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Abstract

A feature of human cognition is the ability to monitor and adjust one’s own behavior under
changing circumstances. A dynamic balance between controlled and rapid responding is needed to
adapt to a fluctuating environment. We suggest that cognitive control may include, among other
things, two distinct processes. Incongruent stimuli may drive top-down facilitation of task-relevant
responses to bias performance toward exploitation vs. exploration. Task or response switches may
generally slow responses to bias toward accuracy vs. speed and exploration vs. exploitation. Behav-
ioral results from a task switching study demonstrate these two distinct processes as revealed by
higher-order sequential effects. A computational model implements the two conflict-control mecha-
nisms, which allow it to capture many complex and novel sequential effects. Lesion studies with the
model demonstrate that the model is unable to capture these effects without the conflict-control
loops and show how each monitoring component modulates cognitive control. The results suggest
numerous testable predictions regarding the neural substrates of cognitive control.
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1. Introduction

Environments often change unpredictably over time. In some cases, adaptation to such
changing environments requires the learning of new responses. However, in other cases,
the same response must be generated with slightly changed parameters. This necessitates
an ongoing adjustment of behavioral control. A classic example is the tradeoff between
speed and accuracy (Osman et al., 2000; Plamondon & Alimi, 1997; Strayer & Kramer,
1994). If the cost or likelihood of errors is low and speed essential, then one will do well
to execute a given action as quickly as possible with less regard for accuracy. Conversely, if
the cost of errors is high and speed less important, then one will do well to increase behav-
ioral control, slow down, and be more careful. Subjects may adopt a strategy ranging
between rapid (emphasis on speed) and controlled (emphasis on accuracy) responding.
In this case, shifting the bias toward accuracy rather than speed might be considered an
example of a simple form of cognitive control. More complex forms of control might
involve adjusting attentional allocation between focused exploitation of known aspects
of an environment versus exploration of unknown components (Ishii, Yoshida, & Yoshim-
oto, 2002; Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998; Usher, Cohen,
Servan-Schreiber, & Rajkowski, 1999) or between fast, pre-potent versus controlled,
non-prepotent responding (Pardo, Pardo, Janer, & Raichle, 1990; Weissman, Gopala-
krishnan, Hazlett, & Woldorff, 2005). Notably, the cognitive control strategy may change
independently of changes in the tasks being performed. The domain of cognitive or
executive control may thus include many different kinds of control effects and underlying
mechanisms (Norman & Shallice, 1986). Recent efforts have been made to dissect various
components on empirical and meta-analytic grounds into such categories as shifting,
monitoring or updating, inhibition, and selective attention (Miyake et al., 2000; Wager
& Smith, 2003). Our goal in this paper is to develop a fractionation of cognitive control
that derives from an integration of theoretical, computational, and behavioral analyses.
To do this, we focus on task switching as a well-studied representative paradigm (Allport,
Styles, & Hsieh, 1994; De Jong, Berendsen, & Cools, 1999; Dreisbach, Haider, & Kluwe,
2002; Hodgson et al., 2002; Jersild, 1927; Meiran, 1996, 2000a, 2000b; Meiran, Chorev, &
Sapir, 2000; Meiran & Gotler, 2001; Meiran & Marciano, 2002; Nieuwenhuis & Monsell,
2002; Rogers & Monsell, 1995; Sohn & Anderson, 2001; Wylie & Allport, 2000b). Studies
of switching between two cognitive tasks afford significant insight into control of both
cognitive and motor processes by dissociating changes in task set (cognitive) from changes
in the required response (motor).

1.1. Cognitive control in task switching

In this paper, we have focused the scope of the analysis and simulations toward the spe-
cific aims of elucidating cognitive control mechanisms. There has been significant recent
controversy regarding the extent to which executive control mechanisms are necessary
to drive a task switch (Altmann, 2003; Logan & Bundesen, 2003; Monsell, 2003; Rogers
& Monsell, 1995). We do not take an absolute position on this issue. Nonetheless, the con-
troversies suggest that further specification is needed of different types of control functions
and how they might influence performance during task-switching. Rather than investigat-
ing whether control functions are necessary to drive a task switch, we focus instead on
delineating mechanisms of performance monitoring and control that modulate response
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parameters within a particular task set (Altmann & Gray, 2002). In so doing, we develop a
computational model of cognitive control in standard task switching experimental para-
digms. Implementing theoretical hypotheses as computational models provides a critical
means to clarify the relationship between complex effects and relatively simpler underlying
mechanisms (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Braver, Barch, & Cohen,
1999; Cho et al., 2002; Gilbert & Shallice, 2002; Jones, Cho, Nystrom, Cohen, & Braver,
2002; Melara & Algom, 2003; Miller & Cohen, 2001; Phaf, Van der Heiden, & Hudson,
1990). However, our purpose in developing a computational framework is not to provide
a comprehensive model of task switching but rather to use it as a means to an end. We use
task switching as a representative domain in which multiple control mechanisms may
interact within a single experimental paradigm. Our aim in this endeavor is twofold. First,
we aim to explore competing hypotheses that behavioral effects in task-switching can be
accounted for solely by bottom up mechanisms, versus the hypothesis that top-down
effects such as control loops provide better accounts of a range of data, even if such con-
trol loops are not required for task-switching per se. Second, we aim to concretely delin-
eate specific mechanisms of cognitive control that may generalize beyond task switching to
a range of behavioral paradigms.

A central issue in any task-switching study is the importance of sequential relationships
between trials. At a basic level, a task switch involves information from two consecutive
trials, in that the task changes from trial n � 1 to trial n. Studies of task-switching have,
with some exceptions (Altmann & Gray, 2002; Mayr, 2002) generally focused on the cur-
rent and immediately preceding trial, in that a task switch involves task A in the preceding
trial and task B in the current trial. Perhaps the most prominent finding is that of switch
costs, which refer to the slower, less accurate performance when the task switches relative
to the preceding trial as compared to when it does not switch (Jersild, 1927). The switch
cost effect persists residually even with long preparation times (Allport et al., 1994; de
Jong, 2000; Meiran et al., 2000; Nieuwenhuis & Monsell, 2002; Rogers & Monsell, 1995).

The origin of the switch cost is controversial. Some investigators (Rogers & Monsell,
1995) interpret the residual switch cost as the time needed to reconfigure the system, which
cannot be completed until the target stimuli appear. This interpretation implies a putative
top-down executive control mechanism, possibly distinct from task-specific stimulus-re-
sponse pathways, that implements the task switch and produces the residual switch cost.
On the other hand, Allport and colleagues argue for a bottom-up explanation of switch
costs (Allport et al., 1994; Wylie & Allport, 2000b). According to their associative task-
set-interference (TSI) hypothesis, the switch cost originates from associative strengthening
between task-related stimuli and an internal representation of the task-set with which they
are paired on a previous trial. In the current trial, stimuli will tend to re-evoke the previous
task-set, even if the previous task-set is different from the one relevant for the current trial
(i.e., the task switched). This pairing may lead to interference that lengthens RTs (Waszak,
Hommel, & Allport, 2003). In the same vein, recent modeling work (Gilbert & Shallice,
2002) has shown that switch costs can be accounted for in part by a combination of resid-
ual activity in task set representations and associative TSI. In addition to target-related
priming effects, some portion of the apparent switch cost may be due to a loss of cue
repetition benefits (Arrington & Logan, 2004a, 2004b; Logan & Bundesen, 2003; Mayr
& Kliegl, 2003) related to stimulus-specific cue priming effects. Also in favor of a bot-
tom-up explanation of switch costs, several authors have argued that switch costs repre-
sent a failure to proactively reconfigure task set on a subset of trials and maintain this
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configuration across a delay (De Jong, 2000; De Jong et al., 1999; Meiran, 1996; Nie-
uwenhuis & Monsell, 2002). This is referred to as the ‘‘failure-to-engage’’ (FTE) hypoth-
esis. Thus, the switch cost would result from the time required to reactively instate the
correct task set representation at the time of target stimulus presentation, while also over-
riding interference from the prepotent but inappropriate task-set. Computational model-
ling work has shown that the FTE hypothesis can, in fact, provide a quantitative account
of the relevant behavioral data (Reynolds, Braver, Brown, & Stigchel, 2006). Others have
suggested that switching away from a given task involves a possibly top-down inhibitory
process, namely backward inhibition, that suppresses the previous task set representation,
making it more difficult to return to it again (Mayr, 2002; Mayr & Keele, 2000). Finally,
on the basis of previous work (Cho et al., 2002; Jones et al., 2002), we will suggest below
that top-down mechanisms might impose a protracted slowing effect that persists into sub-
sequent trials. While all of these factors may contribute to the switch cost to some degree,
further specification is needed regarding the relative contributions of each.

Aside from the switch cost, incongruency effects are also prominent in task switching
studies. It is well-established that stimuli associated with incongruent responses lead to
interference and thus poorer performance in a range of cognitive tasks (Botvinick
et al., 2001; Botvinick, Nystrom, Fissel, Carter, & Cohen, 1999; Egner & Hirsch,
2005; Eriksen & Eriksen, 1974; MacLeod, 1991). Moreover, incongruency effects have
been associated with a conflict adaptation effect (Mayr, Awh, & Laurey, 2003), i.e.
reduced incongruency effects on subsequent trials, possibly due to a corresponding
increase in cognitive control (Kerns et al., 2004; MacDonald, Cohen, Stenger, & Cart-
er, 2000). Within task-switching paradigms, incongruency effects occur when a feature
of the target stimulus is associated with an incompatible response according to the cur-
rently irrelevant task. In the case of incongruent stimuli, cognitive control mechanisms
may be needed to increase activity of the (possibly already active) task set representa-
tion or pathway, and directly or indirectly suppress irrelevant task set representations
or pathways (Egner & Hirsch, 2005). Given incongruent stimuli, a performance mon-
itor may serve to increase persistent task-set-related activity and subsequent attentional
focus to the current task; once increased, the effect may persist into subsequent trials.
Several predictions follow from this hypothesis. First, despite the cost of incongruency
on both response time and error rate in the current trial, subsequent trials of the same
task would be expected to show an improvement in performance. In support of this
account, recent work (Goschke, 2000) suggests that incongruency leads to greater
switch costs in the subsequent trial. Specifically, prior incongruency increased response
time on switch trials and reduced response time on no-switch trials. This may reflect
facilitation of repeating the same task (though not necessarily the same response), as
well as increased inhibition of the previously irrelevant task, both of which are expect-
ed if incongruency does lead to an enhancement of representations of the current task
set (at the expense of representations of the currently irrelevant task set), which persists
into subsequent trials. Furthermore, if the subsequent trial is incongruent as well as a
switch, then this incongruency should interact with the persistent previous task set rep-
resentation to increase switch costs further. Although some of the effect of incongruen-
cy in the previous trial may be due to stimulus repeat effects (Mayr et al., 2003), in the
case of task switching, the effect persists even when episodic stimulus repeats are elim-
inated in the sequence of interest (Goschke, 2000). In the experiment below, we begin
by attempting to replicate these findings.
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1.2. Higher-order sequential effects

As the above suggests, cognitive control mechanisms may exert protracted and persis-
tent effects on performance, and therefore they may be evident most clearly in the effects of
longer sequences of trial conditions. Higher order sequential effects refer to conditions
involving sequences of more than two trials. In general, a full descriptive model of perfor-
mance monitoring will need to make reference to higher order effects (Laming, 1968). To
our knowledge, there have been no previous studies that have systematically examined the
presence of higher-order sequential effects in task-switching. However, there are strong a

priori reasons to suggest that these effects will be present and significant. Specifically, with-
in simpler task paradigms, such as two-alternative forced choice (2AFC), there has been a
great deal of examination of the role of higher-order sequential effects in modulating
behavioral performance. For example, there is a long tradition of research establishing
that error commission (Laming, 1968; Rabbitt, 1966) or a change in the required response
(Bertelson, 1961) produces a relatively persistent slowing in response time on subsequent
task trials. Furthermore, there is evidence that such sequential effects may reflect specifi-
cally top-down control mechanisms, such as expectation of particular sequences (Soetens,
Boer, & Hueting, 1985), in addition to bottom-up mechanisms. Evidence for the co-exis-
tence of top-down and bottom-up mechanisms of sequential effects has also been found
previously with the aid of computational modeling of 2AFC tasks (Cho et al., 2002).

