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OMultivariate pattern analysis (MVPA) is an increasingly popular approach for characterizing the information

present in neural activity as measured by fMRI. For neuroimaging researchers, the searchlight technique
serves as the most intuitively appealing means of implementing MVPA with fMRI data. However, searchlight
approaches carry with them a number of special concerns and limitations that can lead to serious interpreta-
tion errors in practice, such as misidentifying a cluster as informative, or failing to detect truly informative
voxels. Here we describe how such distorted results can occur, using both schematic illustrations and exam-
ples from actual fMRI datasets. We recommend that confirmatory and sensitivity tests, such as the ones pre-
scribed here, should be considered a necessary stage of searchlight analysis interpretation, and that their
adoption will allow the full potential of searchlight analysis to be realized.

© 2013 Published by Elsevier Inc.
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Multivariate pattern analysis (MVPA) of functional MRI (fMRI) data
has grown steadily since its beginnings in 2001(Haxby, 2012). Follow-
ing Raizada and Kriegeskorte (2010), we illustrate the growth of the lit-
erature by showing the citation rate for several key MVPA papers in
Fig. 1. Interest in MVPA spans disciplines. Advances have arisen from
synergistic interactions with the machine learning community, which
has developed new methods for addressing fMRI datasets and ques-
tions, as seen in the proliferation of relevant articles (e.g. Cuingnet
et al., 2011; Mitchell et al., 2004; Van De Ville and Lee, 2012) and dedi-
cated conference workshops (e.g. the International Conference on Pat-
tern Recognition, NIPS, Cosyne, etc.). Interest in the cognitive
neuroscience applications of MVPA is just as great (e.g. Heinzle et al.,
2012; Tong and Pratte, 2012; Yang et al., 2012). The growing popularity
of MVPA within neuroimaging has been driven by multiple factors, in-
cluding: a) suggestions that it provides greater sensitivity and specific-
ity than mass-univariate analyses with generally complementary
results (Haynes and Rees, 2005; Jimura and Poldrack, 2012; Kamitani
and Tong, 2005); b) the possibility of designing tests to address hypoth-
eses which cannot be addressed with mass-univariate methods (e.g.
Knops et al., 2009; Quadflieg et al., 2011; Stokes et al., 2009); and c)
the intuitive appeal of a method which incorporates the signal from
multiple voxels at once.
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method introduced as a technique for identifying locally informative
areas with greater power and flexibility than mass-univariate analyses
(Kriegeskorte and Bandettini, 2007a; Kriegeskorte et al., 2006). Search-
light approaches are relatively unique, in that theywere developed spe-
cifically for fMRI analysis, addressing both the common localization goal
(many fMRI studies aim to identify small brain areas) and the spatial
structure of the BOLD signal (adjacent voxels tend to have similar acti-
vation timecourses). Searchlight analysis produces maps by measuring
the information in small spherical subsets (“searchlights”) centered on
every voxel; the map value for each voxel thus derives from the infor-
mation present in its searchlight, not the voxel individually. Note that
the word “information” is not used here in its formal sense (as in the
field of information theory), but rather following its conventional use
in theMVPA application literature. Specifically, we use theword “infor-
mation” to indicate that the activity in a group of voxels varies consis-
tently with experimental condition: a highly informative voxel cluster
can be used to identify experimental condition more accurately than a
weakly informative one.

Appealing aspects of searchlight analysis include itswhole-brain ap-
proach (i.e., a priori region specification is not needed), the ability to
pool over subject-specific activation patterns, and its minimization of
the extremes of the curse of dimensionality associated with whole-
brain MVPA (the “curse” refers to computational difficulties which can
occur when there are more voxels than examples, see (Clarke et al.,
2008; Jain et al., 2000); it is minimized in searchlight analysis since rel-
atively few voxels are typically included in each searchlight). Addition-
ally, searchlight analysis produces a whole-brain results map that is
superficially similar in appearance to the whole-brain significance
itfalls, and potential, NeuroImage (2013), http://dx.doi.org/10.1016/
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Fig. 1. Pattern-information fMRI is still a rapidly growing field, particularly searchlight
analysis (note the rapid increase in papers citing Kriegeskorte et al., 2006). This figure
follows Fig. 2 in Raizada and Kriegeskorte (2010), but uses the actual citation counts
after 2008. The number of citations for each paper and year was obtained via Scopus
(www.scopus.com) on 9 January 2013. (Carlson et al., 2003; Haxby et al., 2001; Haynes
and Rees, 2005; Kamitani and Tong, 2006; Kay et al., 2008; Mitchell et al., 2008).
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maps produced by more familiar mass-univariate analyses (based on
the general linear model); thus, searchlight analysis results are poten-
tially easier to interpret. These appealing aspects, plus promising early
results, have led to a rapid increase in the number of studies using
searchlight analyses (note the rapid rise in citations for Kriegeskorte
et al., 2006 in Fig. 1, particularly in the last few years). Its acceptance
as a standard approach is reflected in its inclusion in recent MVPA re-
view and methodology articles (e.g. Bandettini, 2009; Mourao-
Miranda et al., 2006; Raizada and Kriegeskorte, 2010; Tong and Pratte,
2012), as well as in the most prominent MVPA software packages
(BrainVoyager QX 2.0, the Princeton MVPA Toolbox, PyMVPA).

