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The error likelihood effect in anterior cingulate cortex (ACC) has recently been shown to be a
special case of an evenmore general risk prediction effect, which signals both the likelihood
of an error and the potential severity of its consequences. Surprisingly, these error likelihood
and anticipated consequence effects are strikingly absent in risk-taking individuals.
Conversely, conflict effects in ACC were found to be stronger in these same individuals.
Here we show that the error likelihood computational model can account for individual
differences in error likelihood, predicted error consequence, and conflict effects in ACCwith
no changes from the published version of the model. In particular, the model accounts for
the counterintuitive inverse relationship between conflict and error likelihood effects as a
function of the ACC learning rate in response to errors. As the learning rate increases, ACC
learnsmore effectively frommistakes, which increases risk prediction effects at the expense
of conflict effects. Thus, the model predicts that individuals with faster error-based learning
in ACC will be more risk-averse and shows greater ACC error likelihood effects but smaller
ACC conflict effects. Furthermore, the model suggests that apparent response conflict
effects in ACC may actually consist of two related effects: increased error likelihood and a
greater number of simultaneously cued responses, whether or not the responses are
mutually incompatible. The results clarify the basic computational mechanisms of learned
risk aversion and may have broad implications for predicting and managing risky behavior
in healthy and clinical populations.

© 2007 Elsevier B.V. All rights reserved.
Keywords:
Anterior cingulate
Conflict
Individual differences
Computational model
Dopamine
1. Introduction

The anterior cingulate cortex (ACC) has recently been the
focus of intense investigation as it has been implicated in
several aspects of higher cognitive function. It is critically
involved in performance monitoring and cognitive control
(Blakemore et al., 1998; Botvinick et al., 1999; Braver et al., 2001;
Carter et al., 1998, 2001; Gehring and Knight, 2000; Kerns et al.,
2004; Liddle et al., 1992; MacDonald et al., 2000; Menon et al.,
(J.W. Brown).

er B.V. All rights reserved
2001; Nordahl et al., 2001; Scheffers and Coles, 2000; Ullsperger
and von Cramon, 2001; van Veen et al., 2001).

Performancemonitoring is essential to theories of executive
control, in which a central executive or supervisory attentional
system takes controlwhen it detects that undesirable outcomes
may arise if control is handled only by automated processes or
schema (Norman and Shallice, 1986). Initially, the ACC was
described as showing greater activity for errors relative to
correct trials, first with single-cell recording studies in animals
.
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Fig. 1 – Error likelihood computational model. Adapted with
permission from Brown and Braver (2005). Go and Change
response cues may be presented in the cue colors associated
with either high or low error likelihoods. Each of these
signals provides a separate input to the model. As errors
occur more frequently in response to color cues associated
with a higher error likelihood, more model ACC cells learn to
respond preferentially to the inputs associated with more
frequent errors. The model ACC in turn activates a control
signal that generally slows responding.
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(Gemba et al., 1986) and then as the probable source of the error-
related negativity (ERN) in humans (Dehaene et al., 1994;
Gehring et al., 1990, 1993; Hohnsbein et al., 1989). In the last
decade, an influential model of performance monitoring has
been proposed which postulates that the ACC detects response
conflict (Carter et al., 1998). In this account, when twomutually
incompatible response processes are active, theACCdetects the
state of conflict and drives control processes to resolve the
internal conflict and facilitate appropriate behavior. This allows
individuals to suppress prepotent, automatic responses and
instead generatemore appropriate responses to achieve current
goals. Subsequent computational modeling and brain imaging
studies have provided accounts of how the ACC monitors a
variety of measures of performance, including incompatible
response cues (Botvinick et al., 2001; Brown et al., 2007), errors
(Holroyd and Coles, 2002), and error likelihood (Brown and
Braver, 2005) and subsequently activates corresponding cogni-
tive control processes (Kerns et al., 2004). Individual human
neurons have also been recorded showing responses to
attention demanding tasks, with some showing selectivity to
high conflict trials (Davis et al., 2000, 2005).

More recently, the ACC has been studied as playing a key
role in decision-making under risk. One prominent recent
study (de Martino et al., 2006) has examined the neural
mechanisms of framing effects (Kahneman and Tversky,
1984), in which a given net monetary increase can be cast
either as a gain (i.e., getting to keep some percentage of an
initial endowment) or a loss (i.e., having to return some
complementary percentage of an initial endowment). The
results (de Martino et al., 2006) showed greater ACC activity
when subjects make decisions that are framed as involving a
loss vs. a gain, even when the final net increase is the same in
both conditions. The results suggest that ACC is sensitive to
imminent perceived losses. In contrast, substance abusers
show a unique hypoactivity in ACC relative to controls, and
this correlates with an increased tendency to make risky
decisions (Brown and Braver, in press; Fishbein et al., 2005;
Forman et al., 2004). Substance abusers may be overly
sensitive to anticipated reward relative to anticipated pun-
ishment as they tend to engage in risky behavior despite the
adverse consequences (Fishbein et al., 2005; Yechiam et al.,
2005). ACC activitymay also be associatedwith error avoidance.
Conditions in which subjects avoid engaging in a task to avoid
errors elicit greater ACC activity than conditions of actual error
commission (Magno et al., 2006). Similarly, greater ACC activity
hasbeen foundwhenanimals andhumanschange their taskset
to avoid errors (Bush et al., 2000; Shima and Tanji, 1998). Other
evidence suggests that the ACC signals the amount of instru-
mental effort needed to attain the goal associated with a
stimulus (Walton et al., 2004). Conversely, long-term overactiv-
ity of ACC in obsessive-compulsive disorder leads to inappro-
priate, excessive effort to avoid mistakes (Gehring et al., 2000;
Hajcak and Simons, 2002). Given the above, the ACC is a
particularly promising area for the study of risk avoidance in
decision-making.

