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Volume-based registration (VBR) is the predominant method used in human neuroimaging to compensate
for individual variability. However, surface-based registration (SBR) techniques have an inherent advantage
over VBR because they respect the topology of the convoluted cortical sheet. There is evidence that existing
SBR methods indeed confer a registration advantage over affine VBR. Landmark-SBR constrains registration
using explicit landmarks to represent corresponding geographical locations on individual and atlas surfaces.
The need formanual landmark identification has been an impediment to the widespread adoption of Landmark-
SBR. To circumvent this obstacle, we have implemented and evaluated an automated landmark identification
(ALI) algorithm for registration to the human PALS-B12 atlas. We compared ALI performance with that from
two trained human raters and one expert anatomical rater (ENR). We employed both quantitative and qualita-
tive quality assurance metrics, including a biologically meaningful analysis of hemispheric asymmetry. ALI
performed well across all quality assurance tests, indicating that it yields robust and largely accurate results
that require only modest manual correction (b10 min per subject). ALI largely circumvents human error and
bias and enables high throughput analysis of large neuroimaging datasets for inter-subject registration to an
atlas.
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Introduction

A major challenge in functional and structural neuroimaging is to
compensate for variability across individuals with respect to their
underlying neuroanatomy, especially the highly convoluted cortical
mantle (Galaburda et al., 1990; Thompson et al., 1997, 1998). This
variability is informative in its own right for understanding disease
states (Csernansky et al., 2008; Van Essen et al., 2006) and normal
brain function (Thompson et al., 1998) but presents a serious obstacle
when attempting to make inferences about a particular cortical location
across individuals. Volume-based registration (VBR) approaches,whether
using linear (affine) or nonlinear algorithms, (Anderson et al., 2007a, b;
Hellier et al., 2002;Woods et al., 1998a, b) generally result in less accurate
alignment of corresponding gyri and sulci (Anticevic et al., 2008; Desai et
al., 2005). An alternative approach uses surface-based registration (SBR),
which capitalizes on explicit surface representations of cortical convolu-
tions in individual subjects, derived from standard structural MR scans
(Fischl et al., 2002; Van Essen et al., 2001).
Several software packages provide rapid and robust generation of
individual cortical surface models and offer SBR implementation based
on energy minimization approaches [Energy-SBR, e.g. Freesurfer, Brain
Voyager (Fischl et al., 1999a, b; Goebel et al., 2006)] or landmark-based
approaches [Landmark-SBR, e.g. Caret (Van Essen et al., 2001)]. Efforts
to quantify and compare registration quality of various SBR methods
have revealed significant differences across methods but with tradeoffs
that indicate advantages and disadvantages of each method (Klein et
al., 2010; Pantazis et al., 2010). Along with differences in alignment
quality for different SBR methods, another important methodological
consideration is the desirability of automation — especially given the
increasing emphasis on large datasets in both structural and functional
neuroimaging studies (Biswal et al., 2010; Yarkoni et al., 2011).

Previous studies indicate Landmark-SBR outperforms affine VBR
based on inter-subject alignment of identified sulci and of functional
activations (Anticevic et al., 2008; Argall et al., 2006; Desai et al.,
2005; Van Essen, 2005). However, the need for manual delineation
of landmarks in each subject (Van Essen et al., 2001) constitutes a
processing bottleneck and also a risk of rater bias across individual
cases and studies. An automated landmark identification (ALI) algorithm
described here greatly reduces the need for human intervention in gener-
ating the ‘Core 6’ landmarks used to register individual subjects to the
human PALS-B12 atlas (Van Essen, 2005).

http://dx.doi.org/10.1016/j.neuroimage.2011.08.093
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To evaluate the accuracy and reliability of the automatically gen-
erated landmarks, we compared the ALI results with those obtained
by two newly trained human raters plus an expert neuroanatomical
rater (ENR) responsible for delineating the original PALS-B12 land-
marks (Van Essen, 2005). We evaluated performance differences in
terms of: 1) the distance of generated landmarks (i.e. trajectory of
landmark contours) relative to those from the expert rater measured
in subject-specific (pre-SBR) space; 2) qualitative inspection of the
spatial dispersion of landmarks both before and after SBR; 3) the 3D
distance between corresponding points of individual cortical surfaces
after registration to PALS-B12 atlas using expert rater landmarks
versus those generated by ALI and the other two human raters; and
4) hemispheric asymmetries in sulcal depth (Van Essen, 2005; Van
Essen et al., 2006) determined after SBR using different landmark
sources.
Materials and methods