Reflecting its potential and appeal, variations of the searchlight
technique have been developed. In the spatial domain, it has been ex-
tended to circular subsets on cortical surfaces (Chen et al., 2011;
Oosterhof et al., 2010, 2011), rather than the original volumetric
spheres. Efforts have also beenmade to extend the technique to incor-
porate the temporal domain (Fogelson et al., 2011; Rao et al., 2011).
The first searchlight analyses used the Mahalanobis distance as the
similarity measure for information mapping, but a widely adopted
variation is to use machine learning algorithms, often support vector
machines (SVMs), instead (Haynes et al., 2007; Kriegeskorte and
Bandettini, 2007b). In these approaches, generalization accuracy of
the classifier is used as a proxy for information content. Group analysis
is usually performed by combining individual subject's maps with a
binomial or t-test at each voxel (with the null hypothesis that the
group classification accuracy is at chance level), creating maps of
voxels with significant searchlights. Here we primarily consider
classification-based searchlight analysis, but much of the discussion
applies regardless of the precise implementation.

Searchlight analysis is a powerful and attractive tool for under-
standing neuroimaging data. However, it has particular characteris-
tics and limitations that can lead to serious interpretation errors in
practice, and so we recommend that straightforward confirmatory
and sensitivity tests (analogous to post-hoc tests after an ANOVA),
such as the ones described here, be considered a standard part of
the searchlight analysis procedure. In the following sections we de-
scribe two assumptions that often implicitly underlie the interpreta-
tion of searchlight analysis results. Unfortunately, as we illustrate,
these assumptions do not always hold, and so may lead to distorted
results. We then describe how confirmatory follow-up tests can be
used to guard against particularly harmful distortions, using two
hypotheses common in cognitive studies as illustrations. This manu-
script is accompanied by Supplemental Information containing exam-
ples (with code) and technical details.
Please cite this article as: Etzel, J.A., et al., Searchlight analysis: Promise, p
j.neuroimage.2013.03.041
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Assumption 1. Information is detected consistently.

A fundamental aspect of fMRI is that information is not distributed
uniformly across voxels but rather has a three-dimensional structure:
some groups of voxels (e.g. those corresponding to a specific anatom-
ical region) are more informative for a particular task than other
groups of the same size. Additionally, neuroimaging data contains in-
formation at multiple spatial frequencies (Kriegeskorte et al., 2010;
Op de Beeck, 2010). For example, consider a cued finger-tapping
task. The finger area of the primary motor cortex will be highly infor-
mative at a very small spatial frequency while the premotor and so-
matosensory cortices may be equally informative, but at a larger
spatial frequency. The difference can be imagined as the size of box
required to enclose the minimum set of voxels capable of task classi-
fication: a larger box is necessary to enclose the pattern in premotor
or somatosensory cortices than to enclose the pattern in the primary
motor cortex.

The distribution of information is relevant for searchlight analysis
because interpretation of any particular map depends on whether the
information can be detected equally across spatial frequencies. In a
simulation designed with equal power in all spatial frequency
bands, Kriegeskorte et al. (2006) showed that detection did not re-
quire a close match between the size of the searchlight and the infor-
mative area: a 4 mm radius consistently performed well. When this
finding holds, it simplifies searchlight analysis interpretation: the
peak areas of the map are the most informative voxels. However, if in-
formation is not present and detected equally at all spatial frequen-
cies, then searchlight analysis results will depend fairly strongly
upon the searchlight size; moreover, no single searchlight radius
will be universally optimal or sufficient.

Additionally, although the Mahalanobis distance may be con-
sistently sensitive to information across spatial frequency bands
(Kriegeskorte et al., 2006), this property does not hold for all informa-
tion measures used with searchlight analysis, especially the linear
SVM. Training a linear SVM algorithm results in a set of weights; its
decision function is a weighted linear combination of the voxels
(Norman et al., 2006). Two properties of the linear SVM are particu-
larly relevant when used in searchlight analysis: (1) It is sometimes
able to correctly classify when the searchlight contains a small minor-
ity of highly informative voxels (intermixed with a majority of
uninformative voxels), and conversely, (2) It is sometimes able to
correctly classify when the searchlight contains a large number of
weakly informative voxels.