On the basis of computational modeling and fMRI results,
we recently proposed the error likelihood hypothesis of ACC,
i.e., that ACC activity will be proportional to the perceived
likelihood of an error (Brown and Braver, 2005). The error
likelihood hypothesis was implemented as a computational
model, and subsequent fMRI results were consistent with the
predictions of the error likelihood model but could not be
accounted for solely by the response conflict model. Thus, the
work suggested a reinterpretation of empirically observed
response conflict effects as reflecting not a computation of
response conflict per se, but rather a greater perceived
likelihood of an error. Consistent with this proposed reinter-
pretation, stimulus cues that activate mutually incompatible
responses are generally associated with higher error rates
versus cues that activate compatible responses. Consequent-
ly, in this paper we make a distinction between response
incongruent (RI) effects (van Veen et al., 2001) and response
conflict (RC). For the present purposes, we define RI effects as
the empirical observation of significant differences between
incompatible versus compatible response cues. We reserve
the term RC to refer to the theoretical explanation of RI effects
as reflecting a computation of response conflict.

The error likelihood computational model (Fig. 1) works as
follows (Brown and Braver, 2005). First, model inputs to the
ACC represent not pure perceptual signals but rather motor
responses driven by particular input stimuli (SR inputs). There
is scant evidence for direct visual inputs to ACC, which seems
to receive more inputs from frontal and association areas
(Barbas, 1988; Vogt and Pandya, 1987). Past studies have
shownpredominantlymotor rather than pure stimulus effects
in ACC (van Veen et al., 2001), and ACC seems to bemodulated
especially when outcomes are contingent on chosen
responses (Walton et al., 2004). In contrast to pure visual
cells, motor cells that drive actions in response to specific
sensory cues have been found in premotor cortex of monkeys
(Boussaoud and Wise, 1993). Cells in the frontal regions are
more likely to provide input to the model ACC (Vogt and
Pandya, 1987). Thus, ACC responses are not postulated to
occur merely to perceptual processing of visual stimuli (e.g.,
under passive viewing or fixed response conditions). Instead,
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the model ACC will respond to visual cues to the extent that
they drive particular responses. The SR inputs provide signals
both to the model ACC and to the final common response
pathway in the response layer. The distinction between
stimulus and SR units parallels a similar distinction between
perception and category layer units in an earlier model of
performance monitoring (Holroyd et al., 2005). In that model,
only the category layer cells that both responded to stimuli
and drove particular corresponding responses were also able
to provide signals to the performance monitor (Holroyd et al.,
2005), as is the case in the present model. In the present
model, the response layer differs from the SR input layer in
that the model response layer cells represent the intention to
make a particular response, regardless of what stimuli drive
the response.

When an error occurs, the error signal trains a random
subset of ACC cells to learn to respond preferentially to the
inputs that were active when the error occurred. Thus, if the
model has more a more frequent experience of errors in
certain conditions, then a greater number of ACC cells will
respond to situations that share stimulus–response features
with the higher error conditions. This is the essence of how
the computational model yields the error likelihood effect.

In the original paper describing the error likelihood model
(Brown and Braver, 2005), we tested the model with a change
signal task, a modified version of the stop signal task (Husain
et al., 2003; Logan andCowan, 1984;Murthy et al., 2001). Briefly,
subjects were presented with an arrow that pointed either left
or right and had to press a button (left or right) that corres-
ponded to the arrow direction. In two thirds of the trials (the
“Go” conditions), the subjects simply respond to the arrow. The
remaining one-third of trials constituted the “Change” condi-
tion. In these trials, therewas a brief change signal delay (CSD),
before the second arrow appeared – larger and pointing in the
opposite direction – which served as the change signal. The
appearance of the change signal served as an instruction for
subjects to cancel their response to the first arrow, if possible,
and instead substitute the opposite response to the second
arrow. Both arrows remained visible until a response was
executed or a 1000 ms response deadline (from first arrow
onset) was reached. In this way, a comparison of the Change
vs. Go conditions (correct trials only) yields a measure of RI
effects (i.e., ChangeNGo). Additionally, subjects often commit
errors on Change trials, by responding to the Go cue (first
arrow) even when a change signal is presented. Thus, a
comparison of correct vs. error responses in the Change
condition yields ameasure of error effects (i.e., ErrorNCorrect).