Subjects

Twenty healthy right-handed young adults (7 male and 13 female;
mean age, 25 years) were recruited from the Washington University
Community by the PsychologyDepartment subject coordinator. All sub-
jects gave informed consent as approved by theWashington University
IRB and were paid $25/h for their participation.
Scanning

Subjects were scanned on a 3T Allegra scanner at the Washington
University Medical School. Subjects underwent both functional and
structural neuroimaging data collection (Anticevic et al., 2010a, b)
but only structural data were analyzed here. All structural images
were acquired using a sagittalmagnetization-prepared radio-frequency
rapid gradient-echo (MP-RAGE) 3D T1-weighted sequence (TR=
2400 ms, TE=3.16 ms, flip=8°; voxel size=1 mm3).
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Structural data preprocessing

Each T1-weighted structural volume was registered to the 711-2B
atlas using a 12-parameter affine transform and re-sampled to 1 mm3

voxels (Buckner et al., 2004; Ojemann et al., 1997). Automated cortical
segmentation and surface generation was carried out using FreeSurfer
(Fischl et al., 2004). All pial and white matter cortical surfaces were
visually inspected for accuracy; no errors were detected. For each sub-
ject, pial and white matter cortical surfaces were converted to Caret
format and averaged to obtain a cortical midthickness surface (Van
Essen, 2005) that was aligned to the individual-subject anatomy in
711-2B space. Surfaces were inflated and mapped to a spherical config-
uration with distortions reduced by multi-resolution morphing. Maps
of cortical geography (gyral versus sulcal cortex) and sulcal depth
were generated automatically (Van Essen, 2005).

Automated landmark identification (ALI)

Six anatomical landmarks (“Core 6”) originally identified on the
basis of high inter-individual consistency (Van Essen, 2005)were gener-
ated using an automated algorithm. Fig. 1A illustrates these landmarks
on an inflated surface of an individual left hemisphere. This includes
landmarks along the fundus of the central (CeS) and calcarine (CaS)
sulci and the Sylvian Fissure (SF), along the superior temporal gyrus
(STG), and along dorsal and ventral portions of the boundary between
cortex and the non-cortical ‘medial wall’ (MW-dors,MW-vent). Fig. 2 il-
lustrates landmark generation framework across raters. The scripts and
associated datasets for running ALI are available in Caret versions 5.62
(February 2011) and later and can be used in conjunctionwith the Free-
surfer to Caret pipeline scripts and dataset (http://brainvis.wustl.edu/
wiki/index.php/Caret:Download#Download_Freesurfer_to_PALS-B12_
Pipeline_Distribution).

The ALI algorithm generates landmark contours using multiple
sources of information about cortical shape in the individual subject,
including (i) the corpus callosum (CC) segmentation extracted from
Freesurfer, (ii) the midthickness and inflated surfaces, (iii) maps of
mean curvature (folding) and sulcal depth, and (iv) discrete maps
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of sulcal vs gyral cortex (Van Essen, 2005). ALI operates on midthick-
ness surfaces in 711-2B stereotaxic space, but automatically trans-
forms surfaces in MNI152/305 or Talairach space to 711-2B space
(see http://brainvis.wustl.edu/help/pals_volume_normalization). It
also uses population-average volumetric maps of the extent of 40 cor-
tical sulci derived from the 12 subjects contributing to the PALS-B12
atlas (Van Essen, 2005).
Hemisphere-specific sulcal identification

The initial step in determining the location of major sulci in each
individual hemisphere is to intersect the probabilistic volumes of 40
sulci onto the individual midthickness surface by assigning each ver-
tex the value (0 to 12) of the voxel it intersects. These values are
modified by multiplying by the sulcal depth at that location (thereby
weighting in favor of deeper folds) and setting the value to zero for
vertices not inside the discretized sulcal map. Customized additional
steps are carried out for the hippocampal fissure (HF). The resultant
probabilistic times depth (PTD) map is thresholded at an empirically
determined value for each sulcus. PTD values are summed for each
spatially discrete cluster of vertices (with customized additional
steps for the postcentral sulcus), and the clusters for each sulcus are
sorted based on the summed values (PTDsum). Vertices are assigned
a sulcal label if they belong to the cluster with the highest PTDsum
value (or, for specified sulci, if they belong to the top two or three
clusters and meet other empirically determined criteria). After this
initial sulcal labeling, each region is dilated to include all neighboring
vertices that are sulcal in the discretized map (but with additional
empirically determined spatial constraints for the HF and CaS).
The following landmark-specific sections describe geodesic con-
tours, most often along the midthickness surface, but sometimes on
the inflated surface. This method finds the shortest path along the
vertices within the region of interest (ROI), from the starting vertex
to the end vertex, using Dijkstra's Algorithm (Dijkstra, 1959). The cri-
teria used to constrain the ROI ensure these vertices lie along the fun-
dus of a sulcus or crown of a gyrus.