In principle, different forms of conflict might usefully modulate distinct components of
cognitive control. One form of conflict may be evoked by switching tasks from one trial to
the next. Specifically, if the required task or response changes frequently, then it is difficult
to predict where to focus attention for optimal performance. Thus, conflict between the
expected and actual required responses due to changes in the required task or response
may be effectively addressed by generally slowing responses in subsequent trials, to prevent
an anticipated response from being prematurely (and erroneously) generated before exter-
nal stimuli can be adequately processed. On the other hand, another form of conflict may
be evoked by incongruent stimuli. If the task requirements change little but strong task-
irrelevant, conflicting stimuli appear, then performance may be best served if conflict
due to task-irrelevant stimuli drives increased attentional focus to the relevant stimuli.
Conversely, if there were only a single form of conflict-control mechanism used to adjust
performance, responses could not be effectively adapted to the constraints of specific task
situations. Thus, a non-specific response slowing mechanism would not produce an appro-
priate shift in attentional focus towards task-relevant stimuli and away from task-irrele-
vant ones. Likewise, an attentional focusing mechanism would be ineffective in
responding to unexpected changes in task-requirements. Thus, we postulate that there
are multiple conflict-control loop mechanisms in the brain that are each associated with
regulating adjustment in specific forms of cognitive control.

It is well-established that incongruency effects across a range of task paradigms are
associated with a form of conflict, and that this conflict engages the anterior cingulate cor-
tex (ACC) and related brain areas that appear to perform performance monitoring and
control functions (Botvinick et al., 1999; Carter et al., 1998; Kerns et al., 2004). Likewise,
the results of 2AFC and related paradigms (e.g., go-nogo) indicate that response switching
also appears to engage similar conflict and performance monitoring processes in the ACC
and elsewhere (Jones et al., 2002; Stuphorn, Taylor, & Schall, 2000). In a task-switching
environment, switches in both response and task also occur frequently from one trial to
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the next, and as such may engage a conflict-detection mechanism that non-specifically
slows responses on subsequent trials. There is some evidence that task-switching engages
conflict-detection mechanisms in the ACC (Dove, Pollmann, Schubert, Wiggins, & von
Cramon, 2000; Luks, Simpson, Feiwell, & Miller, 2002).

Below, we present a systematic analysis of sequential effects from an experimental study
of task-switching that demonstrates the presence of potentially complex and confusing
higher-order sequential relationships in behavioral performance. We then show that a
computational model with two performance monitoring and control mechanisms can
account for the observed complex behavioral effects, while the model without the two con-
flict-control loops cannot account for the observed effects. The model thus supports the
hypothesis of multiple generalized cognitive control mechanisms and produces quantita-
tive predictions that can be tested with functional imaging and lesion studies.

2. Behavioral study: Sequential effects in task-switching

Our aim was to test for the existence of effects consistent with cognitive control mech-
anisms as discussed above. To this end, we conducted a task switching study and looked at
factors of: (1) task switch (S) vs. no-switch (N); (2) response alternation (A) vs. repetition
(R), and (3) stimulus incongruency (I) vs. congruency (C). Trials were coded this way in
accordance with previous task-switching studies that have observed significant effects or
interactions of these factors on behavioral performance (Allport et al., 1994; Rogers &
Monsell, 1995). To avoid confusion, we use the terms repetition and alternation to refer
to changes in the required response from trial to trial, and switch or no-switch to denote
changes in the required task set. In order to analyze the interaction of these factors in high-
er-order sequential effects, we crossed each of the eight possible current-trial conditions
with the eight previous trial conditions, for a total of 64 task conditions (6 factors). Fol-
lowing earlier conventions (Botvinick et al., 1999; Kerns et al., 2004), we use uppercase
letters to denote current-trial conditions and lowercase letters to denote previous trial con-
ditions. Importantly, this coding method implicitly includes information from three con-
secutive trials (though not all information from the earliest trial was analyzed—in
particular, the incongruency factor was omitted). For example, one possible trial condition
is nrcSAI, i.e., the previous trial conditions were no-task-switch, response repetition, con-
gruent stimulus followed by current trial conditions of task switch, response alternation,
and incongruent stimulus.

The complexity of this analysis method was justified in that it allowed us to investigate
several issues. First, we attempted to replicate previous results (Goschke, 2000), to show
increased switch cost as a function of prior trial incongruency. Second, we attempted to
demonstrate effects consistent with a non-specific, task-switch-induced slowing that per-
sisted to subsequent trials, regardless of subsequent trial type. This would be found as a
slowing in response times due to task switching in the previous trial, regardless of the cur-
rent trial type. Furthermore, if such slowing due to task switches in the previous trial was
found even when no switch occurred in the current trial, then we would conclude that the
slowing differed from backward inhibition effects, since backward inhibition entails a
switch in the current trial to a previously abandoned task set. A positive result would sug-
gest that the cognitive control mechanisms of the Jones et al. (Jones et al., 2002) model,
and associated with the ACC, might also govern the tradeoff between control and prepo-
tency in cognitive as well as motor mechanisms.
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3. Methods

3.1. Participants

Sixteen participants, age 19–22 (9 female) underwent behavioral testing. These partici-
pants came from the Washington University area and were compensated for their partic-
ipation by being paid $10/hour.

3.2. Tasks and stimuli

Subjects performed a variant of the Rogers and Monsell (1995) letter-digit paradigm
which involved two different tasks performed on visually presented stimuli: consonant/
vowel classification of letters and odd/even classification of digits (see Fig. 1). On each tri-
al, a single uppercase letter and digit were centrally presented side-by-side in 24-point
Times New Roman font, white on a black background. The location of each stimulus type
(letter or digit) was random and varied across trials. Letters and digits were selected ran-
domly and with uniform probability from the following two sets: letters: (A, E, I, U, X, P,
L, Z); digits: (2–9, inclusive). Classification judgments were indicated via a manual button
press with the index finger of each hand. Only two buttons were provided for classification,
which produced response overlap across tasks. The mapping of response (odd/even, con-
sonant/vowel) to hand was counterbalanced across participants, but was fixed for a par-
ticipant across all trials. On any given trial, only a single task was to be performed, and
this was indicated by a task-cue presented prior to the onset of the target stimuli. The task
cue was the word ‘‘LETTER’’ or ‘‘NUMBER’’ presented visually at central fixation in 24-
point Times New Roman font. Each task cue occurred randomly with 50% probability,
leading to an equal proportion of trials in which the current task switched or repeated
from the one performed just previously.

The timing of each trial was as follows: (1) task-cue presented for 300 ms; (2) constant
preparatory interval of 1500 ms starting at cue offset, during which the display went
blank; (3) presentation of target stimuli (e.g., ‘‘A 2’’ or ‘‘9 P’’) immediately following
LETTER

    X   9

Time

Vowel Cons

TASK A

NUMBER

    X   9

Time

Odd Even

TASK B

Fig. 1. The task-switching task, adapted from (Rogers & Monsell, 1995). Each trial begins with the cue word
‘‘LETTER’’ or ‘‘NUMBER’’ appearing briefly in the middle of the screen. After a delay during which the screen
is blank, a letter and a number appear side-by-side. If the cue word was ‘‘LETTER,’’ the subject must respond
differentially for vowels and consonants. If ‘‘NUMBER,’’ the subject must respond differentially for odd and even
numbers.
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the preparatory interval, with stimulus duration lasting until a response was made or
5000 ms elapsed; (4) constant response-cue-interval (RCI) of 200 ms occurring prior to
onset of the next trial.

3.3. Procedure

Testing was performed on a Macintosh G3 computer running PsyScope software. But-
ton press responses were made on the PsyScope button box. After receiving task instruc-
tions, participants performed an initial 50 practice trials. Following the practice phase,
participants performed an additional 6 blocks of 200 trials each. A rest break was provided
following each block. The total experimental session lasted approximately 1 h.

3.4. Data analysis

Response times and error rates were recorded for each trial. Trials in which a response
was not made in the allotted period were excluded from further analysis. Because of the
sequential nature of the analysis, the two trials immediately subsequent were also exclud-
ed. The following trials were also excluded: (1) the first two trials of each block; and (2)
trials with response times faster than 250 ms or slower than 3 standard deviations from
the subjects’ mean response time (Ratcliff & Tuerlinckx, 2002). These data-trimming pro-
cedures resulted in the exclusion of 4.01% of total task trials. Response times reported
below reflect only correct trials. Response times and error rates were analyzed with repeat-
ed measures ANOVAs using factors of current and previous task switch, response alterna-
tion, and incongruency.

4. Results and discussion

4.1. Current trial effects

The results showed a significant spread of response times (mean correct 885 ms) and
error rates (mean 9.8%) for the various conditions (Tables 1, 2, and Fig. 2). The response
time results (Fig. 2A) replicated previous findings of switch cost (73 ms, F (1,15) = 36.87,
MSe = 36480, p < .0001), alternation cost (32 ms, F (1,15) = 5.40, MSe = 26079, p < .04),
and incongruency cost (31 ms, F (1,15) = 5.59, MSe = 50517, p < .04) (Allport et al., 1994;
Rogers & Monsell, 1995). Due to the long preparatory interval, the switch costs measured
were most likely the ‘‘residual’’ switch costs (Allport et al., 1994; Meiran et al., 2000; Rog-
ers & Monsell, 1995). Switching and alternation interacted (F (1,15) = 54.93,
MSe = 13401, p < 10�5), such that switch costs were 103 ms larger (t (15) = 6.93,
p < 10�5) for response repetition trials (122 ms, t (15) = 6.74, p < 10�5) than response
alternation trials (19 ms, t (15) = 2.08, p < .03), consistent with previous results (Meiran,
2000a; Rogers & Monsell, 1995). In terms of errors (Fig. 2B), there was a switch cost
(2.2%, F (1,15) = 11.55, MSe = 0.009734, p < .004) and an incongruency cost (1.7%,
F (1,15) = 26.03, MSe = 0.0265, p < .0002), but no significant alternation cost (1.2%,
F (1,15) = 1.50, MSe = .02650, p < .24). Alternation interacted with task-switching
(F (1,15) = 4.63, MSe = 0.0059, p < .05) such that error switch costs appeared to be great-
er for response alternation trials (2.9%, t (15) = 8.13, p < 10�6) than for response repetition
trials (1.1%, t (15) = 0.96, p < .83) (Fig. 2B).