In addition to RI and error effects, the color of the arrow
stimuli was varied randomly across trials to signal whether
the trial was of high or low error likelihood. The color cue
relationship to error likelihood was not directly conveyed to
participants and thus could only be learned through experi-
ence. Error likelihood effects were obtained by controlling
error rates through manipulation of the CSD. On high error
likelihood trials, the CSD was kept long (and dynamically
adjusted on a trial-by-trial basis), which made it difficult to
cancel the initial response to the Go cue (since a putative
“point of no return” in response generation had already been
reached). Conversely, on low error likelihood trials, the CSD
was kept short (and also dynamically adjusted) to make it
easier to cancel the initiated response. Because of the
association of arrow color with errors on Change trials, the
color cue information could serve as an indication of error
likelihood at the onset of a trial and thus could be present even
on Go trials (which were not subject to RI or errors). Moreover,
since change signals were equally likely in the high and low
error likelihood conditions, high vs. low error likelihood
effects were independent of RI effects. The key finding of
Brown and Braver (2005) was that, in human subjects, fMRI
revealed greater ACC activity in the high than the low error
likelihood correct, Go trials (high/goN low/go). This effect could
not be accounted for by existing RC models.

In a follow-up study, we further developed the error
likelihood computational model to explore effects of the mag-
nitude of the expected error signal. We found that the model
made a striking prediction: that ACC activity will be propor-
tional to the product of perceived error likelihood and the
predicted magnitude of the error consequences, should an
error occur (Brown and Braver, in press). We refer to this
further model prediction as the expected risk hypothesis of ACC,
namely that ACC predicts both the likelihood and potential
severity of errors. We tested this second prediction of the
model in a corresponding fMRI study, which used an incentive
variant of the change signal task tomanipulate themagnitude
of error consequences (Brown and Braver, in press). In this task
variant, correct trials result in a specified monetary reward,
and error trials yield a reduced monetary reward. The
magnitude of the reward reduction in error trials relative to
correct trials operationalizes the error consequence magni-
tude. Details of the tasks can be found in Brown and Braver
(2005) and Brown and Braver (in press); see also Experimental
procedures below. The result of this study confirmed ACC
sensitivity to be perceived error likelihood and consequence
magnitude (Brown and Braver, in press). However, the findings
also revealed a striking further effect, namely that error
likelihood and predicted error consequence magnitude effects
were notably absent in more risk-taking individuals, despite
intact RI and error effects.

These results are particularly noteworthy because recent
work (Nieuwenhuis et al., 2007) has called into question the
existence of the error likelihood effect, due to a failure to
replicate the primary findings of Brown and Braver (2005). The
results of our follow-up study which revealed a high degree of
individual variability in ACC error likelihood effects may
provide an account of this failure to replicate in other work
(Nieuwenhuis et al., 2007). Specifically, it may be the case that
ACC activity plays an important role in trait risk aversion.
Thus, substantial variability in ACC activity may be observed
across individuals that significantly vary in this trait. Our
latest work (Brown and Braver, in press) also raises its own
apparent challenge to the error likelihood computational
model. Specifically, in some areas of ACC, RI effects were
actually stronger rather than weaker in risk-taking indivi-
duals. Moreover, in a particular region of ACC the error
likelihood and RI effects were negatively correlated across
individuals, such that high error likelihood effects were linked
to lower RI effects. This negative correlation appeared to be
directly explained by individual variation in trait risk aversion.
This set of findings seems puzzling. If ACC learns to predict
the risk associated with a behavior and drive risk avoidance,
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and if RI effects are associated with an increased perceived
likelihood of an error, then how can RI effects be stronger in
individuals who are less risk-averse?

To resolve this conundrum, we return to the error like-
lihood computational model as published (Brown and Braver,
2005) to explore whether individual differences in error like-
lihood, risk prediction, and RI effects in ACC as well as trait
differences in risk aversion can be simulated in a unified way
as variations in a single underlying parameter. The simula-
tions focused on individual differences in the strength and
speed of error-based learning within the ACC. We hypothe-
sized that there may be a strong causal relationship between
the strength of error-based learning within the ACC and the
tendency towards risk-taking behavior. Specifically, we pre-
dicted that smaller learning rates in the error likelihood
model ACC would lead to smaller error likelihood effects,
which in humans correlates with greater risk-taking. None-
theless, it was not clear whether or how impaired learning
from errors would impact RI effects. To examine this issue, we
conducted two sets of simulations using the previously
published computational model. The model had the exact
architecture and parameters used in previous simulations,
save for manipulation of error-based learning rate within the
ACC. The first simulation examined how variation in learning
rate affected the relationship between error likelihood and RI
effects. The second simulation examined how variation in
learning rate affected the relationship between error magni-
tude and RI effects (when holding error likelihood constant).
Surprisingly, the simulation results show that the error
likelihood computational model predicts a counterintuitive
Fig. 2 – Human fMRI and computational model results. Adapted
computationalmodel shows greater error likelihood effects butw
gambling likelihood subjects). (B) Error likelihood effects found in
tolerant (high gambling) individuals. RI effects found in human su
but not significantly so in this region of ACC. Nonetheless, neighb
high vs. low gambling individuals (Brown and Braver, in press).
high learning rate runs (simulated gambling averse) than in low
model predictions in panel C.
tradeoff between RI and risk prediction effects (both error
magnitude and error likelihood) that is modulated by the
ability to learn from previous errors. This pattern seems to
strongly confirm and explain what would otherwise be the
surprising fMRI findings that we obtained in our recent
experimental study (Brown and Braver, in press). In what
follows, we present these simulation results, their fit to the
experimental data, and their implications for understanding
the nature of neural and cognitive processes involved in
decision making under risk.
2. Results