Central sulcus (CeS)

Vertices within the probabilistic atlas mapping of the CeS whose
mean curvature on the inflated surface is less than −0.1 are selected,
and the most medial and inferior vertices within the ROI are found. A
more restricted ROI with curvature−0.16 or less is dilated until these
medial and inferior vertices are included, and a geodesic contour is
drawn between them. Ends are trimmed to within 19 mm of the insu-
lar operculum at the ventral end as well as 18 mm from the medial
wall at the superior end. The operculum is identified by finding the
most inferior vertex within the CeS ROI, then moving inferiorly
along the surface, limiting coronal movement (i.e., find local mini-
mum along Z). A similar strategy is used to find the medial wall
(move in medial direction from most superior vertex in CeS ROI,
limit coronal movement).

Superior temporal gyrus (STG)

Vertices within the probabilistic atlas mapping of the STG are re-
stricted to those anterior to the most inferior point of the CeS land-
mark. A geodesic contour is drawn between the most posterior and
the most inferior (temporal pole) of the remaining vertices. Contour

http://brainvis.wustl.edu/help/pals_volume_normalization
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points are adjusted to run along the gyral ridge by displacing them
along mesh vertices in a superior (positive-Z) direction while restrict-
ing the displacement in X and Y directions. When the point cannot
move any further in the superior direction, it has reached the crown
of the gyrus.
Sylvian fissure (SF)

Contiguous vertices within the probabilistic atlas mapping of the
SF at least 7 mm deep are intersected with vertices whose curvature
on the inflated surface is less than −0.05. The inferior branch of the
circular sulcus is found by identifying the most inferior of the selected
vertices. For the superior branch, a geodesic contour is drawn be-
tween the most posterior vertex and the deepest vertex anterior to
the temporal pole. From there, the contour continues inferiorly, to
the deepest vertex within 10 mm anterior and 12 mm inferior to
the previous point, then inferiorly along the fundus toward the vertex
closest to−/+16.0, 12.0,−19.0 (711-2B space). It is then trimmed to
10 mm superior of this vertex. The intersection of the inferior and su-
perior branches is found, and the superior branch's contour is
trimmed to 12 mm posterior of this intersection along the ellipsoid
surface. The Sylvian contour uses a modified version of the geodesic
method that gives preference to links whose vertices have lower
mean curvature (aiming for the fundi of branches of the circular
sulcus).
Calcarine sulcus (CaS)

The anterior and posterior extents of a probabilistic atlas map-
ping of the CaS whose inflated mean curvature is less than or
equal to −0.07 are found. The ROI is further restricted to inflated
mean curvature below −0.16 and a geodesic contour is drawn,
posterior to anterior, along vertices in the restricted ROI. This con-
tour is extended posteriorly to the most posterior vertex in the
hemisphere (i.e., occipital pole), using the less stringent ROI;
then, any contour points less than 24 mm anterior to occipital
pole are trimmed.
Medial wall dorsal

If no CC segmentation was provided, then one is segmented from
the anatomical volume. Although no formal comparison was carried
out, following our qualitative inspection the Freesurfer-generated
aseg.mgz generated a more reliable CC segmentation than that pro-
duced by the ALI using the same anatomical volume as input. Any
CC segmentation can be used, provided its filename includes “corpus”
and “callosum” (case insensitive), which will cause the ALI to bypass
CC segmentation and use the input volume directly. The analyses car-
ried out herein extracted the CC from the Freesurfer aseg.mgz. Points
(“foci”) are generated along the top of the CC, and then a geodesic
contour is drawn on the midthickness surface connecting the vertices
between these foci, but weighted toward lateral vertices, in order to
draw the contours further laterally into the fundus of the callosal sul-
cus. Spikes in the contour are detected by finding the points along the
contour closest to the foci used to draw the contour and by comparing
the directions of the links to the points in the contour before and after
that point. If a sharp angle is detected, a new position for that focus is
estimated by searching for the closest surface vertex to a point gener-
ated by taking the current focus coordinates and moving them in the
direction of the bisection of that angle. After repeating this procedure
for all foci, if at least one focus changed, the contour is redrawn and
the process is iteratively repeated until no better positions are identi-
fied for the foci.
Medial wall ventral

Vertices that intersect with the mapped probabilistic atlas repre-
sentation of the hippocampal fissure (HF) on the inflated surface are
intersected with vertices having a sulcal depth value of at least
10 mm. The most inferior (IHFV) and superior (SHFV) vertices are
identified. The shortest path along the midthickness surface from
the temporal pole (local anterior maximum) to the IHFV is found,
and a periamygdaloid vertex (PAV) identified 30 mm along that
path from the temporal pole. A contour is generated that extends
from the more superior of the SHFV or ventral splenium marker
along a trajectory defining the crease of the HF posteriorly, then
12.5 mm lateral to the medial aspect of the parahippocampal gyrus
up to the PAV, then to the anterior endpoint of the medial wall dorsal
contour.