Highly-informative voxels can be detected even when very rare

Since, as described above, linear SVMs are relatively resistant to
the curse of dimensionality (Jain et al., 2000), they can sometimes
classify a dataset accurately even when only a tiny minority of the
voxels are informative. The degree to which this occurs varies
depending on dataset properties, but it happens often enough to be
relevant in practice. For instance, Supplemental Example 4 shows
that introducing just five informative voxels from an actual fMRI
dataset into a group of two hundred random (uninformative) voxels
is sufficient to shift the median accuracy of an SVM from chance to
0.6. For an extreme example, a dataset containing a single highly in-
formative voxel and 200 random voxels is accurately classified in
Supplemental Example 5. Searchlight analysis generally includes
fewer than 200 voxels in each searchlight, increasing the likelihood
that searchlights containing a single or only a few informative voxels
will be detected (see the “Detection of rare informative voxels” sec-
tion of the Supplemental Information for further discussion).

This behavior can cause distortions in a searchlight map. To illus-
trate, suppose that a cluster of five highly informative voxels (capable
of significant classification whenever included in a searchlight) is
surrounded by hundreds of truly uninformative voxels. Any searchlight
itfalls, and potential, NeuroImage (2013), http://dx.doi.org/10.1016/
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Fig. 3. Illustration of how the representation of a highly informative voxel (yellow
square) increases in the information map of a single subject (right, green circle) with
increasing searchlight radius (left, red circle). While the actual informative voxels are
the same in a and b, the number of voxels marked informative in the map increases
with the searchlight radius.
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overlapping the five-voxel cluster will be significant, even if the major-
ity of its voxels are uninformative. As a result, some voxels in the results
map will be categorized as significant, not because they themselves are
informative, but because they are at the center of a searchlight that con-
tains the informative voxels. Fig. 2 (Supplemental Example 7) gives ex-
amples of this occurrence in an actual fMRI dataset (see Supplemental
Example 6 as well): for instance, the voxel in the lower-left corner (at
coordinates 1, 1) changes its mapped classification accuracy from
“uninformative” to “informative” when the starred (actually informa-
tive) voxel is moved, despite there being no change the properties of
the (lower-left) voxel itself.

A second issue is that the number of voxelsmarked as informative in
a searchlight map will tend to grow as the searchlight radius increases,
even when the size of the truly informative cluster stays fixed (Fig. 3),
so long as the curse of dimensionality does not dominate; classifiers
will vary in how many uninformative voxels can be added to the fixed
informative cluster before performance declines. This phenomenon,
which has been termed the “needle-in-the-haystack-effect”, was dem-
onstrated as a formal proof in Viswanathan et al. (2012). As an extreme
example, Viswanathan et al. (2012) showed how all 147,000 voxels of a
simulated volumewould be classified as “informative” in a 3 voxel radi-
us searchlight map when the volume contained just 430 evenly distrib-
uted informative voxels.

Weakly-informative voxels can be detected when sufficiently numerous

Another property of linear SVMs relevant for their use in search-
light analysis is that they can pool weak biases across many voxels,
with the result that it is possible for a group of voxels to be classified
accurately while the individual voxels making up the group do not
yield significant classification, either singly or as subsets. This infor-
mation “pooling” is often a useful characteristic for fMRI data, which
is sometimes structured as weak information present in a large num-
ber of voxels. However, it can be troublesome for searchlight analysis
interpretation. For example, suppose that there is a large cluster of
voxels, each with the same small bias (i.e. a uniformly weakly infor-
mative voxel cluster). Ten voxels from this cluster (a small search-
light) may not yield significant classification, but thirty voxels (a
larger searchlight) could produce a weakly significant classification,
and fifty voxels, a highly significant classification (Fig. 4 and Supple-
mentary Example 1). This can be thought of as a case of discontinuous
detection of information: at the extreme, a voxel cluster can change
from “uninformative” to “informative” upon the addition of a single
voxel (Supplementary Examples 2 and 3).

Discontinuous detection makes it possible for groups of weakly in-
formative voxels to be partially or entirely missed when mapping in-
formation. Continuing the example, with a searchlight encompassing
fewer than 30 voxels, the cluster will be classified as uninformative
because no single searchlight can include enough voxels to enable ac-
curate classification (Fig. 5a). Larger searchlights could detect the
cluster, but only when the shape of the searchlight matches the
shape of the cluster: a spherical searchlight could miss an elliptical
U
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cluster (Fig. 5b). An additional complication comes from assigning
each searchlight's accuracy to its center voxel: large, weakly informa-
tive clusters will appear smaller in the information map if the search-
light radius is less than the cluster diameter, since only searchlights
fully overlapping the cluster will be significant (Fig. 5c).