2.1. Error likelihood simulation

The left panels of Fig. 2 show the results of the first simulation
examining error likelihood effects as a function of ACC learn-
ing rate compared against the human fMRI data obtained in
Brown and Braver (in press). Fig. 2A showsmodel ACC activity
during task performance under high vs. low learning rate
conditions. As can be seen, in the high learning rate model
(which corresponds to the exact learning rate parameters used
in the previous simulations (Brown and Braver, 2005)) both
error likelihood and RI effects were present. However, in the
low learning rate model, error likelihood effects were strongly
reduced, while RI effects increased. This pattern of opposing
effects of learning rate on error likelihood and RI magnitude
was formally tested, by submitting the simulation results to a
model type (high vs. low learning rate)×condition (high/go vs.
from Brown and Braver (in press). (A) Error likelihood
eaker RI effects in high learning rate runs (which simulate low
ACC of gambling averse (low gambling) but not gambling

bjects were numerically greater in high gambling individuals
oring ACC regions did show significantly greater RI effects in
(C) Model shows greater predicted error magnitude effects in
learning rate runs. (D) Human fMRI data are consistent with
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low/go) ANOVA. A significant interaction of error learning
rate on error likelihood was observed (F(1,30) =66.41,
pb0.001). Post-hoc analyses of simple effects revealed
more significant error likelihood effects in the high learning
rate model (t(15)=8.92, pb0.001) relative to low learning rate
model (t(15)=1.65, p=0.12) conditions.

In contrast to the error likelihood effects, the RI effects
showed the opposite pattern. This was reflected in a sig-
nificant model type (high vs. low learning rate)×RI (change vs.
go) interaction (F(1,30)=349.7, pb0.001). Although the RI effects
were significant in both the low learning rate (t(15)=111.2,
pb0.001) and high learning rate models (t(15)=22.9, pb0.001),
the magnitude of the effect was clearly smaller in the high
learning rate mode, and this was the source of the effect of
learning rate on RI effects.

These simulation results matched well with our previous
fMRI findings of greater error likelihood effects in the in-
dividuals showing reduced gambling tendencies, but reduced
RI effects in these individuals (Brown and Braver, in press), as
seen in Fig. 2B. Specifically, we found that the fMRI response in
human ACC showed a significant error likelihood effect of
High/GoNLow/Go (pb0.005) in the subjects who were most
unlikely to gamble (see Experimental procedures) but not in
the subjects with higher gambling tendencies. The RI effect in
this region did not differ significantly between high and low
gambling subjects, although a neighboring region of ACC did
show significantly greater RI effects in high gambling vs. low
gambling subjects, as detailed in our earlier work (Brown and
Braver, in press). In terms of behavioral performance, there
was no effect of error likelihood on observed RT, in any group
of participants. This null effect was also present in the model
(F(1,30)=0.07, p=0.80).

2.2. Error magnitude simulation

The second simulation examined the error magnitude pre-
diction effect in the model as a function of learning rate
(Fig. 2C); see Experimental procedures. The results revealed a
significant model type (high vs. low learning rate)×condition
(high/go vs. low/go) interaction (F(1,30)=9.91, pb0.001). Post-
hoc analyses of simple effects revealed more significant
potential error consequence magnitude effects in the high
learning rate model (t(15)=3.63, pb0.005) than in the low
learning rate model (t(15)=0.96, p=0.35) conditions. Again, the
opposite pattern was seen on the RI effects. There was a
significant group (high vs. low learning rate)×RI (change vs.
go) interaction (F(1,30)=836, pb0.001). Although RI effect was
present in both the high learning rate (t(15)=94.2, pb0.001) and
low learning rate models (t(15)=180.3, pb0.001), the greater
magnitude of the effect in the high learning rate conditionwas
the source of the interaction. Overall, the human fMRI data
(Brown and Braver, in press) agreedwith themodel simulation
predictions (Fig. 2D). In the high learning rate model, the error
magnitude effect seemed smaller than the RI effect, although
a corresponding patternwas not found in the human data (Fig.
2D). This may be due to the fact that error magnitude effects
were examined experimentally via a within-subject design in
which error likelihood effects were also manipulated on a
trial-by-trial basis. This may have introduced increased
variance in the fMRI data that was not present in the
simulation. Finally, the simulations also revealed no effect of
error consequence magnitude on behavioral performance, in
terms of RT (F(1,30)=0.73, p=0.40). This again fits well with the
null effect of this variable observed in the experimental study
(Brown and Braver, in press).