Table 1
Mean human (bold) and model RT as function of current and previous trial types (correct trials only)

Current trial

NRC NRI NAC NAI SRC SRI SAC SAI

nrc 701 793 861 912 850 976 865 849

745 787 824 831 950 975 903 989
nri 742 769 816 839 925 953 867 892

735 739 792 860 963 1011 906 983
nac 800 827 895 883 939 929 906 925

765 810 842 862 937 970 951 1017
nai 803 816 881 873 945 967 894 955

792 793 833 850 950 1055 945 987
src 796 859 912 910 926 972 897 910

822 856 883 956 931 998 924 981
sri 836 827 906 885 866 879 918 952

806 835 883 937 931 999 935 975
sac 848 885 887 943 952 1012 934 959

838 850 930 995 913 1011 901 932
sai 840 878 919 945 921 1037 886 953

800 830 910 956 954 1053 880 925

Table 2
Mean human (bold) and model error rate (%) as function of current and previous trial types

Current trial

NRC (%) NRI (%) NAC (%) NAI (%) SRC (%) SRI (%) SAC (%) SAI (%)

nrc 5.1 12.9 4.7 6.4 6.6 10.9 5.8 15.1

5.1 9.1 7.7 18.0 6.6 11.8 6.6 15.1
nri 8.5 11.5 5.8 8.4 6.0 11.7 9.1 17.1

5.1 6.3 11.4 12.7 5.2 15.8 3.5 12.6
nac 3.0 12.6 10.4 10.1 8.4 12.9 10.3 11.1

4.2 11.4 4.9 12.3 3.9 13.3 5.5 16.9
nai 5.4 6.5 8.5 12.2 8.2 15.3 10.2 16.3

4.4 9.1 7.6 11.9 4.2 17.7 5.2 18.9
src 7.0 12.2 5.2 9.8 6.8 12.6 9.5 12.6

5.0 7.0 7.3 13.5 4.9 12.2 4.2 14.4
sri 5.4 13.5 7.5 11.0 7.7 11.5 4.4 16.1

3.2 8.9 6.7 10.4 5.1 11.0 3.5 12.5
sac 3.8 9.5 10.0 12.6 3.2 14.2 11.6 17.6

4.4 6.8 4.4 13.7 4.3 11.2 5.6 8.6
sai 8.1 13.0 6.0 13.9 6.3 10.7 10.2 15.1

5.4 5.8 4.8 15.7 3.2 18.9 4.1 9.8
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4.2. Effects of preceding trials

The preceding trial type could affect response time on the current trial, collapsed across
all current trial conditions (Fig. 3). Previous switch trials led to longer response times on
the current trial than did previous no-switch trials (39 ms, F (1,15) = 13.69, MSe = 25438,
p < .003). Likewise, previous alternate trials led to longer response times compared with
previous repeat trials (47 ms, F (1,15) = 15.49, MSe = 22427, p < .002). There was no
interaction between these two factors (F (1,15) = .09, p > .77). Thus, we verified the
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the current trial.
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hypotheses that parallel effects lead to a persistent response slowing due to task switches
and response alternations.

The RT effect of a previous switch trial occurred even in the absence of a current-trial
switch. That is, a switch in the previous trial followed by no-task switch in the current trial
(sN sequence) led to a 56 ms increase in RT, as compared with two consecutive no-switch
trials nN sequences (t (15) = 3.88, p < .002). Because in both nN and sN trials the same
task is repeated from the previous trial, the effects cannot be due to returning back to a
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previously abandoned task-set; therefore, backward inhibition was unlikely to have played
a role in this particular effect. However, this effect is consistent with a mechanism of per-
sistent task-switch-induced slowing, as proposed above. Of course, this result by no means
excludes a role for backward inhibition in other circumstances when the current trial is a
switch trial. There was no corresponding error rate effect for sN (9.3%) vs. nN (8.7%) when
the previous trial was correct (t (15) = 0.77, p < .5).

Analogously, the effect of a response alternation vs. repetition in the previous trial was
an increase in RT, even when the current trial was a response repetition. The RT cost
under these circumstances was 56 ms (t (15) = 4.47, p < .001). This agrees with previous
findings suggesting a non-specific, persistent slowing effect due to response alternations
in 2AFC tasks (Jones et al., 2002).

There was no main effect on response times for previous congruent vs. incongruent tri-
als (p > .60). The effects of preceding trial on error rate were generally less pronounced and
none of the effects reached significance (all p’s > .10).

4.3. Interactions between current and previous trials

The effect of previous trial type interacted with the current trial type. There was a three-
way interaction among current switch, preceding congruency, and preceding switch

(F (1,15) = 10.24, MSe = 5357, p < .006), which suggested that response time switch costs
are increased if the previous trial was a no-switch/incongruent trial (Fig. 4A). A three-way
interaction tendency (Fig. 4B) was found among current switch, preceding congruency,
and current congruency, but this failed to reach significance (p < .09). However, subsequent
t-tests showed that the increased switch cost due to prior incongruency vs. prior congru-
ency with current incongruent trials (iI vs. cI effect on switch cost) was significant
(t (15) = 2.22, p < .05). The effect of the preceding switch condition further amplified this
effect such that the switch cost difference was greater if the preceding trial was a non-
switch. Specifically, response time switch costs (Fig. 4C) were larger (t (15) = 2.37,
p < .02) for previous no-switch, current incongruent trials (niI vs. ncI) when the previous
trial was incongruent (mean 124 ms) than when the previous trial was congruent (mean
53 ms). Notably, previous trial incongruency vs. congruency speeded response time by
28 ms (t (15) = 2.41, p < .03) for current no-switch, incongruent (iNI vs. cNI) trials. There
was no discernible effect of preceding incongruency on switch cost when the current trial
was congruent (iC vs. cC). These results involving previous-trial incongruency are consis-
tent with earlier results (Goschke, 2000) and further demonstrate that the effect of prior
incongruency is amplified by a previous no-switch trial.

Were the effects of previous trial incongruency on current trial reaction time due to the
incongruency itself or rather to the increased response time of the previous trial? To exam-
ine this issue, we partialled out the previous trial RT from current correct trial RT for each
subject. We found that despite controlling for preceding response times, preceding incon-
gruent trials still speeded response time by 31 ms (t (15) = 2.58, p < .03) for current no-
switch, incongruent (iNI vs. cNI) trials. Likewise, trials with a preceding incongruency still
showed a strong trend toward increased switch costs (62 ms on average) for previous no-
switch, current incongruent trials (niI vs. ncI), as in Fig. 4C (t (15) = 2.11, p = .052). These
results suggest that the effects of preceding incongruency on the current trial were due to
the preceding incongruency itself and not simply an artifact of the lengthened response
times of the previous trial.
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The full 64 conditions of current- and previous-trial type combinations yielded a range
of effects and mean RTs ranging from 701 to 1047 ms. With 1200 trials per subject and 16
subjects, each of the 64 conditions was estimated on the basis of an average of 18.75 trials
per condition per subject. The minimum average number of trials per condition across
subjects was 13.06, and the minimum number of trials sampled in a given condition in
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a given subject was 3. Thus, none of the 64 RT conditions was missing data from any sub-
jects. The standard error across subjects in each condition averaged 68 ms. For effects of
less than 6 factors, more data points were available, and the analysis was proportionally
more powerful.

4.4. Error rate

With respect to error rates, a four-way interaction was found among previous alterna-
tion and all three current trial factors (Fig. 5A) (F (1,15) = 5.24, MSe = .0019, p < .04).
This indicated that switching interacts with alternation (i.e., greater error switch costs
for response alternate than response repeat trials) only when the current trial is incongru-
ent and the previous trial was a response repeat (rRI vs. rAI effect on error switch cost)
(F (1,15) = 31.625, MSe = 13320, p < .0001). The finding suggests that the response prim-
ing effect of two response repetition trials in a row counteracts the increased error tenden-
cy associated with switch incongruent trials. However, when the current response also
alternates, the response priming effect works in the opposite direction to increase error
tendencies.

Another four-way interaction (Fig. 5B) was found among current and previous alterna-
tion and current and previous switching (F (1,15) = 7.51, MSe = .0065, p < .02). The inter-
action indicated that the general trend for error switch costs to be greater on current
response alternate trials compared to response repeats reversed when the previous trial
was a no-switch response-alternate (naR vs. naA effect in error switch cost). This might
occur if the previous alternation sets up an expectancy for a current alternation that pro-
vides relative facilitation on task-switch trials if the expectancy is confirmed, but increased
interference if the expectancy is violated (with a current trial response repeat). The effect
seemed to be cancelled out though if the previous trial was also a switch trial. Such a pat-
tern supports the hypothesis that switching and alternation exert effects on cognitive con-
trol via a common pathway.
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4.5. Speed–accuracy effects

We examined whether subjects showed evidence of speed–accuracy effects. For this
analysis, we first controlled for condition effects as follows. We regressed out the condition
means so that the mean RT for each of the eight current-trial conditions (combined across
correct and error trials) in each subject was the same as the grand mean over all conditions
and subjects. We refer to these adjusted RTs as condition-controlled RTs. Trials for each
subject were then binned by response time into 100 ms wide bins, centered on integer mul-
tiples of 100 ms. Error rates for each bin were calculated. Overall, accuracy showed an
inverted U-shaped function (Fig. 6), such that across all subjects, accuracy was highest
for middle RT bins and lower for extremely fast RTs. To assess whether a speed/accuracy
tradeoff existed, we first looked at all trials with condition-controlled RTs in bins from 100
to 2000 ms and found no effect (r = .31, t (18) = 1.37, p = .19). However, when we looked
at trials in the fastest bins with midpoints from 100 to 1000 ms, inclusive, we found a posi-
tive correlation between RT and accuracy (r = .86, t (8) = 4.67, p < .002), consistent with a
speed/accuracy tradeoff. Further analysis showed that subjects showing a strong speed/ac-
curacy tradeoff generally had higher error rates. Thus, there may have been a floor effect in
that subjects with already low error rates at fast RTs would not show significant further
error rate reductions with increasing RTs.

Similarly, we found an opposite effect for slower RT trials. For trials with condition-
controlled RT in bins from 1000 to 2000 ms, accuracy decreased with increasing RT
(r = .75, t (9) = �3.40, p < .01). This may reflect an occasional failure to engage the task
(de Jong, 2000; Nieuwenhuis & Monsell, 2002), in which subjects performed some trials
both more slowly and less accurately. These results are consistent with a speed–accuracy
tradeoff for faster, ‘‘engaged’’ trials superimposed on a periodic failure to engage.

We further tested explicitly to see whether task switches as compared with no task
switch would lead to response slowing and a corresponding increase in RT and reduction
in error rate in the subsequent trial. In the fastest 200 trials per subject (absolute RTs),
task switches led to increased response time in subsequent trials (F (1,15) = 9.06,
p < .01), but there was no apparent effect on error rate (p = .57) despite the observed over-
all speed accuracy tradeoff in fast trials. An error rate effect was not found even when the
analysis was restricted to the 100 fastest trials per subject (p = .38). We then tested another
(but not mutually exclusive) hypothesis, which is that switch-induced slowing also modu-
lates a tradeoff in favor of exploration (i.e., more broadly focused attention) at the expense
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Fig. 6. Accuracy vs. response time. Effects of each of the eight current trial conditions on the means in each
subject have been regressed out. The inverted U-shaped curve may reflect two separate effects. For the fastest
trials, a speed–accuracy tradeoff effect appears. For the slowest trials, increased response time is associated with
higher error rates, which may reflect a general failure to engage the task in the slower trials.
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of exploitation. If so, then a previous-trial switch vs. no-switch trial should increase the
error-rate effect of incongruent distractors in the current trial, leading to an interaction
between previous trial switch and current incongruency on error rate. We found a trend
in this direction (F (1,15) = 3.55, p < .08).

5. Experiment discussion

As a whole, the results reveal a complex interplay of higher-order sequential effects.
Nonetheless, several principles stand out. First, while incongruency in the current trial
generally slows response time, we replicated the paradoxical finding that an incongruent
trial can actually speed subsequent responses (Goschke, 2000). Preceding incongruency
led to faster responses when the task repeated on the subsequent trial (i.e., current no-
switch), but slower responses when the task did not repeat again (i.e., current switch). Fur-
thermore, we found that this effect is amplified by a preceding no-switch trial. This may be
due greater activity of the established task set in the previous trial, which affords incongru-
ency more opportunity to enhance the then-current task set and inhibit the irrelevant task
set. We interpret this finding to mean that a prior incongruency helps increase focus on the
current task set, thereby facilitating subsequent performance of the same task but increas-
ing the cost of a task switch. This result is consistent with the hypothesis that cognitive
control mechanisms such as ACC may be part of a conflict-control circuit that drives
increased attentional focus to task relevant stimuli (Posner & DiGirolamo, 1998).