The dorsal and ventral contour are merged and intersected with
the calcarine contour and a template frontal cut. Points are deleted
near the frontal junctions, until the gap between the dorsal and ven-
tral is 19 mm. Points near the calcarine junction are deleted to pro-
duce a 16 mm gap between the calcarine, medial wall dorsal, and
medial wall ventral contours.

Landmark evaluation

Landmark contours were resampled so that each landmark con-
tained the same number of points in all subjects as the corresponding
source contour. For each landmark point, the normal range of vari-
ability in its 3D position in individual midthickness surfaces was de-
termined using the 12 subjects that contributed to the PALS-B12
atlas. Following ALI in any given subject, each landmark contour
was evaluated to determine the percentage of contour points that
lie within two standard deviations of the corresponding PALS-B12
contour points. An automated script reports the average “overlap per-
centage” for each landmark contour. It also generates images of land-
mark trajectories relative to the population average, to facilitate
inspection of contours whose overlap percentages are low (less
than 95%). All images and metrics were inspected by two trained
raters (AA and DD). Manual edits were made when warranted,
based on criteria used for manual landmark delineation (see below),
resulting in a set of ‘ALI-Corrected’ landmarks. All major ALI errors
were reliably flagged by the quality assurance measures (i.e. every in-
stance requiring major manual correction following ALI). The total
time needed to perform manual evaluation and editing was less
than 2 h total for all 20 subjects (less than 3 min per hemisphere on
average).

Manual landmark generation

The trained raters (R1 & R2) were trained concurrently in two 3-hour
sessions. All human raters (R1, R2 and ENR) independently generated
‘Core 6’ landmark for each subject using the same criteria (http://
brainvis.wustl.edu/help/landmarks_core6/landmarks_core6.html/) (Van
Essen, 2005). The two raters (R1, R2) were graduate students who were
trained by the ENR in less than two days. ALI corrections were made by
a different rater (AA) than those who manually drew the landmarks.

Surface-based registration (SBR)

Landmark-SBR was carried out by projecting landmarks to the
individual's spherical surface, then deforming the individual sphere
so that its landmarks were aligned to the PALS-B12 atlas target land-
marks, coupled with distortion reduction in the regions between
landmarks (Van Essen, 2005) (Fig. 1). Each subject's midthickness
surface was re-sampled to a standard ‘74 k’ mesh containing 73,730
vertices (Saad et al., 2005). An associated ‘deformation map’ file
allowed additional datasets (e.g., landmark contours generated by
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Fig. 3. Distances in mm from the expert neuroanatomical rater (ENR) are shown across
all raters (ALI — automated landmark identification, R1 — Rater 1, R2 — Rater 2) and
all landmarks (central suclus — CeS, calcarine sulcus — CaS, dorsal component of the
medial wall — MW-dors, ventral component of the medial wall — MW-vent, superior
temporal gyrus — STG, and sylvian fissure — SF). Results are shown for both (A) left
and (B) right hemispheres. All distances were computed prior to SBR to avoid poten-
tially obscuring differences post registration to the PALS-B12 atlas.
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other raters — see below) to be mapped from the individual to the
atlas surface. Surface-based registration was carried out separately
for all five sets of generated landmarks (i.e. ALI and ALI-Corrected,
R1, R2 and ENR).

ALI versus manual landmark comparisons

Five analyses were used to evaluate the quality of cortical land-
mark delineation for ALI relative to other raters:

(1) Using the resampled landmark contours represented on each
individual's midthickness surface, the Euclidean distance was
computed between each ENR landmark point and the corre-
sponding point in the ALI, ALI-corrected, R1, and R2 landmarks.
These distances were averaged across all points in each land-
mark contour, yielding four average distance measures (ENR
versus R1, R2, ALI, and ALI-corrected) for each of six land-
marks. The larger the average distance, the greater the dispar-
ity for that landmark relative to that drawn by the ENR.
Differences across raters were analyzed using a factorial
ANOVA design (see bellow).

(2) All landmarks were inspected visually for dispersion on the
midthickness, inflated and spherical surface configurations
prior to Landmark-SBR. This provided a qualitative measure
of differences between landmark contour trajectories in pre-
SBR format.

