 17.36 (25.67) 0.68 0.50 −0.31 (29.12) −0.01 0.99
Interaction with Income
 Head 0.00 (0.01) −0.16 0.87 −0.02 (0.02) −1.53 0.13 −0.01 (0.02) −0.49 0.63
 Body 0.00 (0.01) 0.23 0.82 −0.01 (0.01) −0.87 0.38 0.00 (0.01) −0.31 0.76
 Tail 0.00 (0.01) −0.09 0.92 0.01 (0.01) 1.05 0.29 0.01 (0.01) 0.64 0.52
 Whole 0.00 (0.03) −0.02 0.99 −0.03 (0.03) −0.89 0.37 −0.01 (0.03) −0.27 0.79
Interaction with Sex
 Head 9.14 (4.75) 1.93 0.05 2.65 (4.29) 0.62 0.54 1.25 (4.64) 0.27 0.79
 Body 4.99 (3.22) 1.55 0.12 −1.07 (2.91) −0.37 0.71 2.84 (3.11) 0.91 0.36
 Tail 2.65 (2.27) 1.17 0.24 0.56 (2.03) 0.28 0.78 3.33 (2.20) 1.52 0.13
 Whole 16.89 (8.62) 1.96 0.05 1.97 (7.80) 0.25 0.80 7.28 (8.50) 0.86 0.39
Interaction with Trauma Exposure
 Head 0.11 (0.16) 0.67 0.50 −0.04 (0.17) −0.23 0.82 −0.18 (0.17) −1.05 0.29
 Body 0.12 (0.11) 1.12 0.26 0.00 (0.11) −0.04 0.97 0.12 (0.13) 0.91 0.36
 Tail 0.04 (0.08) 0.47 0.64 −0.23 (0.08) −2.84 0.00 −0.04 (0.08) −0.46 0.65
 Whole 0.27 (0.29) 0.93 0.35 −0.26 (0.30) −0.86 0.39 −0.10 (0.35) −0.29 0.77
Interaction with Area Deprivation Index
 Head −8.06 (9.92) −0.81 0.42 8.12 (9.89) 0.82 0.41 1.47 (9.66) 0.15 0.88
 Body −3.02 (6.75) −0.45 0.66 −0.75 (6.71) −0.11 0.91 2.48 (6.42) 0.39 0.70
 Tail −1.59 (4.75) −0.33 0.74 −0.49 (4.68) −0.10 0.92 −0.87 (4.58) −0.19 0.85
 Whole −12.61 (18.05) −0.70 0.48 6.72 (17.97) 0.37 0.71 2.01 (17.57) 0.11 0.91
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attributable to an ascertained sample that was not recruited 
for psychopathology. Indeed, prior studies have observed 
reduced hippocampal volumes in those with high SCZ-
PGRS within adult patient/control (Alnæs et al. 2019: 
patient n=1,151; control n=2,010, see also Alnæs et al. 
2019) and child high risk studies (Harrisberger et al. 2016, 
n = 65). Reduced hippocampal volumes have also been 
linked to PGRS for psychopathology in typically devel-
oping children (Jalbrzikowski et al. 2019). Our findings 
diverge from these previously conducted studies. At the 
same time, our findings align with the null findings from 
genetic correlations in large adult samples (Bahrami et al. 
2022; van der Meer et al. 2020; Grotzinger et al. 2022) 
as well as null associations with polygenic risk scores in 
large samples of adults (e.g. Reus et al. 2017). Notably, in 
our dataset, post-hoc tests revealed no evidence that child 
SSRI use or prenatal SSRI exposure are associated with 
hippocampal subfield volumes; its inclusion as a covariate 
did not meaningfully alter the observed null associations 
between PGRS and hippocampal subfields (see Supple-
ment for additional details).

There are several possible interpretations of these null 
findings. First, it may be that the hippocampal volume reduc-
tions commonly seen in samples of individuals with MDD, 
PTSD, and SCZ diagnoses are accounted for by non-genetic 
mechanisms, and that genetic risk for these disorders plays a 
limited role in hippocampal volume reductions. This inter-
pretation is supported by evidence showing that hippocam-
pal volume reductions in some forms of psychopathology are 
contingent upon stressful life event exposure (Kronmüller 
et al. 2008), and that conventional analyses in some cases 
fail to find genetic overlap between hippocampal volume and 
risk for psychopathology (Bahrami et al. 2022; van der Meer 
et al. 2020; Grotzinger et al. 2022). Nevertheless. the exist-
ing literature offers some contrary evidence, which suggests 
that genetic risk for psychopathology may be related to hip-
pocampal morphology. As mentioned previously, hippocam-
pal volume is highly heritable (Elman et al. 2019; Patel et al. 
2017: ∼ 80%), which suggests that individual differences 
in genetic loci are important contributors to hippocampal 
volume. In addition, although population-based studies 
have failed to find significant genetic correlations between 
hippocampal volume and psychopathology (Bahrami et al. 
2022; Grotzinger et al. 2022), these same studies have found 
a number of genetic loci that capture variation in both risk 
for psychopathology and hippocampal morphology. In other 
words, while conventional analyses of genetic overlap have 
at times failed to find genetic relationships between psy-
chopathology and hippocampal structure, other metrics of 
genetic overlap provide some evidence that psychopathology 
and hippocampal structure may share some genetic compo-
nents. In addition, we observed no evidence that adversity 
experienced early in life moderates associations between 

genetic risk for MDD, PTSD, and SCZ, although our inter-
action analyses were likely severely underpowered (Duncan 
and Keller 2011). It remains possible that the variability 
in hippocampal volumes associated with psychopathology 
risk is only through non-genetic mechanisms as has been 
reported in numerous studies linking stress exposure to hip-
pocampal volume reductions (Botdorf et al. 2022; Hanson 
et al. 2011; Taylor et al. 2020).