Second, in addition to the switch cost and response alternation cost, we confirmed the
presence of longer-lasting effects that persist across multiple trials, consistent with a cog-
nitive control mechanism. These effects include both response alternation-induced slowing
and task switch-induced slowing. The persistence of these effects across trials and their
presence even when there is no task switch in the current trial suggest that the effect is dis-
tinct from backward inhibition (Mayr & Kliegl, 2000). It might be argued that the slowing
effect of a previous switch trial even with a current no-switch trial (e.g., sN vs. nN) reflects
simply a lack of cumulative priming in the previous switch condition. In that case, argu-
ments from Occam’s razor might counter a putative control loop as the supposed basis of
the slowing effect. However, if priming were a significant factor, then the task sequence sS
(e.g., BAB) should be faster than nS (e.g., AAB), since the repeated task B should facilitate
the response in the repeated switch condition. However, studies of backward inhibition
show that the opposite is true (Mayr & Kliegl, 2000). The results are, however, consistent
with a mechanism that causes a persistent slowing of responses on the basis of detected
task switches, a possibility we explore further below. The absence of a significant interac-
tion between the two persistent slowing effects due to task switches and response alterna-
tions leaves open the question of whether they are due to a shared cognitive control
mechanism. The computational model developed in the following section examines the
degree to which these mechanisms can account for the observed higher-order sequential
effects of task switching.

6. Modelling study: Simulating task-switching sequential effects

The observed sequential effects of task switching in humans presumably reflect a com-
plex interplay of various mechanisms. At this level of complexity, including 3- and 4-way
interactions, the behavioral effects are not easily or intuitively mapped to underlying
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mechanisms. However, this same complexity that makes direct conclusions from the data
difficult can be leveraged as an advantage for computational modeling, because the abun-
dance of effects provide stronger constraints on candidate computational models. Given
the above behavioral results, we hypothesized that the effects could be accounted for in
large part by several relatively simple mechanisms. We first present these principles con-
ceptually, and then we describe specific implementation details and processing in the mod-
el. Following this, we present the results of simulations demonstrating the success of the
model in capturing relevant behavioral phenomena as well as predicted effects of specific
model lesions.

7. Model mechanisms

1. Active maintenance of task set representations bias responding according to the cur-
rently relevant task. This concept has been widely discussed previously (Jacobsen,
1935; Miller & Cohen, 2001) and has formed an essential part of previous models of
controlled responding in cognitive tasks (Braver & Cohen, 2000; Brown, Bullock, &
Grossberg, 2004; Gilbert & Shallice, 2002; Reynolds et al., 2006). In our model
(Fig. 7A), a task cue activates a persistent representation of task set. Recurrent excita-
tion in this task set layer allows for stable recirculation and active maintenance of the
current task set. The pattern of activity represents the task set, and this activity in turn
biases the transformation of target signals into movement commands according to the
current task set. The model defines movement (such as a button press) as a behavioral
action initiated when a corresponding model output layer cell’s activity reaches a fixed
threshold (Hanes & Schall, 1996). We define a hidden or ‘‘plan’’ layer between the target
stimuli input and the output layer cells, where the movement is specified prior to its exe-
cution by the output layer cells. Specifically, each plan layer cell responds to a unique
combination of signals from task set representations and target-stimuli-representing
input layer cells, and in turn drives the response. Thus, the task-set layer activity pattern
ensures execution of the task-appropriate response to the target.

2. An Incongruency detector (INCd) monitors control of task set, detecting conflict
between incongruent response processes and enhancing activity of the current task
set representation. Under this hypothesis, conflict between incompatible stimulus-re-
sponse processes drives INCd (Fig. 7B), as in previous studies of conflict (Carter
et al., 1998). In this case, conflict consists of the coactivation of incompatible plan layer
representations, driven by incongruent target stimuli. The conjunction of simultaneous-
ly active incompatible plans drives transient activity in specific cells in the INCd layer,
whose activity signals the presence of response conflict. Following the observed disso-
ciation between areas of the brain that detect conflict and areas of the brain that imple-
ment cognitive control (Botvinick et al., 1999, 2001), the conflict-related activity in
INCd does not directly implement cognitive control. Instead, it drives a longer-lasting
increase in the activity of downstream cells, which in turn augment the activity of task
set representations implementing cognitive control, thus amplifying the processing of
task-relevant stimulus-response processes (Posner & DiGirolamo, 1998). The conflict-
control loop pathway is completed as amplified processing of the task-relevant pathway
overrides conflict from the inappropriate response process. Thus, following an incon-
gruent trial with this model mechanism, switch costs are expected to increase (as found
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behaviorally above). This is due to the fact that amplification of the present task set may
speed RTs when the same task is repeated, as has been found previously (Goschke,
2000) but slow RTs when the task switches, because amplification of the previous task
set persists even though it may no longer be relevant. A previous model of task switch-
ing (Gilbert & Shallice, 2002) has suggested that response processes feed back to ampli-
fy task set representations, so that longer response times (such as those associated with
incongruency) might integrate over time to amplify current task set or ‘‘task demand’’
(Gilbert & Shallice, 2002) representation activity (and likewise persist into subsequent
trials). In this case, it is unclear why a separate incongruency detector loop would be
needed here. However, as we have shown above in the human data, the effects of pre-
vious-trial incongruency on current trial response times and switch costs persist even
when controlling for previous-trial response time. These results suggest the need for a
separate incongruency detector. Notably, the current task set representation contextu-
alizes the model INCd layer, so that INCd layer units respond to unique combinations
of task set and incongruent stimulus representations. These in turn augment the activity



54 J.W. Brown et al. / Cognitive Psychology 55 (2007) 37–85
of the corresponding task set representations. Finally, the model makes a crucial dis-
tinction here between executive control as driving a switch in task set (Rogers & Mon-
sell, 1995) and executive control as increasing the strength of an already established task
set. For this task, the model posits that the INCd performs primarily the latter (task
setstrengthening) rather than the former (task set switching).

3. A change detector (CHd) monitors control of responding by detecting task set or
response changes across trials and subsequently slowing responses. In contrast with
INCd, which monitors for simultaneous incompatible response cues within a trial,
CHd monitors across trials. The model CHd (Fig. 7C) detects brief periods of conflict
as coactivation when the new task set representation becomes active and the previous
one has not yet been deactivated by lateral inhibition. Similarly, conflict-related activ-
ity in an oculomotor countermanding task has been found in the monkey (Stuphorn
et al., 2000), where conflict is engendered during a brief period when a new plan
becomes active before the previous plan has been deactivated. By extension, in the
present model, the conflict is between conditions of consecutive trials rather than
the same trial. Likewise, a persistently maintained representation of the previous
response (response buffer) allows a similar coactivation to be detected briefly as an
alternated response representation replaces the previous response representation that
was activated in the preceding trial. Following the distinction between performance
monitoring and control mechanisms as with the INCd above (Botvinick et al.,
1999), the net result of CHd activation is to remove (‘‘brake’’) a tonic arousal signal
to the response pathway, as in previous models (Jones et al., 2002). Critically, the
effect of this brake is a persistent slowing of responses not only in the current trial
but also in subsequent trials, as suggested by the behavioral result that an RT cost
of previous switches persists even though the current trial is a no-switch trial (see Sec-
tion 5). Thus, this second conflict-control loop mechanism contributes in part to the
switch cost, but its effects are not limited to the switch cost and persist to slow
responses on subsequent trials. That the slowing effect of this mechanism leads to
increased accuracy can be demonstrated by an increased error rate with lesions of
CHd (see Section 10).

4. The contribution of CHd to the task switch cost is distinct from that induced by asso-
ciative task set interference (TSI). Associative TSI has been argued to contribute to
the switch cost (Allport et al., 1994; Waszak et al., 2003; Wylie & Allport, 2000a).
According to this theory, target stimuli that have been paired with one task will lead
to a switch cost if presented in the context of the other task. Previous computational
modeling studies (Gilbert & Shallice, 2002) have implemented this mechanism as rep-
resentations of target stimuli learn to activate the task set representation with which
they have been paired. The present model implements a similar mechanism by assum-
ing that plan representations have a reciprocal, adaptive excitatory projection to task
set representations. This allows target stimuli, via the movement plan representations
they activate, to become associated with and thereby more strongly evoke a particular
task set. The net result is effectively an implementation of the TSI model, which
allows learned stimulus-to-task pairing. Nevertheless, CHd makes an additional con-
tribution to the switch cost over and above associative TSI effects. This can be dem-
onstrated by showing that lesions of the CHd reduce this switch cost without
completely eliminating it (see Section 10). Thus, CHd drives response slowing effects
in both the current and subsequent trials.
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5. Priming from the plan to the output layer allows plan representations to more efficiently
drive responses that are repeated in the same task context. The model was designed to
capture the crossover interaction between task switch and response alternation in the
current trial, as shown behaviorally above. This result replicated previous studies that
have found the same pattern (Fagot, 1994; Meiran, 1996; Rogers & Monsell, 1995).
Specifically, while response repetition leads to facilitation when the task does not
switch, a response repetition leads to paradoxical slowing when the task does switch.
To account for this finding, the model posits a mechanism similar to previous models
(Meiran, 2000a). Specifically, making a particular response (e.g. left) in a given task
leads to a strengthening of that response within in that specific task context, by
strengthening synapses from the plan layer to the output layer. This strengthening
may correspond to biological processes of long-term potentiation (LTP). This strength-
ening occurs at the expense of synaptic strength from the plan to the output layer cells
driving the leftward response in the other task, due to normalization of synaptic
strengths for a given response across tasks (Grossberg, 1982). Although such normali-
zation mechanisms have typically been promoted on purely computational grounds
(i.e., that they avoid ‘‘synaptic explosion’’ effects), initial empirical evidence for normal-
ization of synaptic strength by postsynaptic cells has recently been found (Koester &
Johnston, 2005). At the same time, the plan-to-output layer projections for both
responses in the other task remain constant (and equal). Thus, a trial in which the task
switches and the response repeats entails activation via the competitively weakened
pathway for the same response in the other task. We have implemented a similar mech-
anism in another model of task switching (Reynolds et al., 2006).

8. Model methods

8.1. Architecture

The model (Fig. 8) was simulated in a new computational modeling framework,
RNS++ (Brown, 2003), that we developed to facilitate integrated computational neural
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Fig. 8. The complete model, showing both cognitive control loops.
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modeling of behavior, electrophysiology, and functional imaging. The network can be
conceptualized in terms of two major divisions: (1) a network that can accomplish
task-switching; and (2) a supervisory control system that interacts with this task-switching
network (and is discussed in detail below). Within the task-switching network, the
architecture consisted of five layers of units: a target input layer, a cue input layer, a plan
(or hidden) layer, a task-set layer and a response output layer. There were two task cue
inputs that represented the two different cues (LETTER/DIGIT) in a localist fashion.
For simplicity, all stimuli that mapped to a particular response in a given task set were
collapsed and represented by a single input node to the model. Thus, the target input layer
was composed of four units, two for each of the task dimensions (VOWEL/CONSO-
NANT for the letter task and ODD/EVEN for the number task). The target inputs
connected in a one-to-one fashion with the four units of the plan layer while the cue inputs
connected in a one-to-one fashion with the two units of the task-set layer. The task-set
units had recurrent self-excitatory connections that enabled activity to be recirculated,
and thus actively maintained over preparatory intervals. The task-set units also had a
feedback connection to the plan units such that preparatory task-set activity could bias
activation in the plan layer. In particular, the task-set unit associated with each cue excited
both of the features of the relevant task dimension (e.g., the LETTER task-set unit excited
both the CONSONANT & VOWEL plan units, but not the other two units). Finally, there
was strong lateral inhibition among units in the task-set layer such that the presentation
each new cue caused an updating of the relevant task-set activity. The connection between
the task-set units and plan units was bi-directional, such that target-induced activity in the
plan layer could also enhance task-set activation.

The plan units connected to the output units such that the appropriate response was
made for each task. The network was judged to have made a behavioral response when
the activity of one output unit reached a pre-specified activation value. An additional
layer, the response buffer, had two units that were activated by the response given on a
particular trial and maintained this activity pattern until a response occurred in the
subsequent trial.