2.3. Parametric manipulations

In a third set of simulations, we more systematically exam-
ined the effect of the learning rate parameter on ACC acti-
vation, by varying learning rate across a range of values. This
enabled us to address questions of how parameter depen-
dent or nonlinear were the effects we observed in the first
two simulations. In one simulation, error likelihood effects
were examined with the error magnitude held constant (as
in the error likelihood simulation described above). With the
learning rate set at a high value, the error likelihood and RI
effects change over time (i.e., repeated exposure to trials),
demonstrating a clear learning effect that reached asymptote
after about 300 trials (see Fig. 3A). Notably, with increased
learning, the error likelihood effect increased, while the RI
effect decreased. When learning rate was systematically
decreased from the maximum (Fig. 3B), we found that these
learning effects also became weaker, such that error
likelihood effect systematically decreased with lower learn-
ing rate (Pearson's R=0.87, F(1,99)=305, pb0.0001), while the
RI effect systematically increased with lower learning rate
(Pearson's R=−0.93, F(1,99)=607, pb0.0001). These joint,
opposing effects are shown in Fig. 3B, with each data point
representing an average of 16 virtual subjects across 400 trials
of learning.

A similar pattern was observed in a second simulation that
examined error magnitude effects with error likelihood held
constant (as in the error magnitude simulation described
above). In this simulation, with a high learning rate, error
magnitude effects increased across time, similar to the pattern
with error likelihood effects, while again RI effects simulta-
neously decreased (Fig. 3C). When learning rate was systemat-
ically decreased, the error magnitude and RI learning effects
also varied in a corresponding manner that was similar to the
effects of learning on error likelihood (Pearson's R for the
correlation between predicted error magnitude and learning
rate: 0.58, F(1,99)=49.9, pb0.0001, and for the correlation be-
tween RI effects and learning rate: −0.96, F(1,99)=1029,
pb0.0001; see Fig. 3D). Thus, the results demonstrate a sys-
tematic dependence in the relationship between learning rate
and ACC effects associated with error likelihood and error
magnitude. According to themodel, the higher the learning rate
within ACC, the stronger these effects will be. Conversely, there
is an inverse relationship between learning rate and RI-related
ACC effects, such that these effects tend to decrease as learning
rate increases. Importantly, the simulations indicate that these
effects arenot specific to particular choices of parameter values,
but instead are a general property of the model. As such, the
model provides a coherent account of the fMRI results regarding
ACC activity that we recently observed (Brown and Braver,
submitted for publication). The model indicates that both the
negative correlation between error likelihood effects and trait
gambling likelihood andpositive correlations betweenRI effects
and trait gambling likelihood can be explained by linking



Fig. 3 – (A) Model ACC effect trajectory as a function of learning throughout a simulated session. Results shown for learning
rate=10. Initially, RI effects dominate. As learning occurs with experience of the task, RI effects weaken, and error likelihood
effects dominate. (B) Model error likelihood and RI effects as a function of ACC learning rate. Higher learning rates correspond to
lower gambling likelihood. As the learning rate increases, the error likelihood effect in the model ACC increases, and the RI
effect decreases, in agreementwith effects found in human data (Brown and Braver, in press). (C) Conventions as in panel A, but
for potential error consequence magnitude. (D) Conventions as in panel B, but for potential error consequence magnitude.
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gambling likelihood (asmeasured by self-report questionnaires)
with the rate of error-based learning in the ACC.
3. Discussion

Overall, it is not very surprising that reductions in the ACC
error likelihood effect are observed when learning from errors
is impaired. Such a finding is consistent with earlier model
simulations, in which error signals are necessary to train the
ACC to respond more strongly to situations in which errors
have occurred more frequently in the past, which leads to the
error likelihood effect. It is perhaps more surprising that ACC
RI effects are actually greater in subjects with lower error
likelihood effects and less risk aversion. Prior to conducting
simulations, we had initially predicted that subjects with
reduced error likelihood effects would also be less sensitive to
RI as a correlate of decreased error likelihood. Our human fMRI
results showed just the opposite, and surprisingly, our earlier
computational model is now shown here to predict the same
counterintuitive pattern found in human subjects.

What are the mechanisms in the model that account for
greater RI effects in less risk-averse subjects? The model
account of variation in RI effects with learning rate is as
follows. Initially, all model ACC cells are excited weakly by all
SR inputs. For this reason, all cells tend to show some at least
weak RI effects since on Change trials the ACC receives more
input as a result of response co-activation (i.e., both the
Change and Go responses becoming activated in the SR input
layer) that does not occur in the Go trials (i.e., since on these
trials only Go responses become activated). With repeated
exposure to task trials learning occurs, leading most model
ACC cells to learn to respond preferentially to SR inputs rep-
resenting responses to the high error likelihood color cues,
while a few cells learn to respond to the low error likelihood
cues (because errors still do occur in the low error likelihood
condition, albeit less frequently). Each of these kinds of cells
will respond more strongly on Change trials than on Go trials,
but in each type of trial, only one of the two populations (high
or low error likelihood) responds, whereas in the RI case before
error likelihood learning, all of the cells are more likely to
respond to a change signal to some degree.