Prior reports in the literature have documented the failure of
weakly informative areas to be detected in searchlight analysis,
mirroring our experience that widespread, weakly informative areas
are common in fMRI datasets (see also Gonzalez-Castillo et al., in
press). For example, Eger et al. (2009) found that searchlight analysis
(linear SVM, 3-voxel radius) identified no ROI voxels as informative,
despite significant classification when using the whole ROI. Likewise,
Diedrichsen et al. (in press) report needing to expand their search-
light size to achieve adequate sensitivity in one experimental condi-
tion (increasing from 80 to 160 voxels, with regularized linear
discriminant analysis as the classification algorithm).

Assumption 2. Spatial variation between subjects is small compared
to the searchlight radius.

Most applications using searchlight analysis interpret results primar-
ily based on group-level aggregation of single-subject informationmaps,
even though strategies for constructing and interpreting these maps
have not been fully explored. Methods for constructing group-level
maps often parallel those used in mass-univariate analysis: a t-test (for
average accuracy across individuals greater than chance) is conducted
at every voxel independently, followed bymultiple-comparisons correc-
tion (Kriegeskorte and Bandettini, 2007a). Alternatively, the individual
maps are statistically thresholded and the group-level map is reported
in terms of the proportion of subjects with a significant searchlight at
each voxel (Pereira and Botvinick, 2011). Permutation-based tests
have also been proposed (Kriegeskorte et al., 2006), with new tech-
niques increasing their interpretability and computational tractability
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(Gaonkar and Davatzikos, 2012; Stelzer et al., 2013). Some authors per-
form the searchlight analysis in native space then normalize the individ-
ual maps to an atlas, while others normalize the images first and then
perform the searchlight analysis in atlas space (both of which can intro-
duce distortions). This proliferation of techniques reflects the impor-
tance placed on group information maps in cognitive neuroscience
applications of MVPA, and also the lack of agreement regarding the
best method for constructing them. All of these techniques rely on a
common assumption, however: that spatial variation in the information
maps between individuals is minimal compared to the searchlight radi-
us. Group maps may be misleading if this does not hold.

Spatial variation between individuals is not a concern unique to
searchlight analysis but a factor in all neuroimaging techniques. For
example, smoothing is used during mass-univariate analysis to help
reduce the impact of inter-individual variability. However, evaluating
results when inter-individual variability is present is particularly
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Fig. 5. Illustration of how informative voxels may be missed in a single-subject search-
light analysis when information is not detected with equal power in all spatial frequen-
cies. The yellow areas represent informative voxels while the red circles represent the
searchlight. Assume all cluster voxels are required for significant classification. a. The
cluster will not be detected because the searchlight is too small. b. The cluster will be
not detected because the searchlight shape does not match the cluster shape. c. The
cluster appears smaller in the information map since only searchlights containing the
entire cluster are significant.
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Rcomplex in searchlight analysis because of distortions that can occur
when constructing individual information maps, particularly distor-
tions causing a mismatch between the actual informative voxels and
their appearance in the searchlight map (such as those shown in
Figs. 3 and 5). Since all methods of constructing a group information
map involve combining some version of the individual maps, distor-
tions in the individual maps are carried to the group level, where
their effects may be magnified.

For example, spatial variation in the location of an informative
cluster between individuals may cause the cluster to be missed in
the group-level map. In Fig. 6a, weakly informative clusters overlap
in the individual maps, but since the individual searchlight mapping
detects only a minority of the informative voxels (as in Fig. 5c), the
individual information maps do not overlap at the group level
(Fig. 6b green area), and so the cluster is missing from the group in-
formation map.

At the opposite extreme, voxels that are uninformative in each indi-
vidualwhen examined separately can be identified as being informative
at the group level. To illustrate that this can occur, suppose half of the
individuals have a cluster of highly informative voxels towards the left
side of a ROI while the rest of the individuals have the same cluster of
informative voxels, but shifted towards the right side (Fig. 7a). The
group-level informationmapwill not identify the voxels corresponding
to either cluster as informative but rather the voxels between the two
clusters, because this is where the individual maps overlap (Fig. 7b).
While Fig. 7 is a simple illustration contrived to show the problem,
such an outcome can occur in many actual situations. Fig. 8 (Supple-
mental Example 9) shows an occurrence in real fMRI data: Themost in-
formative voxel in the group informationmap (starred voxel at left) has
the lowest average accuracy when the voxels are tested for classifica-
tion in a univariate manner (i.e. as single voxels; Fig. 8, right).