8.2. Processing

Activity in the model was simulated as a dynamical system with continuous-time rate-
coding of individual cells, which allows for a neurobiologically realistic representation of
the time course of neural activity (Brown et al., 2004). Below, we provide a conceptual
description of the simulation methods. Specific details of the equations governing process-
ing and model parameter selection are described in the Appendix A. Units in the model
compute their output activation based on integration of both excitatory and inhibitory
signals (whether these are coming from other units or represent passive forces—e.g., leak
currents). Updating of activation was simulated in very fine time steps to approximate the
real-time dynamics of neural activity during a given trial and to closely simulate the fine
timing of environmental events as presented to human subjects.

Each simulated trial consisted of the same series of events and timing experienced
by the human subjects performing the behavioral study above. At 200 ms after the
beginning of each trial, a cue appeared. This was represented by clamping one of
the two corresponding Cue input layer cells (Fig. 9) to 1.0 for 300 ms, at which point
the Cue input cell was clamped back to its default activity value of 0. The cue units



Fig. 9. A screenshot of the model as simulated, showing individual neuronal units in each layer.
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then directly activated the corresponding task set representations, causing the appro-
priate task-set unit to increase activity to an asymptotic level. The self-recurrent con-
nections caused this activation to be sustained at a stable fixed level. Lateral
inhibition ensured that only one task-set unit remained active during the preparatory
period. Additionally, a tonic inhibitory current ensured that baseline activation of
these units remained low. The task-set units also received a persistent excitatory input
coming from the supervisory control module that served to modulate processing
dynamics, which is described further below.

After a delay of 1500 ms, the target input appeared and remained present until either a
response was made or the trial ended. The target input was represented by the activation
of two out of the four input units, corresponding to the presence of one letter feature
(VOWEL or CONSONANT) and one digit feature (ODD or EVEN). Active units were
clamped to 1 and inactive units clamped to 0. The target input was then propagated to
the hidden/plan layer where it was integrated with excitatory input coming from the
task-set layer.

The propagation of plan unit activity to the response layer enabled the simulation of
one of two behavioral outputs to match the leftward or rightward manual response
used in the behavioral study. The response units also received a small and non-specific
input from the target units, in that each target unit excited both response units. This
additional non-specific input was intended to simulate a degree of response ambiguity,
such that some level of activity was always present in the incorrect response channel.
This provided a means for the network to produce errors, when combined with the
effects stimulus priming and noise. The response units also received a non-specific, ton-
ic excitatory input that served to generally enable quick responding. The actual
response made by the network on a given trial was coded by the first unit to reach
a prespecified activation threshold. Response times were encoded by the latency
required to reach this threshold.
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8.3. Priming mechanisms

Input to units was governed by the strength or weight of synaptic connections. These
synaptic weights were not fixed for many of the pathways, but were instead dynamically
changing in an experience-dependent manner that corresponded to priming effects. Two
sets of connections were specifically affected by experience: the connection from the hidden
to task-set layer and the connection from hidden to output layer. In both sets of connec-
tions the weight changes corresponded to a basic associative or Hebbian (Hebb, 1949)
learning rule, such that co-activation of a sending and receiving unit led to a strengthening
of the connection between them, in proportion to the magnitude of co-activation. The
effects of changing the hidden layer to task-set connection implemented a form of associa-
tive TSI, since targets that have previously been associated with a specific task-set in a pre-
vious trial will more strongly activate this task-set when the targets are activated in a
current trial (even if the previous task-set is no longer appropriate). The connections from
the hidden to output layer implement a form of response priming, such that a response
activated on a previous trial will have a strengthened connection to the hidden units that
correspond to the stimulus features that activated the response. For both sets of adaptive
connections the priming effect was time-dependent such that there was a passive exponen-
tial decay of any strengthening back to baseline values with a relatively short time constant
(i.e., with a half-life of several seconds).

8.4. Performance monitoring modules

The basic task-switching network interacted with two additional modules that sub-
served performance monitoring functions. Each module had two components: a conflict
detector and a control signal output activated by the conflict detector (Botvinick et al.,
1999). The conflict detector responded phasically to transient states of conflict, and drove
the control signal to respond with a rapid onset of slowly decaying activity. Thus, the con-
trol signal persisted beyond the time at which conflict is detected and into subsequent
trials.

The two different performance monitoring modules were distinguished by the type of
conflict detected in each as well as the control effects they drive. The INC module was
responsible for the detection and control of incongruency conflict: the simultaneous presen-
tation of stimuli associated with incompatible responses.1 The detection units in this mod-
ule received inputs from both the target layer and the task-set layer and responded to
particular conjunctions of task and stimulus features that were associated with incongru-
ency in each task. There were four INC detection units, with one unit responding to each
of the two incongruent stimulus patterns present for each of the two tasks.

When an incongruent stimulus pattern was detected, a specific unit in the detection
layer (INCd) was phasically activated and in turn excited one of two units in the control
output layer that corresponded to the currently active task. This control unit then
responded with a persistent increase in activity which was transmitted back to the task-
set layer, and served to modulate activity there. The effect of the control input was to
1 The astute reader will note that we have chosen to model INCd conflict detection on the basis of incongruent
stimuli in the hidden layer rather than on the basis of simultaneous responses in the output layer. Both
approaches may work well, although we did not explore the latter possibility.
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enhance the difference in activation among task-set units, such that the currently active
unit was further excited while the inactive unit was more strongly suppressed. Because
of the persistent nature of the control output signal, the signal remained across trials,
and therefore facilitated responding under conditions where task-set remained constant
across trials (no-switch conditions) but impaired responding when the required task-set
changed across trials (switch conditions).

A second performance-monitoring module, CH, was responsible for the detection and
control of change-related conflict: cross-trial changes in the required task-set or response.
The detection units (CHd) in this module received inputs from two different sources, the
task-set layer and the response buffer layer. There were two CHd units, which each
responded to a brief period of coactivation in the layer (task-set or response buffer) that
was being monitored, as a new representation became active before the previous one
had shut off. This brief coactivation period occurred only under conditions in which the
response or task-set changed across trials. The transient activity of CHd units excited more
persistent activity in a corresponding change-driven control output unit. This activity in
turn caused inhibition of the non-specific tonic excitatory input to the response layer.
The control unit activity can thus be conceptualized as a ‘‘brake’’ system that reduces
in a nonspecific manner the baseline activity level in the response layer. Such a mechanism
will produce non-specific slowing of responding.

9. Model analysis methods

Several analyses of the model were carried out, as follows. First, the model was fit to
corresponding human behavioral data (see Appendix A). Second, overall goodness-of-fit
was evaluated between model and human data, taking into account reductions in effective
degrees of freedom due to free parameters used in the data fitting process. Third, a number
of response time and error-rate effects predicted from the human data were examined in
the model, looking at effects of current and previous trial types, as well as interactions
between them. Fourth, sequences of more than three trials in length were specifically
examined with regard to effects of task-switching, even though the model was not explicitly
fit to these longer sequence data. Finally, the model performance monitoring mechanisms
were individually lesioned, and the model was refit in order to further specify the contri-
butions of each model performance monitor to the model’s ability to fit the human data.

The model was tested under the same experimental conditions as the human subjects
above. For simplicity, all stimuli that mapped to a particular response in a given task
set were collapsed and represented by a single input node to the model. Thus, the model
had four stimulus input nodes (odd, even, vowel, and consonant) in addition to two sep-
arate task cue representations (odd/even, and vowel/consonant). To evaluate statistical
significance of the model effects, the model was run for 19,200 trials. These were grouped
into sets of 1200 trials, with each trial group corresponding to a virtual subject. This
allowed a direct comparison with the 16 human subjects, each of whom performed 1200
trials. The model output was then analyzed statistically using the same analysis routines
as for the human data above. One potential issue with this approach is that the lack of
individual differences among the 16 virtual model subjects may lead to alpha inflation.
However, as we discuss below, we found that the statistically significant model effects were
also numerically significant and similar in size to those found in the human data. Further-
more, as we show later, this supports the conclusion that the absence of effects in the
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lesioned model demonstrates the essential role of various model mechanisms. Thus, the
individual variability not simulated in the current model does not appear to negatively
impact the interpretation of positive vs. null statistical effects in the simulation results.

10. Model results

The model provided a comprehensive fit to the data, capturing a number of sequential
and higher-order effects. The model fit all 64 response time data points in addition to the 8
current trial error rate data points, for a total of 72 data points. There were 21 free param-
eters in the model, which left 51 degrees of freedom (DOF). The model fit the 64 RT data
points with a Pearson correlation of r = .83, which was highly significant even with fewer
degrees of freedom due to the model’s free parameters (t (41) = 9.5, p < 10�9), as shown in
Fig. 10. The model captured the specific effects on human RT. Specifically, the model
showed current trial RT effects of switch cost (112 ms, F (1,15) = 550, MSe = 5783,
p < 10�12), alternation (24 ms, F (1,15) = 62, MSe = 2607, p < 10�5), and incongruency
(43 ms, F (1,15) = 110.24, MSe = 4281, p < 10�7), as seen in Fig. 11A. The model also cap-
tured the RT effects of previous trial conditions (Fig. 11B) of switch (27 ms,
F (1,15) = 38.74, MSe = 4827, p < 10�4) and response alternation (8 ms, F (1,15) = 6.17,
MSe = 3463, p < .03). There was no main RT effect of previous trial incongruency in
humans, and the model did not predict one (F (1,15) = 0.35, MSe = 5004, p > .57).
Fig. 11 reveals an apparent discrepancy between the model and human RTs, in that the
model responds too slowly when the preceding trial was a no-switch, repeat (nr) trial.
At least part of the discrepancy may be attributable to inherent noise in the fitting process
(see Appendix A). Nonetheless, the greater slowing effect of previous trial task switches (s)
and response alternations (a) on current-trial RT in the human data as compared with the
model suggests that if anything, the simulations may have underestimated the contribution
of the change-induced subsequent-trial slowing effect driven by the CHd loop. Similarly,
we analyzed the 64 RT data points in Fig. 10 to see which ones showed a significant dif-
ference (p < .05, Bonferroni corrected) between model and data. Only 1 point (nrcSAI)
was significant, followed closely by the corresponding current no-switch condition (nrc-
NAI), which failed to reach significance. We found that the model switches were especially
slow and no-switches were especially fast (compared to the human data) for current
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alternate, incongruent trials when the previous trial was a no-switch, repeat, congruent tri-
al (nrcAI). In both of these cases, the previous trial conditions elicit the smallest control
signals possible. This again suggests that the model may have overestimated the contribu-
tion of current-trial effects to the switch cost. It may be possible to improve the model fit in
this regard by simulating a higher baseline level of control signal in the CHd control loop,
but this was not tested.

The model simulated the effects of interactions between current trial task switch and
current trial response alternation (F (1,15) = 154, MSe = 4096, p < 10�8), as well as
between current and previous task switch (F (1,15) = 168, MSe = 2684, p < .01). As in
the human data, previous-trial incongruency increased the current-trial switch cost, when
the previous trial was a no-switch trial and the current trial was incongruent
(F (1,15) = 7.79, MSe = 1028, p < .02). Conversely, previous trial incongruency, as com-
pared with previous congruency, led to a facilitation trend (16 ms, t (15) = 1.96, p < .07)
in current no-switch, incongruent trials, in agreement with effects in the human data.
Notably, the model also captured a 4-way interaction among current and previous trial
task switch and response alternation factors (F (1,15) = 12.29, MSe = 4515, p < .004).

The model also captured several effects of error rate as well (Fig. 12). Specifically, the
model captured the main effect of switch cost (F (1,15) = 7.24, MSe = 0.0005, p < .02),
incongruency (F (1,15) = 268, MSe = 0.0006, p < .0001), and the interaction between cur-
rent trial switch and response alternation (F (1,15) = 13.7, MSe = 0.0009, p < .003). As in
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the human data, there were no main effects of previous trial task switch, response alterna-
tion, or incongruency on error rates (p > .10). Furthermore, error rates did not differ sig-
nificantly for sequences culminating in a no-switch trial sN (8.2%) and nN (9.2%)
(t (15) = 1.38, p < .2), although RTs did differ (sN: 870 ms, nN: 796 ms, t (15) = 14.6,
p < 10�9), in agreement with the human data.