(3) After Landmark-SBR of each individual to PALS-B12 using the
ENR landmarks, the resultant deformation map was applied
to the ALI, ALI-corrected, R1 and R2 landmark contours. This
provided a sensitive qualitative measure of residual differences
between landmark contour trajectories. If each rater's land-
marks were identical to those of the ENR then the results fol-
lowing SBR would show no dispersion on visual inspection.

(4) Each hemisphere's midthickness surface was resampled to the
PALS 74 k standard mesh after registration using all five sets of
landmarks (ALI, ALI-corrected, R1, R2, and ENR). A map of 3D
coordinate differences was computed between corresponding
vertices in the ENR-based midthickness surface and each of
the other four midthickness surfaces. These maps were aver-
aged across all 20 individuals, separately for the left and right
hemispheres. This provided spatial maps of the impact of land-
mark trajectory differences on the identification of SBR-based
geographic correspondences across the entire hemisphere.
This approach is analogous to the approach in step 3, but cap-
tures the deviation in terms of 3D distances, across subjects, for
each rater relative to the ENR across the entire cortical sheet.
That is, we computed the Euclidean distance for a given rater
for each cortical vertex relative to ENR for each subject — an
approach that afforded inspection of the spatial location
along the cortical sheet where a given rater deviated from
the ENR.

(5) We analyzed hemisphere asymmetries in sulcal depth for the
20 subjects separately for all five sets of landmarks in order
to assess the impact of rater differences on a known structural
asymmetry (Van Essen et al., 2006). For surfaces registered by
each set of landmarks, a paired t-test of sulcal depth was car-
ried out using surface-based Threshold-Free Cluster Enhance-
ment (TFCE) (Hill et al., 2010) and 5000 iterations using the
hemisphere asymmetry as the dependent measure. Surface
area measurements of the resulting significant clusters were
computed on the PALS-B12 average midthickness surface,
then adjusted by the average distortion between individual
and population-average midthickness surfaces (Van Essen,
2005). Results across raters were compared both qualitatively
(i.e. visual inspection) as well as quantitatively by examining
the surface of resulting significant clusters.
Results

Landmark distance quantification

Fig. 3 shows the average distance (separation) between ENR land-
mark points and each rater's landmarks, grouped by landmark for the
left hemisphere (top) and right hemisphere (bottom). For the MW-
dors and CeS, average distances were only ~1 mm and showed mini-
mal inter-rater differences. At the other extreme, average differences
were larger and more variable for the MW-vent. To test for statistical
significance of these differences, we computed repeated-measures
ANOVA with Rater (4 levels — ALI, ALI-corrected, R1, R2) x Landmark
(6 levels — CeS, CaS, MW-dors, MW-vent, STG, SF) x Hemisphere
(left versus right) as factors for distance from ENR as the depen-
dent measures. The ANOVA results (Figs. 3A and B) revealed a signifi-
cant main effect of Landmark [F(5,95)=86.6, pb0.001], main effect of
Rater [F(3,57)=47.5, pb0.001], but no main effect of Hemisphere
[F(1,19)=0.61, p=0.44, NS]. No term involving Hemisphere reached
significance, indicating similar results across raters and landmarks irre-
spective of hemisphere. The ANOVA results also revealed a highly
significant Rater x Landmark interaction [F(1,285)=31.5, pb0.001],
indicating that performance relative to ENR differed across raters as a
function of landmark location. This is partly due to the high degree of
variability between raters R1 and R2 (Fig. 3). The ALI and ALI-Corrected
results differed minimally from one another and were similar to the
average of the R1 and R2 results for most landmarks, but were slightly
worse for the STG and SF. For three landmarks (CaS, CeS, and MW-
dors), ALI performed as well or nearly as well as raters R1 and R2. For
two landmarks (STG and SF), ALI was slightly worse, but the differences
were less than 2 mm on average. For the MW-vent landmark, ALI
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performed worse than R1 by 2–3 mm on average, but was better than
R2 by 1–2 mm on average. The impact of these differences on overall
inter-subject alignment quality is addressed below.