Beyond the Searchlight: Some prescriptive guidelines
for interpretation

In the previous sections we described how searchlight maps can
be distorted at the single-subject level when information is not
detected consistently (highly informative voxels can appear dispro-
portionately large in the searchlight map while weakly informative
voxels can be missed), and how, when these distortions are carried
to the group level, their effects can be magnified by spatial variation
between individuals. The severity of these distortions is intimately
linked to both searchlight size (radius, shape) and classifier proper-
ties (such as how quickly accuracy is degraded by the presence of
itfalls, and potential, NeuroImage (2013), http://dx.doi.org/10.1016/
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despite overlapping informative clusters (yellow).
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noise voxels and its sensitivity to the curse of dimensionality). As a
consequence, it is critical that searchlight results be described in
terms of possible dependence on searchlight size and classifier
parameters, and checked for distortions before being interpreted as
locating the most informative voxels.

As a general guideline, when only a single searchlight analysis is
conducted, interpretation must be cautious, restricted to the parame-
ters and choices used in the particular analysis. We do agree that a
single-subject searchlight analysis indicates the amount of local infor-
mation at each voxel, but only as measured by a particular classifier
and given a searchlight of a particular size and shape. These caveats
are necessary and relevant in practice. For example, in the demon-
stration dataset included in the Supplemental Information (actual
fMRI data), in subject 12, voxel #13 was assigned an accuracy of
0.17 in the map made with a one-voxel radius searchlight, but an ac-
curacy of 0.67 with a two-voxel radius searchlight (chance accuracy is
0.5). The same voxel exhibited the opposite pattern in a different in-
dividual (subject 19): informative in the one-voxel radius searchlight
map, but uninformative in the two-voxel radius searchlight map (see
Supplemental Figs. 6 and 14). Thus, it is not meaningful to describe
the informativeness of this voxel in these individuals without specify-
ing a particular searchlight radius.

Precise descriptions are necessary to ensure that interpretation
occurs within the correct context. For example, authors sometimes
describe information maps in terms of informative brain regions,
such as “searchlight analysis indicated that information about the ef-
fect of interest was present in the inferior frontal gyrus.” While con-
venient shorthand, such phrasing conflates spatial scales, implying
that the region itself was shown to demonstrate the effect, when
what was found was that significant voxels in the local information
map were present within the region when using a particular search-
light. It is more precise to convey the results by emphasizing the
scale and type of information found, such as “analysis with a 6 mm
radius searchlight found local information related to the effect of
interest, with significant searchlight centers located in the inferior
frontal gyrus.”
U
N

infor
half subjects   half subjects

informative voxels

a

Fig. 7. Illustration of how searchlight analysis (red circle) can produce a group information
present. a. Suppose half of the subjects have the cluster of informative voxels on the left sid
The group map will locate the informative voxels between the two clusters (green), where n
how the overlap of the subjects' maps results in the distorted group map.
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more general conclusions to be drawn, inferences about information
at scales other than that of a searchlight (such as “information
about the effect of interest was present in the inferior frontal gyrus”
and “the anterior portion of the prefrontal cortex was more informa-
tive than the posterior”). We suggest that conducting straightforward
tests after a searchlight analysis (analogous to post-hoc tests after an
ANOVA) can allow such inferences to be made with reasonable confi-
dence. Two inferences particularly relevant in applications will be de-
scribed: first, that a voxel cluster found in a group information map is
itself informative, and, second, that a particular significant cluster
contains the most informative voxels in the local anatomical region.
This is not intended to be an exhaustive list of possible conclusions,
but rather an illustration of the type of additional evidence that can
be used to support interpretations drawn from searchlight analysis
results, and why such evidence is necessary.

For convenience, in this section we will refer to the voxels identi-
fied as significant by the searchlight analysis as the “cluster.” In some
applications the cluster could be composed of the searchlight centers
only (as typical in searchlight mapping), while in others the cluster
could include surrounding voxels (all voxels included in the identi-
fied searchlights). We refer to the anatomic region in which the clus-
ter was found (and about which we want to infer), as the “area.”

Testing the interpretation that a cluster of searchlight-detected voxels is
itself informative

A searchlight analysis gives the location of a cluster of informative
searchlight centers, but additional tests are necessary to demonstrate
that the voxels making up the cluster are themselves informative. The
key issue is to infer across spatial scales: we wish to describe the clus-
ter not only as the centers of informative searchlights of a particular
radius (which is accurate without additional testing), but that the
cluster voxels themselves (usually the searchlight centers) are infor-
mative. This claim requires additional evidence because it refers to
the group of centers rather than the searchlights, which were the
b

group
mation map

information map
overlaps

map misaligned to the informative clusters when spatial variability across subjects is
e of the ROI (yellow) while the other half has the cluster on the right side of the ROI.
o subjects had informative voxels. b. Information maps for each subject group, showing
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ferences about the searchlights to making inferences about the partic-
ular group of voxels we identified in the searchlight analysis. We
propose that a general strategy for demonstrating that a cluster is in-
formative is to explicitly create a region of interest (ROI) from the
cluster and then characterize the properties of that ROI.1 If the ROI
made from the cluster is informative, then there is justification for
concluding that the cluster is itself informative.