It is important to note that another source of the effect is
the use of weight normalization mechanisms that govern the
input strength of SR inputs to the ACC. The normalization
approach is standardly used in computational learning
algorithms and appears to match well with neurobiological
mechanisms impacting synaptic plasticity (Koester and John-
ston, 2005). The impact of weight normalization is that
increased sensitivity of ACC model cells to one condition
(high or low error likelihood inputs) necessarily reduces
sensitivity to the other condition. Also, cell activity rises
more slowly than linear with increasing input excitation, a
property that follows from the supplementary material
equations of the original published model (Brown and Braver,
2005). Of note, even though many neural networks use a
sigmoidal activation function in which activation rises super-
linearly at low levels of activity (Rumelhart and McClelland,
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1986), the dynamical system equations that govern the
presentmodel yield only sublinear activation functions across
the range of input levels. This property is also relatively
standard in more biologically detailed computational neural
models and seems to correspond well with existing neurobi-
ological data (Hodgkin and Huxley, 1952). These properties,
taken together as a whole, account for how the learned
selectivity of the cells causes a reduction in overall (i.e.,
summed over all cells) ACC activity for each of the individual
high and low error likelihood conditions, in response to RI. The
model therefore implies that the human ACC initially
responds with increasing activity as the number of simulta-
neously cued responses increases, but with little stimulus
specificity. As learning proceeds, ACC cells may become more
stimulus selective, tuning their risk fields (as analogous to
receptive field sharpening in the sensory neurophysiology
literature, e.g., Schoups et al., 2001) to more selectively
respond to situations of increased risk of errors and conse-
quent loss. Indeed, our computational model of ACC (Brown
and Braver, 2005) was designed in order to faithfully simulate
the dynamics of neural populations, so the finding of learned
abstract receptive fields in the model is not unexpected.

The interpretation of the learning rate parameter manip-
ulation in the model bears some explanation. If learning rate
were the only difference between risk-taking and risk-averse
subjects, then all subjects should eventually look like risk-
averse subjects with sufficient training on the task. This may
or may not be the case. In any event, it is likely that there is
some noise in the learning signal that drives cells to forget
their preferred inputs and respond more non-specifically as
they do prior to training on the task (i.e., a weight decay
mechanism). The learning rate may be understood more
broadly as competing with a forgetting process (which we
have not simulated here), so that the asymptotic performance
of the trained system reflects an equilibrium as a function of
both error-based learning and forgetting. The contribution of a
forgetting process remains to be determined.

The observation that increased error likelihood learning in
ACC leads to reduced RI effects calls into question whether RI
effects can be understood as a special case of error likelihood
prediction, as was suggested previously (Brown and Braver,
2005). Based on the current model results, we find that the
ACC RI effect prior to error likelihood learning reflects simply a
greater number of simultaneously planned responses rather
than whether these responses are in competition or not
(Nakamura et al., 2005). This result is consistent with earlier
reports of a failure to find pure conflict monitoring signals in
monkey ACC (Ito et al., 2003; Nakamura et al., 2005). In the case
of the change signal task (Brown and Braver, 2005) and other
tasks that induce response RI (Carter et al., 1998; Eriksen and
Eriksen, 1974), the responses are mutually incompatible,
which in general leads to a higher error rate relative to
compatible trials. However, simultaneously planned re-
sponses need not generally be mutually incompatible; they
could in principle be executed concurrently. Thus the error
likelihood computational model predicts that ACC RI effects
may be decomposed into two different sources: (1) greater
activity driven by a larger number of simultaneously planned
responses inRI conditions compared to control conditions; and
(2) a higher error likelihood in RI conditions relative to control
conditions. This finding suggests a potentially broad reinter-
pretation of apparent ACC conflict effects in studies with
human fMRI (Carter et al., 1998), human single units (Davis
et al., 2005), and monkey single units (Stuphorn et al., 2001).

This model prediction could be tested in principle by
separately controlling for the number of simultaneously cued
responses and error likelihood while manipulating multiple
responses as competing vs. concurrent. If such a decomposi-
tion is found, the relative contributions of multiple responses
vs. error likelihood would shift over time with experience of
errors. That is, as error likelihood is learned, the contribution
of error likelihood effects will increase and eventually account
for a larger proportion of ACC activity. The contributions of
multiple responses vs. RC to ACC activity could be tested in a
straightforward manner, by having participants perform a
standard response conflict task, such as the Eriksen flanker
task (Eriksen and Eriksen, 1974), with different instructions for
separate blocks. In the multiple response block, subjects would
respond to both target and flankers, which means that they
make two responses to incongruent stimuli and one response
to congruent stimuli. In the single response block, subjects per-
form the flanker task in the usual way. If ACC effects of
incongruent vs. congruent flanker stimuli are found in the
multiple response block, and if the ACC effects are not
significantly greater for single vs. multiple response blocks,
then ACC activity effects that have previously been inter-
preted as reflecting RCmay in fact represent a greater number
of simultaneously planned responses, whether or not they
conflict. Similarly, the change signal task (Brown and Braver,
2005) could be presented in multiple response blocks, which
require multiple simultaneous responses when both go and
change cues are presented. The multiple response blocks
could be followed by single response blocks in which change
cues require suppression of responses to go cues. If ACC
activity reflects a greater number of simultaneously planned
responses and also learned predictions of error likelihood,
then error likelihood effects should be greater in the single
response block than in the multiple response block, but
apparent RI effects should not be greater in the single
response block (and indeed may be reduced) compared to
the multiple response block. Such results, if found, would
suggest a significant reinterpretation of apparent RI effects in
ACC. We are currently investigating these issues.