Landmark dispersion on spherical maps

Fig. 4 shows the spherical landmark trajectories for the left hemi-
sphere of all 20 subjects generated by each of the raters and methods,
illustrating the degree of individual variability in landmark trajecto-
ries prior to SBR. Fig. 4A shows the landmarks drawn by the ENR.
The dispersion for each landmark reflects normal individual variabil-
ity prior to SBR; it is comparable in magnitude to the landmarks
drawn by ENR for the 12 individual subjects contributing to the
PALS-B12 atlas [cf. Fig. 2F, I from (Van Essen, 2005)]. Alignment is
best for the CeS (yellow), reflecting the fact that the CeS was used
for rigid-body rotation of all individual spheres to the ‘spherical stan-
dard’ configuration. Figs. 4B–E shows results for landmarks generated
by ALI, ALI-corrected, and raters R1 and R2. The dispersion of land-
mark trajectories is in general similar to that for the ENR, but for a
few landmark/rater combinations it is modestly greater. Of particular
note are occasional outliers, such as an incorrectly drawn CeS (yel-
low) by Rater 2 for one subject and an incorrect CaS (orange) for
one subject in ALI (Fig. 4B) that was corrected in ALI-Corrected
(Fig. 4C). This qualitative inspection illustrates that the spatial vari-
ability of generated landmarks following ALI and ALI-Corrected close-
ly match those of the ENR. However, as with the quantitative distance
measure (Fig. 3), there is considerable variability in the dispersion of
landmark trajectories for the two human raters relative to the ENR.
Results were similar for the right hemisphere (not shown).

For the results shown in Fig. 5, each individual hemisphere was
registered to the PALS-B12 atlas using the ENR landmarks, resulting
in accurate alignment of the ENR landmarks for each subject
(Fig. 5A). The four sets of independently generated landmarks (ALI,
ALI-Corrected, R1 and R2) were then registered to the atlas sphere
using the deformation map generated by the ENR registration (see
Materials and methods). As expected, the dispersion of landmark
contours is much smaller than the pre-SBR distribution in the preced-
ing figure. The manual editing of the ALI landmarks (~2 h total for all
cases) not only corrected the rare errors that were large (i.e., the out-
liner CaS landmark) but also reduced the more modest dispersion in
the SF, MW-dors, and MW-vent landmarks (Figs. 5C versus B), indi-
cating consistency with the ENR landmarks. Because most corrections
involved only minor aspects along part of the landmark, there was lit-
tle impact on the average distance measures (ALI versus ENR and ALI-
Fig. 4. Spatial variability of ‘Core 6’ landmarks prior to SBR is shown on a spherical configur
fication (ALI), (C) ALI-Corrected, (D) Rater 1, and (E) Rater 2. The top panel shows the late
yellow, cyan and pink colors respectively. The bottom panel shows the medial view with ca
in orange, dark and light purple respectively. The ‘clouds’ of variability allow for qualitative
Corrected versus ENR in Fig. 3) but these minor corrections nonethe-
less achieved a better match to the ENR.

3D displacements for SBR using different landmarks

By carrying out SBR to the PALS-B12 atlas for each subject using all
five sets of landmarks (ALI, ALI-corrected, R1, R2, and ENR), we
obtained five versions of each individual midthickness surface repre-
sented on the 74 k mesh (see Fig. 2). We then computed the 3D (Eu-
clidean) distance between each surface vertex on the ENR-registered
midthickness surface to the corresponding vertex in each of the other
midthickness surfaces. These 3D distances (absolute values) were
then averaged across all subjects in order to generate an average co-
ordinate-difference map for each landmark source compared to the
ENR based surfaces. Fig. 6 shows the average coordinate-difference
across all four raters relative to the ENR. This provided a cortex-
wide assessment of the spatial impact of landmark variability relative
to the ENR. Consistent with the preceding analyses, the greatest dif-
ference was observed between the maps for R1 and R2, particularly
in anterior cortical regions for the left hemisphere (Figs. 6C versus
D) and right hemisphere (not shown). For R1 the average deviation
from the ENR exceeded 10 mm in some prefrontal locations, indicat-
ing that inconsistencies in human raters can result in substantial
variability in SBR even on the same dataset. Indeed, although R1 per-
forms well by most of the other measures, the 3D distance map illus-
trates the impact of inter-rater biases when comparing the ENR and
R1 medial wall dorsal contours near the frontal junction (also see
Fig. 3). In contrast, most notable areas of deviation for the ALI and
ALI-Corrected results are in medial occipital cortex around the CaS
landmark. Inspection of cases where the coordinate difference be-
tween ENR and ALI was large revealed that in some cases, where
the occipital pole is offset from the posterior CaS contour along the
x or z-axis, the ENR extended the CaS contour too far caudally. This
was mainly because Euclidean distance was used in lieu of the desired
metric of distance only along the y-axis. In contrast, ALI is more reliable
in setting the posterior limit of the CaS landmark to 24 mm anterior to
the occipital pole. In that respect, the differences between ALI and ENR
landmarks in large measure reflect greater fidelity of the ALI method.