This analysis is deliberately circular: the ROI is tested using the
same data as the original searchlight analysis. Despite the circularity,
it is not guaranteed that the ROI will be informative. For example, the
cluster in the group searchlight map in Fig. 7 is composed entirely of
uninformative voxels (see also Fig. 8). Since the ROI may not be infor-
mative, even in a circular analysis (which should be the most favor-
able), the cluster should always be tested for information, as a ROI,
before describing it in any sense other than that of the centers of
searchlights. Stronger evidence for an informative cluster can be pro-
vided by a noncircular analysis (constructing the information map
from different data than those used to test the resulting ROI).

While in many (perhaps most) cases the cluster will itself be infor-
mative in a circular analysis, the severity of the interpretation error in
the exceptions, combined with the ease with which exceptions can be
found (particularly in group analyses), leads us to recommend that
clusters identified in a searchlight analysis always be directly checked
456

457

458

459

460

461

1 For concreteness, suppose that the searchlight analysis used a linear SVM to distin-
guish two types of stimuli, and that each searchlight contained 50 voxels. A particular
cluster of interest containing 100 voxels is found in the resulting information map.
These 100 voxels could then be grouped together as a ROI, and evaluated with another
linear SVM trained to distinguish the stimuli. Thus, the second analysis involves linear
SVM on the single group of 100 voxels corresponding to the ROI, rather than 100 dif-
ferent 50-voxel searchlights.
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for informativeness (as a ROI) before being described as informative
themselves.

Conducting additional, complementary, analyses may allow confi-
dence in the interpretation to be strengthened even further. The most
appropriate analyses will vary with dataset and hypothesis, but sensi-
tivity analyses are likely generally useful: how much does the cluster
change when the analytical choices are varied (e.g. searchlight
shape, classification algorithm)? Equivalently, howmuch does the in-
formation map change? For example, does the particular highly infor-
mative cluster have a similar appearance across a range of searchlight
radii and shapes? If so, it is less likely to be a simple artifact. Nestor
et al. (2011) followed this strategy, providing group information
maps at three different radii, which show that the t-values increase
with increasing radius without greatly shifting the location of the
highest values.

In the case of group analysis, sensitivity analyses can also evaluate
whether the cluster depends on the inclusion of particular subjects.
For example, group-level maps can be made after leaving out each
subject individually (Supplemental Example 8); the cluster's appear-
ance should not rely on the inclusion of particular subjects. Similarly,
providing individual subject information maps (e.g. Diedrichsen et al.,
in press) is also useful, allowing the reader to evaluate the degree to
which the group-level clusters are also found in the individuals. Sen-
sitivity to statistical technique can also be important: a robust cluster
should be similar over several methods of creating the group-level
map (e.g. t-test, permutation test).

Testing the hypothesis that a cluster contains the area's
informative voxels

If it has been demonstrated that a particular cluster of voxels is it-
self informative (as a ROI), the researchers may wish to investigate
itfalls, and potential, NeuroImage (2013), http://dx.doi.org/10.1016/
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whether those voxels are more informative than neighboring ones,
that is, that the cluster encompasses the most informative voxels in
a particular anatomical location. This type of claim is most relevant
and tractable in cases where the cluster is in a specific anatomic re-
gion of interest. For example, searchlight analysis could identify a
cluster in the left dorsolateral prefrontal cortex, and the researchers
want to investigate whether it contains all the informative voxels in
the left dorsolateral prefrontal cortex. This will of course not be
proof that the most informative possible cluster was found, as that
would require exhaustive testing of all possible configurations; con-
clusions will necessarily be restricted to a particular analysis protocol
and dataset.

We propose that virtual lesion and feature perturbation tech-
niques provide a framework for evaluating this type of claim: If the
cluster contains the informative voxels, then the area should be less
informative when the cluster voxels are removed. Such a test can
begin by determining the accuracy of the entire area, including the
cluster (i.e. a ROI-based analysis of the whole area). The area should
be found informative, since the cluster known to be informative is
present within it (although if the area is very large, or the classifier
highly sensitive to noise, this test may fail, necessitating a different
approach). Then the cluster should be removed and the classification
of the area repeated (i.e. perform the ROI-based analysis after
“lesioning” the cluster). In some cases it may be appropriate to
“lesion” after dilating the cluster by the searchlight radius, to include
all voxels participating in the targeted searchlights.