Another interpretation of these findings is that polygenic 
risk markers for MDD, PTSD, and SCZ may be related to 
hippocampal gray matter volume, but that our study design 
was unable to detect this effect. It is possible that genetic 
associations between psychopathology risk and hippocam-
pal volumes only emerge at extremely heightened genetic 
risk. Our sample was not ascertained for psychopathology 
risk, and so we may not have had enough participants of 
sufficiently high genetic risk to demonstrate associations 
between PGRS and hippocampal volume. In addition, the 
influence of polygenic risk for MDD, PTSD, and SCZ may 
be more readily observable in longitudinal designs. A limi-
tation of our study was its cross-sectional nature, and so we 
were unable to investigate relationships between polygenic 
risk for MDD, PTSD, and SCZ and hippocampal volume 
over time. In addition, our sample consisted of the baseline 
visit for the ABCD study so our sample was comprised of 
pre-adolescent children between the ages of 9–11. Thus, 
another limitation of our study was that we were unable 
to investigate how PGRS for MDD, PTSD, and SCZ may 
relate to hippocampal volume in the context of adolescence 
or puberty, a question we can revisit in the ABCD study as 
children age. The nature of the our sample also prevented 
us from investigating additional potentially critical effects, 
such as dynamic relationships between polygenic risk and 
hippocampal volume including gene-by-environment cor-
relations (Beam and Turkheimer 2013) and developmental 
changes in gene expression (Bouchard 2013). Lastly, our 
study investigated relationships between polygenic risk for 
psychopathology and hippocampal structure using only one 
hippocampal phenotype (gray matter volume). Relationships 
between PGRS for MDD, PTSD, and SCZ and hippocampal 
structure may emerge when considering other hippocampal 
phenotypes (e.g microstructure, functional connectivity). All 
of the above modifications to this study would likely increase 
our statistical power. Nevertheless, the minimum meaningful 
effect size is not clear when relating PGRS to hippocam-
pal volume in the general population using cross-sectional 
designs. Our current study was adequately powered ( � = 
0.8) to detect an effect in which PGRS explains one percent 
of variance in hippocampal volume, as was demonstrated in 
Harrisberger et al. (2016) and Jalbrzikowski et al. (2019). 
Our results demonstrate, however, that in population-based, 
cross-sectional designs, PGRS for MDD, PTSD, and SCZ 
explain less than a tenth of a percent in hippocampal volume 



Behavior Genetics 

1 3

variance, and it is unclear whether effects of such size are of 
any practical significance.

In summary, this study provides significant contribu-
tions to at least two research efforts: the investigation of 
links between common genetic variation for psychopathol-
ogy and brain-based phenotypes, as well as the contribu-
tion of genetic variation to psychopathology-associated 
hippocampal volume deficits. Our study provides impor-
tant null findings in both of these respects. This study’s 
results can reasonably be interpreted as evidence against 
the contribution of common genetic variation to MDD, 
PTSD, and SCZ-associated hippocampal volume reduc-
tions. Nevertheless, this study’s results cannot not be used 
as an argument against the utility of genetic investigations 
of psychopathology-associated hippocampal abnormali-
ties. Other genetic variables (e.g copy number variants) 
may relate to hippocampal volume. Furthermore, genetic 
variables may dynamically relate to environmental experi-
ences in ways too complex to be investigated in this study. 
It would therefore be premature to use this study’s null 
findings as an argument against future genomic investiga-
tions of hippocampal abnormalities in psychopathology. 
Lastly, our study’s results do not reflect the associative 
strengths between PGRS for MDD, PTSD, and SCZ and 
cognitive-behavioral phenotypes for these disorders. A 
number of studies have demonstrated significant asso-
ciations between PGRS for each of these disorders and 
cognitive-behavioral phenotypes (Loughnan et al. 2022; 
Mistry et al. 2018a, b). Cognitive-behavioral phenotypes 
are in many cases diagnostic of MDD, PTSD, or SCZ (e.g 
self-reported depressed mood is a diagnostic feature of 
MDD), so it makes sense that the genetic correlates of 
cognitive-behavioral phenotypes would be related to the 
genetic correlates of diagnostic labels like MDD, PTSD, 
and SCZ. The relationship between individual differ-
ences in neural structure and psychopathology is likely 
more complex. Hippocampal volume, for instance, does 
not appear to strongly relate to behavior in the absence of 
a known disorder or developmental change (Clark et al. 
2020), which suggests that individual differences in hip-
pocampal volume do not directly influence behavior and 
symptoms, and likely interact with other variables when 
relating to psychopathology. Thus, the genetic correlates 
of hippocampal structure may nevertheless may be caus-
ally related to psychopathology, as has been suggested 
by other work (Grotzinger et al. 2022), but the mediating 
effects of these genetic variables likely have more complex 
and diffuse relationships with psychopathology than the 
genetic correlates of cognitive-behavioral phenotypes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10519- 023- 10134-1.
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