The model also showed speed–accuracy effects (Fig. 13A). With the same analysis used
above for the human data (Fig. 6), the model correlation between condition-controlled RT
and accuracy in bins from 100 to 1000 ms was positive (r = 0.85, t (6) = 3.88, p < .01). This
is consistent with the speed–accuracy tradeoff effects observed in humans above. The mod-
el did not show a clear effect of decreasing accuracy with longer RTs, most likely because
there was no mechanism that allowed task set representations to fail to engage (de Jong,
2000; Nieuwenhuis & Monsell, 2002). However, we have addressed this issue directly in
other models (Reynolds et al., 2006). Also, we directly compared condition-controlled
RT distributions for correct and error trials from the model and human data. For the
model data (Fig. 13C), RTs were slightly faster for error than correct trials (868 ms error
vs. 896 ms correct, t (15) = 4.25, p < .002). For the human data overall, the error RT data
trended in the opposite direction (944 ms error vs. 882 ms correct, t (15) = 1.93, p = .07).
However, this was again due to slow human errors that were not simulated in the model.
Human trials with condition-controlled RTs faster than 800 ms showed a trend toward
faster errors than correct responses (585 ms error vs. 601 ms correct, t (15) = 2.06,
p < .06), consistent with the model and a speed/accuracy tradeoff in the faster trials
(Fig. 13B). Overall, the human and model distributions were similar in both mean and var-
iance, although the model did not reproduce the skewness of the human RT distribution.
Ideally, the model should account for skewness. However, the overall difference in skew-
ness between the model and human data did not hinder the model’s ability to account for
the sequential effects that are the focus of this paper. An account of skewness in the RT
distributions is beyond the scope of the model.

We then tested the model explicitly to see whether task switches as compared with no
task switch in a previous trial would lead to response slowing and a corresponding reduc-
tion in error rate. In the fastest 200 trials per model subject (absolute RTs), task switches
led to increased response time in subsequent trials (F (1,15) = 6.24, p < .03), but there was
no apparent effect on error rate (p = .12) despite the observed overall speed accuracy
tradeoff in fast trials. These results again match the counter-intuitive findings of the human
data. However, analysis restricted to the fastest 100 trials per model subject revealed that
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previous switch trials led to reduced error rates relative to previous no-switch trials
(F (1,15) = 6.10, p < .03), despite no interaction between previous trial switch vs. no-switch
and current trial congruency on error rate effects (F < 1). Overall, these results are consis-
tent with the possibility that despite the presence of a speed–accuracy tradeoff, increased
accuracy driven by switch-induced slowing is partially masked by increased exploration
relative to exploitation as the model spends more time processing input stimuli. Further-
more, the model mechanisms are able to account for these paradoxical speed–accuracy
effects.

10.1. Higher-order sequences

We also investigated the ability of the model to capture effects of longer sequences of
five trials. Previous studies of two-alternative forced choice tasks showed effects of longer
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sequences of five trials (Soetens et al., 1985). Recently, other models have shown that per-
formance-monitoring mechanisms similar to those modeled here can account for a signif-
icant component of the variance in response time in two-alternative forced choice tasks
(Jones et al., 2002). Therefore, we coded trials according to whether the current and pre-
ceding three trials were switch (S) or no-switch (N) trials. To do so, for the analysis shown
in Fig. 14 only, we used a slightly different convention (Soetens et al., 1985) to code
sequences longer than two trials, such that the sequence read left to right describes consec-
utive trials. For example, the condition ‘‘NSNS’’ refers to a no-switch trial, followed by a
switch trial, then followed by a no-switch trial, then followed by a current trial condition
of switch. This approach implicitly includes task information from five consecutive trials
and yields a total of 24 = 16 conditions. Although the model was not fit to behavioral data
on higher-order sequences, the model nonetheless provided a good though not perfect fit
to the human data (r = .90), as shown in Fig. 14.

10.2. Performance monitor activity signatures

The intact model predicts a specific, quantitative pattern of activity related to the two
distinct conflict-control loop mechanisms. Activity in the CHd shows strong current-trial
effects (Fig. 15A) of task switching (F (1,15) = 682, MSe = 0.71, p < 10�10) and response
alternation (F (1,15) = 141, MSe = 0.23, p < 10�7), and strong counter-intuitive effects
of previous-trial task switching (F (1,15) = 523, MSe = 0.62, p < 10�10), previous-trial
response alternation (F (1,15) = 25, MSe = 0.31, p < 10�6), and previous-trial incongruen-
cy (F (1,15) = 5.31, MSe = 0.40, p < .04), as shown in Fig. 15B. Essentially, task switches
and response alternations led mainly to greater activity in the CHd module, as expected,
and this effect appeared to be slightly amplified by previous-trial incongruency. Incongru-
ency in the previous trial may have led to amplification of the previous task set, which
would lead to greater coactivation of the task sets (and therefore greater CHd activity)
when the task switches in the current trial.

In contrast, activity in the INCd showed a strong current-trial effect of incongruency
(F (1,15) = 74848, MSe = 0.1, p < 10�15) as expected (Fig. 15C). It also showed smaller
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but still significant unexpected effects of current-trial task switching (F (1,15) = 294,
MSe = 0.17, p < 10�10) and response alternation (F (1, 15) = 18, MSe = 0.11, p < .002).
Specifically, task switches seemed to enhance incongruency-driven activity relative to trials
with no task switch. This may have occurred as a newly changed task set was less effective
in reducing conflict than an established task set from the previous trial. Activity in the
INCd also showed smaller but still significant effects of previous-trial switch
(F (1,15) = 6.43, MSe = 0.59, p < .03), but not previous-trial response alternation or con-
gruency (Fig. 15D). The INCd response to task-switching was an emergent and counter-
intuitive property of the model, as we initially expected the INCd to show effects only of
current-trial incongruent stimuli. Overall, these results provide quantitative and testable
predictions regarding cognitive control mechanisms in the brain.

10.3. Nested model analysis

Having shown that the model captures a number of significant behavioral effects, we
can now establish the significance of the conflict-control loops. To do this, we examined
a version of the model without the conflict-control loops, which is effectively nested within
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the full model with conflict-control loops. Specifically, we lesioned the model CHd and
INCd individually by clamping the activity levels of each one in turn to zero, and then
we tested the model with both INCd and CHd lesioned. Whenever CHd was lesioned,
we also clamped B in Eq. (15) to zero, because doing so minimized the impact of
unchecked tonic bias excitation on the output that made the CHd lesion effects appear
more dramatic. Thus, the effects of the CHd lesion reported here are conservative. Also,
after lesioning both CHd and INCd, we refit the remaining model parameters to the same
data, to avoid the possibility that the effects of CHd and INCd lesions reflected merely an
artifact of overall parameter choice in the model. The results (Table 3) show that the con-
trol loops improve the overall correlation between model and data most strongly in cap-
turing the effect of previous trial type. We used a generalized likelihood ratio test (GLRT)
for nested models (Bickel & Doksum, 1977; Mood, Graybill, & Boes, 1974) to examine
whether the improved fit was significant despite the increased number of free parameters
used in the control loops. This test is more sensitive than multiple regression analysis
(Cohen & Cohen, 1983), because it accounts not only for the change in free parameters
but also for the variance of individual data points, which is discarded by multiple regres-
sion analysis. Briefly, when both the full and reduced models are best fit to the data by
adjusting the free parameters, the GLRT(K) can be computed according to
K = �2ln (P(full model)/P(reduced model)) � v2(N), where N is the difference in the num-
ber of parameters between the full and reduced models. After subtracting off between sub-
ject RT variance from the global mean, we tested the 64 RT conditions. The full model
provided a significantly better fit than the reduced model (v2 (10) = 30.87, p < .001), in
agreement with the full model’s ability to capture effects that the lesioned and refit model
could not. Similarly, the full model provided a significantly better fit than the lesioned
model according to the Akaike information criterion (Akaike, 1987), with AIC(full mod-
el) = 290.66 and AIC(reduced model) = 301.53. Of note, these results suggest that the
sample size of the human data was sufficient to allow model discrimination even in the case
of the 64 crossed current and previous trial conditions. With regard to incremental model
fits, adding each control loop individually improved the model fit relative to the lesioned
model with no control loops (CH: v2 (7) = 41.96, p < .001; INC: v2 (3) = 39.72, p < .001).
The incremental fits between the full model and lesions of either control loop individually
Table 3
Effects of model lesion on RT effects (P-values) All significant human effects up to sixth order shown

Effect Human Intact
model

INCd
lesion

CHd lesion
(no tonic)

INCd, CHd
lesioned

INCd, CHd
lesioned (fit)

Switch 0.00002 <10�5 <10�5 <10�5 <10�5 <10�5

Alternate 0.035 <10�5 0.012 0.0002 0.0003 0.0002
Congruent 0.032 <10�5 <10�5 <10�5 <10�5 <10�5

Prev. Switch 0.002 0.00002 <10�5 0.3 0.65 0.74

Prev. Alternate 0.0013 0.025 0.002 0.96 0.9 0.07

Switch X Alternate <10�5 <10�5 <10�5 <10�5 <10�5 <10�5

Switch X Prev. Switch 0.035 <10�5 <10�5 <10�5 0.001 <10�5

Switch X Prev. Switch
X Prev Cong

0.006 0.8 0.85 0.033 0.83 0.38

Switch X Prev Cong (nI) 0.017 0.013 0.88 0.001 0.55 0.23

Switch X Alternate X
Prev. Switch X Prev. Alt

0.027 0.003 0.0007 0.008 0.00002 0.00006

Bold indicates model failure to capture significant human effects.
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were not significant, although each control loop was necessary for the model to account
for specific behavioral effects, as discussed next (Table 3).

10.4. Lesions of cognitive control mechanisms

We used the reduced model with lesioned control loops to examine what the model pre-
dicts regarding the role of putative cognitive control mechanisms. Lesions generally ren-
dered the model unable to capture specific effects found in the human data. By virtually
lesioning the model, we can elucidate the significance of model performance-monitoring
mechanisms’ contributions to behavior. Individuals with schizophrenia show reduced con-
flict-related activity in the ACC and a corresponding reduction in persistent slowing effects
following conflict trials (Kerns, Cohen, MacDonald, Johnson, & Stenger, 2005). Also in
humans, lesions of the putative performance monitoring areas such as the ACC lead to
specific cognitive impairments, (Gaymard, Ploner, Rivaud, Vermersch, & Pierrot-Deseil-
ligny, 1998; Swick & Turken, 2002; Turken & Swick, 1999), although there is some dis-
agreement in the literature as to the effects of performance-monitoring areas on
behavioral performance (Fellows & Farah, 2005). The effects of lesions on the model pre-
dictions are summarized in Tables 3 and 4.

The model predicts that a previous-trial incongruency results in increased attention to
the then-current task set, meaning that prior incongruency increases switch costs. Indeed,
this result was found in both the human data and the intact model (Fig. 16A). However,
when the INCd was lesioned in the model, this effect was abolished (Fig. 16A, Table 3).
Lesions of CHd abolished the previous-trial switch effect and the previous-trial response
alternation effect (Fig. 16B). All of these lesion effects persisted even when the CHd-
and INCd-lesioned model was refit to the data. In the human and intact model, the reduc-
tion of switch costs due to a previous trial switch was mainly due to an increased no-switch
response time (Fig. 14). Furthermore, Fig. 14 shows that with more immediately preceding
switch trials over longer sequences of trials, the switch cost is further reduced. This sug-
gests that as the likelihood of switch trials increases, the switch cost may vanish. A similar
effect attributed to top-down expectancy has already been found with two-alternative
forced-choice tasks (Soetens et al., 1985).