Strong evidence that the cluster contains the most informative
voxels is provided if the area without the cluster contains little infor-
mation, but the area with the cluster and the cluster alone contain
similar amounts of information (Fig. 9a). If the area is still informative
after the cluster has been lesioned, it is improper to describe the clus-
ter as the sole informative location, despite the appearance of the
searchlight map. Instead, the information could be described in
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Fig. 9. Relationships between ROI accuracy and the statistical threshold applied to the search
ter shades indicate more accurate classification), with the area of interest outlined in green. M
old (left, marked by blue dots). Only the most significant voxels are included in the informa
the above-threshold ROI contains the area's informative voxels. The ROI's accuracy increase
voxels are retained in the cluster. The accuracy of the below-threshold ROI (i.e. the voxels
thresholds if some moderately-informative voxels are no longer included in the above-thr
fMRI dataset, see Supplemental Example 10. The above-threshold ROI's accuracy is slightly
that the voxels outside the cluster are approximately as informative as the cluster voxels.
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terms of the area as a whole (e.g. “weak information is widespread
throughout the dorsolateral prefrontal cortex, with fine-scale infor-
mation (as measured by a 8 mm-radius searchlight) found in a clus-
ter centered at -38, 30, 30”), or additional analyses conducted to
clarify the spatial distribution of informative voxels.

Evaluating the accuracy of the cluster and area can be done at the
either the individual or group level, as relevant to the particular inter-
pretation being drawn. In the case of group analyses, the strongest evi-
dence that a highly informative cluster had been detected would occur
if the cluster ismore informative than the rest of the area not only at the
group level but also in a majority of the subjects individually.

This virtual lesion test is most stringent when the initial search-
light analysis and the follow-up cluster and area analyses are carried
out in independent datasets (such as from different scanning days or
groups of subjects). If the lesion analysis is performed using the same
dataset as the searchlight mapping the analysis will be circular
(Kriegeskorte et al., 2009), and so biased towards finding that the
cluster is highly informative. However, even in a circular analysis it
is not guaranteed that the cluster will contain most of the information
in the area. In other words, removing (“lesioning”) the cluster identi-
fied in a searchlight analysis from an area does not always reduce the
area's accuracy to chance, and will not necessarily reduce the area's
accuracy at all.

For example, consider the small illustration summarized in Fig. 9
and presented as Supplemental Example 10. The same fMRI dataset
was used for the searchlight mapping and cluster-based analysis, so it
is a circular analysis, biased towards supporting the claim that the
area's information is contained within the cluster. At the most lenient
threshold (t > 0, 68% of the area's voxels in the ROI made from the in-
formative cluster) we find support for the claim that the most informa-
tive voxels in the area are in the cluster: the ROI classifies more
accurately than the ROI made from the non-cluster voxels (which are
near chance), and slightly more accurately than the area as a whole.
above-threshold ROI
(significant cluster)

below-threshold ROI
(non-cluster voxels)

accuracy of the area 
(all voxels together)

chance accuracy

ical threshold
stringent

ent using a 
tical threshold

ROI assignment using a 
stringent statistical threshold

light map. a. Hypothetical information map resulting from a searchlight analysis (ligh-
any voxels are considered part of the informative cluster at a lenient statistical thresh-
tive threshold at a stringent statistical threshold (right). b. Possible relationship when
s as the statistical threshold becomes more stringent, since only the most informative
not in the cluster) is near chance at lenient thresholds, but may increase at stringent
eshold ROI. c. Schematic of an actual relationship observed in a circular analysis of an
below that of the non-cluster voxels at the stringent statistical threshold, indicating
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But this does not hold when the thresholds increase in stringency: at a
higher threshold (t > 1, 44% of the area's voxels in the ROI) the cluster
classifies marginally less accurately than both the non-cluster voxels
and the area as a whole. Thus, at this threshold, the above-threshold
voxel cluster, when treated as a ROI, does not classify more accurately
than the less-significant voxels: the above-threshold voxels are only
more informative in the context of the searchlight analysis.

In a more extensive analysis of this type (also circular) conducted
in Etzel et al. (2012) a similar pattern was observed: a cluster identi-
fied as significant via searchlight analysis achieved an accuracy of
0.74 when tested as a ROI (p b 0.001), but when the cluster was re-
moved the remaining (putatively non-informative voxels) in the
area classified at 0.69 (p b 0.01) as a ROI, not a significant difference.
The 0.05 reduction in accuracy after lesioning lends supports to the
inference that the cluster is informative, but does not support the in-
ference that the cluster encompasses all of the area's informative
voxels; many voxels outside the cluster must have also been informa-
tive for the area to classify significantly after lesioning.

Discussion

Searchlight analysis is a powerful tool for neuroimaging data anal-
ysis, but has characteristics that must be kept in mind for accurate in-
terpretation, since it has the potential to produce distorted results,
including misidentifying a cluster as informative or failing to detect
truly informative voxels. We described why such errors are particu-
larly troublesome when information detection is discontinuous, espe-
cially when weak information is distributed over a large number of
voxels with spatial variability between subjects, as is common in
high-level cognitive tasks.