The present model results that we have simulated with
changes in learning rate may reflect neurobiological individ-
ual differences in the efficacy of dopaminergic error signaling.
Previous work has strongly implicated dopaminergic signals
from the midbrain in ACC error responses, both in activity
(Holroyd and Coles, 2002) and learning (Brown and Braver,
2005). Other models of the basal ganglia have suggested how
transient pauses of dopamine activity due to unexpected
reward omission (Ljungberg et al., 1992)may provide a training
signal. In particular, transient dopamine pauses (dips) may
disinhibit dopamine D2 receptors of the indirect pathway,
allowing them to learn to suppress actions which led to
unexpected non-reward (Brown et al., 2004; Frank et al., 2004).
In the sameway, we have proposed that dopamine pauses due
to errors train the ACC to respondmore strongly to conditions
in which errors are more likely to occur (Brown and Braver,
2005). Consistent with this hypothesis, reductions in the
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ability of ACC to learn from errors would be expected to result
in smaller error likelihood effects.

If dopaminergic error signals train the ACC to detect error
likelihood, what trains the dopamine cells to detect errors? It
has been proposed that the ACC drives dopamine error signals
(Holroyd et al., 2005; Yeung et al., 2004), so casting dopamine
cells as training ACC potentially begs the question of how
dopamine cells learn to respond to errors in the first place.
This is not a problem for the error likelihood model, however,
because there are many models of how dopamine cells
compute error signals in a way that does not depend on ACC
activity (Brown et al., 1999; Montague et al., 1996; O'Reilly et al.,
2007; Schultz et al., 1997; Suri and Schultz, 1998).

The effect of dopamine signaling on error likelihood and RI
effects could be investigated by pharmacological manipula-
tion of D2 receptor activity. Recent work has shown effects of
D2 receptor manipulation on behavior in reinforcement
learning and working memory span (Frank and O'Reilly,
2006). In particular, D2 agonism impaired positive reinforce-
ment learning via presynaptic mechanisms in the striatum,
although postsynaptic effects in the opposite direction are
more likely in prefrontal cortex (Frank and O'Reilly, 2006). In
particular, D2 agonism might be expected to increase post-
synaptic D2 receptor occupancy in ACC, thereby decreasing
the effectiveness of dopamine dips as error likelihood training
signals. Dopamine D2 antagonists might have the opposite
effect. In this way, the role of dopamine in error likelihood and
RI effects could be clarified by group-wise pharmacological
manipulations of individuals performing the change signal
task with fMRI (Brown and Braver, 2005).

3.1. Conclusion

In this paper, we have shown that individual trait differences in
risk aversion and patterns of ACC activity for three different
effects (RI, error likelihood, and error consequence magnitude)
can all be accounted for by variations in a single computational
model parameter, namely the learning rate in response to
errors. Perhaps most surprisingly, the model simulations
suggest that RI effects inACCmayactually reflect a combination
of error likelihood effects and multiple simultaneous response
plans rather than RC per se. We have suggested specific
experiments to investigate these issues, whichwe are currently
pursuing. The variations in learning rate as simulated in the
model may correspond to variations in dopaminergic error
signals as they provide learning signals to ACC. This conjecture
may be investigated with pharmacological manipulations of
dopamine signaling. The results suggest specific neural
mechanisms by which clinical populations may fail to avoid
risky or inappropriate behavior, such as alcohol and substance
abuse, pathological gambling, and risky sexual activity. Inter-
ventions aimed at restoring error-driven learning in ACC,
perhaps by manipulating dopamine signaling, may increase
risk avoidance in clinical populations. Furthermore, the effec-
tiveness of such interventionsmight be directly assessed by the
degree to which they simultaneously increase error likelihood
effects and decrease RI effects in ACC. As a whole, the results
further highlight a tight synergy between theoretical, computa-
tional modeling, and human empirical studies. The error
likelihood computational model, with no changes from the
published version (Brown and Braver, 2005), has continued to
providenovel andevencounterintuitive predictionswhichhave
been borne out by subsequent empirical studies.
4. Experimental procedure