Overall, lesions of the model performance-monitoring components affected the mod-
el’s ability to capture the effects of previous trials more severely than current trials
(Table 4). The correlation between human and model RTs was only slightly affected
by performance-monitor lesions for the full 64 RT data points, but model perfor-
mance-monitor lesions virtually abolished the model’s ability to capture previous-trial
effects. With regard to error rates, lesions of CHd (but with intact tonic excitation B
to the response layer) led to higher error rates and shorter RTs. However, if the
Table 4
Lesion fit effects

Condition Intact model INC/CH lesion

Model and human RT Pearson correlation

Human vs. model (64 pt) 0.829 0.753
Human vs. model current trial (8 pt) 0.963 0.928
Human vs. model prev trial (8 pt) 0.686 0.142
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model. The persistent switch-induced slowing is due to the model CHd, and the braking activity saturates such
that repeated switches have less additional effect.
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CHd lesion also included the tonic excitation to the response layer, then the network
instead displayed lower error rates and longer RTs. Beyond this, although we looked
for additional error rate effects, the conflict-control loops seemed to influence mainly
response time rather than error rates. We cautiously speculate that although the task
we used provided strong constraints on the model, it may not have been optimal for
revealing error rate effects. No additional stimulus information is presented subsequent
to the target, and therefore waiting longer to respond provides no clear benefit. This
stands in contrast with the stop signal task, for example, in which useful new informa-
tion may be received to aid accuracy as responses are delayed (Logan, 1985).
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10.5. Switch costs

It is notable that although lesions of the model performance monitor components
reduced the switch cost, some significant switch costs remained. The RT switch cost
was 112 ms in the intact model, 98 ms in the INCd-lesioned model, 74 ms in the CHd-le-
sioned model, and 68 ms when both CHd and INCd were lesioned. Subsequent investiga-
tion of the model revealed that the remaining 68 ms switch cost was abolished when
learning in the Hidden-to-task-set layer [Eq. (7) in the Appendix A] was shut off (i.e.,
the learning rate set to 0) along with lesions of both INCd and CHd components. Accord-
ing to these results, some of the model RT switch cost is due to the role of conflict-control
loops, especially CHd. However, another portion of the switch cost is due to priming from
target stimuli to the task set layer, via the hidden layer, which essentially implements a
kind of associative TSI (Allport et al., 1994; Wylie & Allport, 2000a). This result agrees
with similar mechanisms found in previous models (Gilbert & Shallice, 2002) accounting
for switch costs. Thus, the model is consistent with multiple factors contributing to the
switch cost (Meiran et al., 2000).

11. Model discussion

The quantitative simulation demonstrates that the five postulates as embodied by the
model are sufficient to account for a range of complex sequential effects. Although some
noise is inevitably present in both the human data and the model fit (see Appendix A), the
ability of the model to capture effects present in the human data validates the model fitting
approach based on the 64 RT conditions and 8 current-trial error rate conditions. The suc-
cess of the model fit further validates the sufficiency of the human sample size even for the
64 conditions. More striking are the observations that the model captured several behav-
ioral effects that were not part of the data set used to fit the model. For example, the model
captured effects of five-trial sequences, although it was fit to data involving sequences of no
more than three trials in length (Fig. 14). The model also makes quantitative and non-triv-
ial predictions regarding cognitive control mechanisms. In particular, the addition of con-
flict-control loops allows the model to capture a significantly larger portion of the
variance, including rich and subtle higher-order effects. The results thus suggest that cer-
tain aspects of behavior are functionally dependent on these mechanisms. In that case,
similar effects would be generally predicted in paradigms involving task switching and/
or incongruency. The model predicts specific activity pattern signatures for the various
conflict-control loop components. These predictions can in principle be tested with electro-
physiological or functional neuroimaging methods. Virtual lesions of the CHd and INCd
confirmed the expected effects of each of these cognitive control mechanisms, which were
apparent in the effects of the previous trial history on performance. In particular, the
INCd was necessary for the increased switch cost due to previous trial incongruency,
because INCd drove the increased activity of a task set representation that facilitated per-
formance if the task did not switch but hindered performance if the task did switch. Sim-
ilarly, the CHd was necessary for the switch-induced slowing that persisted into
subsequent trials, because its activity led to inhibition of response layer activity even in
subsequent trials in which no task switch occurred. Lesioning the CHd and/or INCd abol-
ished these effects in the model. The model also predicts that in asymmetric tasks such as
the Stroop task (Stroop, 1935), activation of the non-dominant task should lead to greater
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conflict from the irrelevant stimulus, and therefore greater INCd activation. The result
would be an increased activation of the current, less pre-potent task, which opposes a
switch to the more pre-potent task. For example, naming colors in the Stroop task allows
conflict from the more pre-potent word-reading pathways, which leads to increased con-
flict-related activity and therefore increased attention to color-naming. The increased
activity of color naming task representations in turn makes switching away from color-
naming to word-reading more difficult. Thus, although we did not test it directly, the mod-
el should account for the kind of asymmetry in switch costs that has been observed with
these tasks (Allport et al., 1994; Monsell, Yeung, & Rayna, 2000).

12. General discussion

Much of the recent debate regarding switch costs has focused on whether or not they
reflect the work of an executive controller (Altmann, 2003; Monsell, 2003; Rogers & Mon-
sell, 1995), which has thus far proven somewhat elusive (Logan, 2003; Logan & Bundesen,
2003). The question has been framed in terms of whether or not an executive is responsible
for implementing the task switch as well as the switch cost. However, executive control
encompasses many faculties (Norman & Shallice, 1986), of which task set switching
may (or may not) be only one potential component. Indeed, in our model, the switch cost
persisted even when the performance monitoring components were lesioned. We suggest
that the search for executive control as the mechanism that implements task switches in
explicitly cued paradigms may be ill-posed in that it defines the role of an executive too
narrowly. Instead, as the behavioral and modeling results above suggest, the contribution
of an executive controller to task switching paradigm performance may not be that of
directly implementing task-set shifts, but rather to monitor and control responses within
an active task set (Logan, 2003). Recasting the issue in these terms need not emasculate
the central executive, because certain uncued task-switching paradigms still require endog-
enously driven task switches on the basis of error feedback, and there is evidence that these
require executive processes localized to the medial wall (Bush et al., 2002; Shima & Tanji,
1998). However, by embracing a broader definition of executive control, the above results
suggest that such mechanisms are sufficient to account for higher-order sequential effects
of task switching that have not been previously accounted for.

12.1. Switch cost

This paper complements several previously proposed theories of the switch cost. In gen-
eral, the model addresses the residual switch cost (Rogers & Monsell, 1995), given the
length of the cue-target interval. First, the TSI (Allport et al., 1994) and associative TSI
theories (Wylie & Allport, 2000b) essentially suggest that previously active task sets carry
over and interfere with the current task set. This carry-over may be passive and related to
persistent neural activity (Sohn & Anderson, 2001), or in the case of the associative TSI,
may be reactivated by a stimulus that was recently associated with the task set. These
mechanisms were incorporated into a recent model of task switching (Gilbert & Shallice,
2002), which showed the mechanisms sufficient to account for aspects of the switch cost.
However, the Gilbert and Shallice model does not address effects of longer sequences,
since the path weights are reset after each trial. Nonetheless, the associative TSI mecha-
nism, by which stimuli can reactivate task sets that they have recently been paired with,
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may account for part of the switch cost. In the present model, the hidden-to-task-set
weights (Eq. (7) in the Appendix A) are adaptive, which implements this kind of
associative learning to contribute to the switch cost. Our model is consistent with a role
for associative TSI, although our interest in sequential effects led us to focus on persistent
task-switch induced slowing mechanisms underlying switch costs as part of a more general
class of sequential effects.

In one of our other models (Reynolds et al., 2006), this associative learning mechanism
serves not only to account for the residual switch cost but also to implement a kind of
reactive cognitive control. Several investigators (De Jong, 2000; De Jong et al., 1999; Nie-
uwenhuis & Monsell, 2002) have suggested the failure-to-engage (FTE) hypothesis, which
proposes that on a fraction of trials, the task set representations fail to persist and must be
reactivated or retrieved by the appearance of the target. In these cases, associative learning
allows target stimuli to reactivate the recently activated task set representation, so that the
task can be performed correctly despite failures of task set activity to persist. Thus,
although we did not investigate the FTE issue explicitly, the model is consistent with a role
of failures to engage in accounting for the switch cost as well as the observed positive cor-
relation between response time and error rate for the slowest trials.

Recent work has further probed the time scale on which such associative learning effects
may act. Apparently, individual instances of pairing can have long lasting effects (Volkow
et al., 1998), such that a stimulus previously paired with one task can evoke an increased
switch cost in the other task even many trials later (Waszak et al., 2003). In other words,
once the pairing had occurred, it was relatively stable and less sensitive to the recent trial
history. Thus, this kind of persistent associative learning may indeed be present in our
data, but it would not significantly contribute to the sequential effects that varied with
recent trial history (with timecourses on the order of a few trials) as observed here. How-
ever, the model is consistent with associative learning that acts and decays on a shorter
time scale of several trials.

Backward inhibition, as revealed in the set alternation cost (Mayr, 2002; Mayr & Keele,
2000), and cue repetition priming (Arrington & Logan, 2004a, 2004b; Logan & Bundesen,
2003; Mayr & Kliegl, 2003) are two additional phenomena that have been proposed to
account for part of the switch cost. Our paradigm used two task sets rather than three,
and a single type of task so testing for distinct set alternation costs and cue repetition ben-
efits was beyond the scope of the simulations. However, our model could be augmented
with either or both of two mechanisms that have been proposed to explain the set alterna-
tion cost, namely persistent self-inhibition and lateral inhibition of task set representations
(Mayr & Keele, 2000). Essentially, these two mechanisms might allow a task that is
switched away from to be persistently inhibited so as to render a reactivation of those task
set representations more difficult. In any case, the model suggests that cognitive control
processes are evident not in the current trial task switch (or cue switch) condition, but
rather in the effects of previous trial conditions. The finding that switches in the previous
trial lead to a response time cost in a current no-switch trial (i.e. for RTs, sN > nN) is
beyond the scope of an explanation in terms of backward inhibition, because backward
inhibition effects would not apply to this sequence. Nonetheless, the finding is consistent
with the CH conflict-control loop mechanism simulated here. Furthermore, if the cue-rep-
etition benefit such as proposed by (Logan & Bundesen, 2003) persisted beyond the first
trial, then in cases with one cue per task, the response time for sequences of two switch
trials should be faster than for a no-switch followed by a switch trial (i.e. sS > nS), due
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to repetition in the current trial of the task (and cue) presented two trials back (e.g., BAB).
On the contrary, because of apparent backward inhibition effects, exactly the opposite is
true (Mayr & Keele, 2000). More recent work suggests that backward inhibition may mask
effects of cue repetition priming which are nonetheless present, at least in some cases with
relatively few cues (Mayr & Kliegl, 2003). By itself, this observation might suggest cue rep-
etition priming benefits as a potential alternative explanation to the model’s CH control
loop account of slowing effects in the case of a switch followed by a no switch trial
(sN), as compared with a no-switch followed by a no-switch trial (nN). The main limita-
tion of this argument is that in the case of voluntary task switches, no task cue is present-
ed, yet the data show that RTs remain increased in the trial subsequent to the switch and
decrease thereafter (Arrington & Logan, 2004a, 2004b). This is consistent with the CH
control loop simulated here but cannot be accounted for by cue repetition priming, since
no task cues are presented.

12.2. Cognitive control modulates performance tradeoffs

Our results are consistent with the general notion that multiple cognitive control mech-
anisms dynamically modulate behavioral parameters in a continual manner during task
performance, in order to optimize behavior when environments are non-stationary
(Mozer, Colagrosso, & Huber, 2002). With regard to the effect of incongruency on subse-
quent trial performance, increased focus on the current task comes at the expense of higher
switch costs. The finding of increased switch cost due to previous trial incongruency is con-
sistent with previous findings (Goschke, 2000). Furthermore, to the extent that the task set
representations in humans fail to engage on a subset of trials (De Jong, 2000; De Jong
et al., 1999; Nieuwenhuis & Monsell, 2002), we suggest that the likelihood of engagement
may be modulated by the recent frequency of incongruent trials, such that task engage-
ment increases and response time for incongruent trials decreases (as long as the task does
not switch) when incongruent trials increase in frequency. This agrees with prior studies on
the relative frequency of incongruent trials in the Stroop task (Logan & Zbrodoff, 1979).
Thus, the model is consistent with a fundamental tradeoff between exploration and exploi-
tation (Ishii et al., 2002; Kaelbling et al., 1996; Sutton & Barto, 1998; Usher et al., 1999),
such that incongruency drives increased control to focus effort and attention on exploiting
known stimuli at the expense of exploring/attending to other potentially useful cues.