Hemispheric asymmetry

Human cortex has prominent hemispheric asymmetries in the vi-
cinity of the Sylvian Fissure and superior temporal sulcus (STS) that
can be quantified using maps of sulcal depth in the two hemispheres
ation for the (A) expert neuroanatomical rater (ENR), (B) automated landmark identi-
ral view with central sulcus, sylvian fissure and superior temporal gyrus displayed in
lcarine sulcus, medial wall dorsal segment and medial wall ventral segment displayed
inspection of similarity across raters prior to surface registration to the PALS-B12 atlas.
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Fig. 5. Spatial variability of ‘Core 6’ landmarks following SBR to the PALS-B12 atlas is shown on a spherical configuration for the (A) expert neuroanatomical rater (ENR), (B) automated
landmark identification (ALI), (C) ALI-Corrected, (D) Rater 1, and (E) Rater 2. The arrows indicate that all raters were registered to the PALS-B12 atlas using the ENR deformation param-
eters. The top panel shows the lateral viewwith central sulcus, sylvian fissure and superior temporal gyrus displayed in yellow, cyan and pink colors respectively. The bottom panel shows
themedial viewwith calcarine sulcus,medialwall dorsal segment andmedial wall ventral segment displayed in orange, dark and light purple respectively. The ‘clouds’ of variability allow
for qualitative inspection of similarity and differences in landmark drawing between ENR and each of the other raters. If a given rater achieved perfect precision relative to the ENR for a
given landmark, then the ‘cloud’ of variability would be minimal for that landmark and would precisely match the ENR results.
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(Van Essen et al., 2006). If inter-subject alignment were eroded by
biases or inconsistencies in landmark delineation, it would presum-
ably reduce the sensitivity to detect consistent and significant sulcal
depth asymmetries in a sample of subjects. To address this issue, a
paired t-statistic map for left-versus-right sulcal depth in the 20 sub-
jects was computed for the five sets of landmark delineated in this
study (Fig. 7). Significant clusters revealed by the Threshold-Free
Cluster Estimate (TFCE) method are outlined in black (see Materials
and methods). The total surface area above significance was greater
for the ALI and ALI-corrected (3354.35 and 3152.95 mm2) than for
any of the other three methods (2262.89, 1508.95, and 1459.60 re-
spectively for ENR, R1, and R2). Overall, the pattern of asymmetry
was qualitatively similar across ALI, ALI-Corrected, and ENR. The
size of the ALI clusters suggests that the automated process produced
results that are at least as sensitive as ENR in inter-subject alignment
in this region. The results for R1 and R2 showed smaller asymmetry
clusters, suggestive of poorer inter-subject alignment.

Discussion

The present study evaluated the consistency of ALI relative to two
trained human raters and an expert neuroanatomical rater using
Fig. 6. Mean 3D cortical distances following SBR to the PALS-B12 atlas is shown on a fla
(A) automated landmark identification (ALI), (B) ALI-Corrected, (C) Rater 1, (D) Rater 2. Brigh
deviations for each rater from ENR once SBR was carried out separately for landmarks generate
multiple estimates of ALI performance. Our results indicate robust
performance by ALI, particularly when coupled with manual editing.
We also demonstrate significant inconsistencies across human raters
in landmark identification.

ALI yielded consistent results in a population of healthy adult
subjects, matching ENR results across multiple measures. In the re-
gions where ALI and ENR differ, an important question is which set
of landmarks produces better inter-subject alignment for biological-
ly meaningful analyses. Our tests of hemispheric asymmetries in
sulcal depth indicate that ALI performed as sensitively as ENR and
perhaps even better in some areas, at least for the landmarks on
the lateral aspect of the hemisphere (of note, greater significant ex-
tent does not guarantee biological significance). In the calcarine sul-
cus, ALI and ENR landmarks differ significantly. One aspect of
delineating the CaS sulcus landmark involves setting its posterior
termination 24 mm anterior to the occipital pole, and this appears
to be executed more reliably by the ALI method (i.e., find the most
posterior node in the hemisphere, subtract 24 mm along the y
axis, and trim the contour beyond that point). This probably also
resulted in ALI outperforming ALI-corrected in this region: If the
ENR and corrections rater chose different reference points on the
occipital pole, e.g., with substantial delta along the x or z axes, it
ttened surface configuration relative to the expert neuroanatomical rater (ENR) for:
ter colorsmark areas of greatermean 3Ddistance from theENR. Critically, results illustrate
d by each rater (illustrated in Fig. 2).
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Fig. 7. Hemisphere asymmetry results are shown as t-statistic maps for (A) automated landmark identification (ALI), (B) ALI-Corrected, (C) Rater 1, (D) Rater 2, and (E) expert
neuroanatomical rater (ENR). Significant asymmetry clusters are highlighted in black borders. (F) Results of all raters are shown overlaid on the ENR-generated t-map. As in
Fig. 6, results illustrate hemisphere asymmetry results for each rater once SBR was carried out separately for landmarks generated by each rater (illustrated in Fig. 2).
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would affect distance measurements used to trim contour points.
Thus, unless the ALI has deviated from the fundus of the CaS, the
corrections rater should not second-guess the ALI in this region.