The computational simulations described in this paper focus
on the change signal task (Brown and Braver, 2005), along with
a variant in which incentives are utilized and manipulated
(Brown and Braver, in press). We began with the previously
published computational model of error likelihood effects in
ACC (Brown and Braver, 2005). In this model (Fig. 1), ACC
activity for a given trial ismeasured as theaverage activity over
all ACCunits andover all timepoints in a trial, i.e., a spatial and
temporal average. Model ACC activity can be driven both by an
external error signal and by learned inputs from other parts of
the model reflecting task-related activity. The magnitude of
the error signal response in ACC presumably reflects the
magnitude of a transient pause of dopamine cell firing
(Holroyd and Coles, 2002; Ljungberg et al., 1992; Tobler et al.,
2005; cf. Bayer and Glimcher, 2005). The published model set
the error signal magnitude at 1.0 in arbitrary units, and the
learning rate of inputs to ACC at 10 in arbitrary units (Eq. (4) of
Brown and Braver, 2005, supplementary material). The model
as published allows for changes in input cues that signal
variation in error likelihood, but not also for simultaneous
variation in error magnitude. To simulate the fMRI data in
which both effects were manipulated within a single task (via
four different color cues that signaled each of the four
conditions high/low error likelihood×high/low error magni-
tude, see Brown and Braver, in press), we needed to provide an
alternate means of simulating changes in error magnitude. To
do this while minimizing changes from the published version
of the model, we ran two separate simulations in which the
“high” and “low” model inputs served as cues that signaled
either manipulations of error likelihood with error magnitude
held constant, or vice versa. We manipulated the model as
follows. First, we used a modified stairstep algorithm as in the
behavioral methods of Brown and Braver (2005) to enforce the
computational model error rates. In simulations of error
likelihood, the high error likelihood condition was associated
with an error rate enforced at 70% in Change trials. In the low
error likelihood condition, the error rate was enforced at 30%.
This ensured that error likelihood effectswere not confounded
with uncertainty and provided for closer comparison with
earlier fMRI results (Brown and Braver, in press). In the error
likelihood simulations, the magnitude of the error signal
remained at 1.0 as in Brown and Braver (2005). Second, in
simulations of the error magnitude effect, the high error
magnitude condition entailed an error signalmagnitude of 1.0,
and the low errormagnitude condition entailed an error signal
magnitude of only 0.5. In manipulations of error signal
magnitudes, the error rates were enforced at 50% for change
signals in both the high and low conditions.

In Brown and Braver (in press), we measured self-reported
likelihood of gambling behavior as a measure of individual
trait differences in risk taking (Weber et al., 2002). We divided
individuals into two groups: “high gambling” individuals who
were more likely to make risky decisions that on average
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would result in financial loss, and “low gambling” individuals,
who were unlikely to engage in gambling behavior. Because
the study used monetary incentive for correct answers, we
began by looking at the group of participants (“low gambling
participants”) who were most averse to financial gambling
(DOSPERT gambling subscoreb6, N=8). Although the use of a
threshold to dichotomize groups can be controversial (Far-
rington and Loeber, 2000; MacCallum et al., 2002), we chose a
score of 6 as the cutoff in order to restrict the analysis to only
the most risk-averse participants while maintaining adequate
sample size for analysis. This was important as individuals
with high gambling likelihoods may include clinical or
subclinical populations (Lesieur and Blume, 1987), and we
were concerned to avoid such potential confounds. We
hypothesized that this individual difference trait might
correspond to individual variation in the effectiveness of
error-based (i.e., negative reinforcement) learning. Thus, to
simulate individual differences in the model, we manipulated
the effectiveness of the learning rate of inputs to ACC as
modulated by error signals. A higher learning rate means that,
when errors occur, more model ACC cells rapidly learn to
respond preferentially to the pattern of inputs that were active
when the error occurred. Thus, as errors occur more frequent-
ly and with more severe consequences in a given condition,
more and more model ACC cells will learn to become active in
anticipation of a more likely error.

For the present simulations, we simulated the high gambling
likelihood (risk-taking) group as having a much lower learning
rate of 0.1 instead of 10 for inputs to themodel ACC. The original
value of 10 was determined in the original model paper (Brown
andBraver, 2005) as avalue that best simulated the timecourseof
changes inACCactivityacrossanexperimental session. Learning
was governed by Eq. (4) of the supplementarymaterial to Brown
and Braver (2005). Of note, valid values of the learning rate are
between 0 and positive infinity. The larger the learning rate, the
more quickly a given model ACC cell adapts its input weights to
respond preferentially to the currently active input pattern. As
the learning rate approaches zero, learning becomes negligible.
For simulationsofhighgambling individuals, thevalueof 0.1was
chosen as a learning rate that is extremely lower than the
publishedbaseline valuebut still nonzero. The largedifference in
learning rates between high and low learning rate condition
simulationsmaximizes the clarity of learning ratemanipulation
effects, and the very low learning rate parameter choice is
justified in that it leads to effects consistent with those of the
high gambling likelihood human group. There were no observed
behavioral differences in response time between high and low
gambling individuals (BrownandBraver, in press), so the choices
of learning rates here are otherwise justified solely by how well
they account for the neuroimaging results (Brown and Braver, in
press). In follow-up simulations, we explored the effect of
continuous variation in the learning rate parameter to ensure
that the observed effects were not specific to these particular
parameter values. For the low gambling likelihood (risk-averse)
group, we simulated the original, higher learning rate of 10, as
described earlier (Brown and Braver, 2005), for inputs to ACC.
Thus, we tested the hypothesis that the patterns of ACC activity
effects seen in high vs. lowgambling subjects could be simulated
computationally by manipulating a single parameter, namely
the learning rate from negative reinforcement.
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