We suggest that the natural role for searchlight analysis is to be
part of an analysis protocol, not used in isolation. Searchlight analysis
not accompanied by additional evidence supports inferences about
the collections of searchlights analyzed, but not about the regions de-
fined by clusters of voxels defined by searchlight centers. Clusters of
significant searchlight centers are frequently described as defining a
region of the brain that contains information, but that inference is
not warranted based solely on the searchlight analysis.

As a concrete example, consider a hypothetical article (but repre-
sentative of many currently published in NeuroImage and other
journals) in which a searchlight analysis classifying a task was run at
the individual level, after which a group-level results map was statis-
tically generated. In the results section the authors write that they
used “multivariate pattern analysis to determine the voxel clusters
that contain significant information about the task” and present both
“the resultingmap of second-level analysis t-values” and a table listing
the coordinates and sizes of four significant voxel clusters. The discus-
sion and interpretation focuses on the anatomical regions inwhich the
four clusters were found, beginning with an explanation that they
“usedMVPA to identify brain regions that predict participant task per-
formance,” and followed by discussion of the potential task-related
processing taking place in the regions.

We would consider the presented evidence insufficient to support
the conclusions being drawn in the article, as it does not show that the
brain regions predicted task performance, but rather that, at the group
level, the centers of searchlights capable of such prediction fell inside
those brain regions. While this may seem a fine distinction, it is a cru-
cial one: it is possible that the voxels falling within the brain regions
would not actually predict participant task performance if tested di-
rectly, outside of the searchlight analysis. Confirmatory analyses are
necessary to demonstrate that the brain regions can indeed predict
task performance. At minimum, a circular ROI-based analysis of each
cluster would, if capable of classification, demonstrate that the cluster
voxels themselves are informative. More convincingly, ROIs could be
defined anatomically or in independent data (such as by holding
each subject out of the searchlight analysis in turn, performing the
Please cite this article as: Etzel, J.A., et al., Searchlight analysis: Promise, p
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ROI-based analysis on that subject using clusters defined on the
other subjects). If the confirmatory tests fail, the conclusion that the
regions predict participant task performance should not be made.
We would recommend that an article making claims like this should
not be accepted until confirmatory tests like the ones described
above have been conducted.

While no set of confirmatory and sensitivity tests will be universally
applicable, we propose that following a searchlight mapping with
ROI-based analyses on detected voxels is straightforward andwill iden-
tify the most serious distortions. Here we focused on issues that arise
when linear SVMs are used with volumetric searchlights, as this combi-
nation is currently in wide use. Yet, similar issues stemming from dis-
continuous information detection are likely to apply to other linear
classifiers as well; the detection characteristics of any metric should
be explored before it is used in searchlight analysis. Nor are the issues
unique to a particular searchlight shape; any technique (including
surface-based) that assigns the searchlight's accuracy to its center
voxel is susceptible to map distortions (see Björnsdotter et al., 2011;
Tianhao and Davatzikos, 2011; Zhang et al., 2012 for possible
alternatives).

Searchlight approaches are often thought to be the preferred MVPA
technique when conducting group analyses, because they provides a
degree of spatial abstraction by combining local information maps
across individuals at the level of the searchlight, rather than of single
voxels (Kriegeskorte and Bandettini, 2007a). However, any distortions
that occur in the individual information maps can lead to misleading
or incomplete group-level maps, particularly in cases when large varia-
tion is expected between subjects, and/or when information is diffusely
distributed andweak, such aswith high-level cognitive tasks. This prob-
lem is not unique to searchlight analysis, as spatial variation between
individuals causes difficulties in nearly all fMRI techniques, including
the mass-univariate GLM. While smoothing mitigates some of the ef-
fects of misalignment in mass-univariate analyses, the distortions in
searchlight analysis are discontinuous, harder to predict and control,
and so present a special challenge. One possible outcome is that search-
light analysis in individuals can detect highly informative clusters
of voxels matching the searchlight size much more readily than
mismatched or less informative clusters. Carried to the group level,
only areas with consistently-located, highly informative clusters of
that particular size will survive statistical thresholding, leading to an
impression that the information is distributed much more focally than
it is in actuality. This parallels the distortions that occur in univariate
group analyses when there is low statistical power (Yarkoni, 2009), in
the sense that many informative areas are missed, but those that are
found appear (artifactually) to be extremely strong and focal. The great-
er sensitivity of searchlight analysis to focal information is compatible
with the tendency in fMRI research to describe small brain areas with
specific properties; the “localizationist view” (Gonzalez-Castillo et al.,
in press). Expanding our search space beyond focal information, such
as by using the strategies described in this paper, will provide a more
complete picture of the brain activity that is measured by fMRI BOLD
signals, hopefully leading to a more accurate and powerful understand-
ing of brain function.
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