A reasonable question is how much ALI differs from ALI-corrected
(i.e., is it worth the effort to correct the contours, particularly for large
sample sizes). We have not carried out a large-scale test comparing
ALI versus ALI-corrected, but we have identified cases where a contour
is altogether missing (this happens infrequently using Freesurfer-
generated CC segmentations). In the event this occurs, the alternatives
are to draw the contour manually or to exclude the subject from an
analysis. Furthermore, in situations were a contour falls a few mm
short of its proper termination it represents less of a problem than if it
falls many mm short of it. Hence, we advise that the necessary correc-
tions to the ALI landmarks are carried out, which can be accomplished
after a modest training effort. In addition, we would like to acknowl-
edge that in the present study we used a single ENR. That is, there
may be subtle but important differences even across ENR, which may
produce differences in findings of ALI accuracy. Nevertheless, it is
worth noting that ALI compared well relative to more naïve raters.

Some software packages such as FreeSurfer and BrainVoyager
support high-throughput processing of surfaces using fully auto-
mated segmentation, surface generation, and SBR (Fischl et al.,
2002, 2004; Goebel et al., 2006). While this is advantageous in
many respects, there are some shortcomings in these situations.
Overt misregistration of sulci and gyri sometimes occurs, even in re-
gions like the central sulcus that are relatively consistently folded
(Pantazis et al., 2010). A straightforward process for identifying
and correcting misregistration errors is currently lacking in these
software packages. In contrast, ALI by design is not fully automated.
Instead, ALI provides a manual editing stage, which is designed to be
straightforward, quick to carry out and requires only modest neuro-
anatomical expertise. Our results indicate substantial inconsistency
across human raters in primary landmark identification. Therefore,
it is more efficient to use human raters for editing rather than pri-
mary landmark identification purposes. This can reduce gross land-
mark identification errors and is likely to produce more consistent
results across studies. These issues are increasingly important as
neuroimaging datasets rapidly expand, analyses across datasets
and centers increasingly become a reality (Biswal et al., 2010), and
consistency in longitudinal and multi-center clinical studies is para-
mount (Potkin et al., 2008).

An important unresolved issue is which type of SBR methodology
(e.g. Landmark-SBR versus Energy-SBR) achieves maximal inter-
subject alignment, especially in regions of high folding variability.
Pantazis et al. (2010) compared FreeSurfer, BrainVoyager, and their
26-landmark registrationmethod applied to the same group of subjects,
using sulcal landmarks and geographic regions of interest to assess
inter-subject alignment. They found that each method had advantages
and disadvantages, depending on the region and the specific measure
used; FreeSurfer performed better in some respects, but both FreeSurfer
and BrainVoyager were susceptible to crude registration errors. Van
Essen et al. (Van Essen et al., in press) compared registration of individ-
ual hemispheres to a common target using (i) initial registration to
FreeSurfer's fsaverage atlas (Energy-SBR) vs. (ii) initial registration to
PALS-B12 (Landmark-SBR), in both cases followed by inter-atlas regis-
tration to the ‘fs_LR’ surface-based atlas (using Landmark-SBR). The dif-
ferences between registration methods were modest in most regions
but were substantial (N2 cm) in some regions, but do not reveal
which SBR method is more effective in reducing inter-subject variabili-
ty. Additional insights could be gained by comparing SBRmethods using
data from task-activation fMRI paradigms [e.g., (Anticevic et al., 2008;
Sabuncu et al., 2010)], resting-state fMRI analyses, or alternativemodal-
ities such as myelin maps (Glasser and Van Essen, 2011). Another issue
is that alignment consistency for a given algorithmmay differ in the cor-
tex of individuals with brain disease or disorders (Anticevic et al., 2008;
Csernansky et al., 2008). For instance, prior work has demonstrated a
clear advantage for landmark-based SBR when applied to both anatom-
ical and functional MRI data in patients diagnosed with schizophrenia
(Anticevic et al., 2008). However, no study has evaluated whether dif-
ferent SBRmethods produce similar degree of improvement in different
clinical populations.

In conclusion, our analysis indicates that automated landmark
identification coupled with manual editing is recommended over
purely manual delineation of landmark contours when registering
data to the human PALS-B12 atlas. Additional studies are needed to
ascertain the relative strengths and limitations of landmark-based
versus energy-based SBR algorithms in compensating for individual
variability in neuroanatomy.
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