Likewise, the observed change-induced slowing effects are consistent with cognitive con-
trol mechanisms that modulate the observed speed–accuracy tradeoff in favor of accuracy for
faster, engaged trials in both model and human data (Fig. 13). Consistent with this observa-
tion, fast switch trials vs. no-switch trials lead to longer response times in subsequent trials in
both human and model data. However, while the model further shows a reduction in error
rate following fast switch vs. no-switch trials, the human data do not show a corresponding
reduction in error rate. Thus, the human data show a discrepancy between the general speed–
accuracy tradeoff in fast human trials and the lack of such tradeoff effects in trials subsequent
to a switch. One possible reason for this discrepancy is that switch trials might also drive
change-detecting cognitive control mechanisms to bias a performance tradeoff in favor of
exploration vs. exploitation, i.e. oppose the incongruency conflict-control loop effect. This
was not simulated in the model, but the human trend towards greater incongruency effects
on error rate subsequent to switch trials in humans suggests this possibility. An increased
exploration bias might increase the rate of errors driven by distractors in such a way as to



J.W. Brown et al. / Cognitive Psychology 55 (2007) 37–85 73
mask an opposing reduction in errors due to increased response time under a speed–accuracy
tradeoff. Another un-tested possibility is that task switches increase the likelihood of failure
to engage the task in subsequent trials, which might in turn increase error rates and mask the
effect of error rate reduction due to RT slowing.

12.3. Cognitive neuroscience

Studies of the neural bases of performance monitoring/conflict detection and cognitive
control are consistent with the present model. A general consensus has been emerging in
the literature that the ACC and related areas of the frontal medial wall are critically
involved in monitoring performance (Blakemore, Rees, & Frith, 1998; Botvinick et al.,
1999; Braver, Barch, Gray, Molfese, & Snyder, 2001; Carter et al., 1998; Carter, MacDon-
ald, Ross, & Stenger, 2001; Gehring & Knight, 2000; Liddle, Friston, Frith, & Frac-
kowiak, 1992; MacDonald et al., 2000; Menon, Adleman, White, Glover, & Reiss,
2001; Nordahl et al., 2001; Scheffers & Coles, 2000; Ullsperger & von Cramon, 2001; Veen,
Cohen, Botvinick, Stenger, & Carter, 2001). Evidence suggests that the ACC detects con-
flict between incompatible response processes and in turn signals other areas of frontal
cortex, such as dorsolateral prefrontal cortex (PFC), to increase the level of cognitive con-
trol (Botvinick et al., 1999; Carter et al., 1998; Carter et al., 2000; Kerns et al., 2004; Mac-
Donald et al., 2000), particularly when the frequency of these events in recent trials is low,
although some controversy exists on this point regarding specific behavioral paradigms
(Carter, Kerns, Sohn, & Cohen, 2003; Mayr et al., 2003). Furthermore, we have recently
shown that ACC may learn to signal increased error likelihood, which can lead to appar-
ent response conflict detection effects (Brown & Braver, 2005). In the above results, task
switches and stimulus incongruency are both associated with significantly increased error
rates relative to no-switch and congruent conditions respectively. Therefore, apparent
response conflict detection effects in and around ACC may be expected in incongruent
vs. congruent as well as switch vs. no-switch conditions in the present task.

The ACC may signal response conflict due to incongruent stimuli and subsequently
drive increased attentional focus to the current task set (Egner & Hirsch, 2005; Posner
& DiGirolamo, 1998), which constitutes an increase of cognitive control consistent with
the human data and model simulations above (Botvinick et al., 1999; Carter et al.,
2000; Cohen, Botvinick, & Carter, 2000). Thus, some part of the ACC may perform a
function similar to that of the model INCd.

In the case of task switching and response alternation, conflict may arise between the
previously performed response or task set, and the new response or task set. This kind
of conflict bears resemblance to that engendered in supplementary eye fields of macaque
monkeys when a planned saccade is subsequently countermanded (Stuphorn et al.,
2000), in that the previous response process conflicts with a newly introduced response
process. Functional imaging studies of the medial prefrontal cortex (including ACC and
pre-SMA) also show activity in response to task switches, when the stimulus-response
mapping changes (Dove et al., 2000; Kimberg, Aguirre, & D’Esposito, 2000; Luks
et al., 2002; Rushworth, Hadland, Paus, & Sipila, 2002; Shima & Tanji, 1998). While
the cingulate motor area of the ACC may be involved in driving changes in task set under
certain conditions lacking explicit task cues (Shima & Tanji, 1998), neighboring areas
might also detect changes in task set evidenced as conflict between the previous and
new task sets. In support of this hypothesis, Jones et al. (2002) found specific areas of
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ACC that activate when responses alternate. In macaque monkeys, the supplementary eye
fields (SEF, which are adjacent and dorsal to ACC) show activity consistent with a role in
performance monitoring and control. Some SEF cells are more active prior to antisaccades
(Schlag-Rey, Amador, Sanchez, & Schlag, 1997), which require greater control. However,
in a countermanding task, SEF cells do not modulate in time to play a causal role in driv-
ing eye movements (Stuphorn et al., 2000). Together, these results suggest that SEF cells
may play a role in monitoring and increasing cognitive control, even without directly driv-
ing movements. Consistent with this interpretation, microstimulation of SEF can generally
slow saccadic eye movement initiation without preventing movements (Stuphorn, Brown,
& Schall, 2001). Thus, SEF in monkeys may implement a kind of switch-induced slowing
as simulated by the model CHd above.

Overall, the tentative localization of the two cognitive control mechanisms in Fig. 7 to
the ACC or pre-SMA again raises the intriguing possibility of multiple functional subre-
gions of these areas, which has been a topic of recent discussion (Barch et al., 2001; Gar-
avan, Ross, Murphy, Roche, & Stein, 2002; Peterson et al., 1999; Ullsperger & von
Cramon, 2001). If this localization can be verified, the results as a whole would suggest
that the analysis of sequential effects on behavior may increase the sensitivity of clinical
evaluations of lesion patients, especially those with lesions involving neurobiological cor-
relates of the model cognitive control mechanisms.

13. Conclusion

The present work has explored the effect of sequences of trials in task switching studies and
demonstrated several effects. First, we have shown that recurring task-switch or response
alternations tend to have a general slowing effect on response time that persists across multi-
ple trials. Second, we demonstrated that both the response time and error cost of task-switch-
ing is significantly modulated by effects occurring in preceding trials, and that these often
interact in complex ways. On the basis of our results, we suggest two conflict-control loop
mechanisms that are distinct from the mechanisms that reconfigure task set. These putative
mechanisms are two-fold. First, change-detection mechanisms may bias performance toward
accuracy rather than speed and exploration rather than exploitation, with the general effect
of slowing responses when the task or response changes from one trial to the next. Second,
incongruency-detection mechanisms may increase the attentional focus on the currently
active task set, effectively biasing performance toward exploitation rather than exploration.
Furthermore, we believe that analysis of sequential effects and the proposed mechanisms of
cognitive control may generalize to variety of task paradigms. Within task switching studies,
there are many factors that we have not explored here in terms of their modulation by higher-
order sequential effects, including manipulations of response-cue interval (RCI), cue-stimu-
lus interval (CSI), and use of other tasks with asymmetrical switch costs, such as the Stroop
task (Stroop, 1935) and the antisaccade task (Cherkasova, Manoach, Intriligator, & Barton,
2002), among others. In many cases, existing data may provide useful new insights provided
that the trial order information is preserved.
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Appendix A

Below are the equations which govern activation dynamics, priming mechanisms, con-
flict detection and control effects in the model. The model was simulated in the RNS++
software program (Brown, 2003) which simulates rate-coded neural activity as a dynam-
ical system. In RNS++, the activity of an individual cell is updated according to a
finite-difference equation using a first-order Euler approximation. RNS++ updates the
neural activity at time intervals much smaller than the trial duration, which simulates
the real-time dynamics of the cell activity during a given trial. Thus, for all equations,
the units of activation cycles corresponding directly to real-time units of milliseconds,
which affords a direct quantitative comparison with empirically derived values. Tables 5
and 6 give a summary of model conventions, parameters, and the values used for these
parameters in the simulation results described in the text. The optimization approach used
to derive parameter values is described below.

Activation dynamics

Network cell dynamics are governed by a basic shunting equation formalism (Gross-
berg, 1982) which provides a rate-coded value of activation. Although RNS++ supports
other governing equation models of neural activity, including spiking neurons, only vari-
ants of Eq. (1) below were used to model neural activity in the present model:
Table 5
Conventions

Symbol Description

P Task set
C Cue input
T Target input
H Hidden/plan layer
R Response output
L Working memory for last response
B Output bias tonic excitation
A(INCd) INCd
A(INCc) INCc
A(CHd) CHd
A(CHc) CHc
Function Description

Squelch(x, v)= x if x > v
0 otherwise

�

Rect (x, v) = [x � v]+=
x� v if x > v
0 otherwise

�

Sat (x, v)=
v if x > v
x otherwise

�

Step(x, v)=
1 if x > v
0 otherwise

�
N(x, v)= Gaussian random variable with mean x and variance v



Table 6
Parameters

Parameter name Value Description

k1 0.289 INCc fi Task Set wt gain
k2 0.078 INCc fi Task Set inhib wt gain
k3 2.157 RtUnitSpec_0 gov time const
k4 2.940 Input fi Plan wt gain
k5 1.692 Task Set fi Plan wt gain
k6 0.446 Output gov time const
k7 1 Bias fi Output wt gain
k8 16.018 Plan fi Output wt gain
k9 0.486 Plan fi Output signal_func thresh
k10 0.096 Output gov hyperpol
k11 0 Output recur inhib wt gain
k12 0.134 Output noise var
k13 29.730 Plan fi Output lrate
k14 0.007 Plan fi Output pass_wt_decay rate
k15 19.500 INCd fi INCc wt gain
k16 8.299 CHd prev_aff wt_gain
k17 9.338 CHd afferent wt_gain
k18 1.714 CHc gov time_const
k19 38.040 CHd(task) fi CHc (brake) wt_gain
k20 50.547 CHd(resp) fi CHc (brake) wt_gain
k21 2.867 CHc fi bias inhib_spec wt gain
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xtþ1 ¼ xt þ
1

s
ð1� xtÞIe � ðxt þ HÞI i½ �dt: ð1Þ

where xt, is the rate-coded neural activity at time t; Ie, is net excitatory input to a cell,
including random noise; Ii is net inhibition of the cell; s is the time constant of the cell,
i.e., how much time is needed for the activity level to change in response to input; H is
the hyperpolarization potential of a neuron; dt is 0.001 s.

Individual layers of units were governed by activation equations that reflect their spe-
cific sources of input. The task-set representation is governed by:

P iðt þ 1Þ ¼ P iðtÞ þ 3dt 1� P ið Þ 0:1þ 5Ci þ 5
X
j2S

W ðHP Þ
j sat ðHj; 0:7Þ þ 0:5k1AðINCcÞ

i

 "

þ2
P 8

i

P 8
i þ 0:38

!
� ðP i þ 1Þ 1þ 1:5

X
j 6¼i

P j þ 0:5k2

X
k 6¼i

AðINCcÞ
k

 !#
ð2Þ

There are two Pi nodes, which represent the Letter and the Number task. Eq. (2) says that
each task set representation Pi is directly activated by a tonic bias excitation 0.1, Cue input
Ci from the corresponding task cue representation, and the two hidden nodes Hj represent-
ing the left and right responses for the given task set. The hidden layer inputs are multi-
plied by synaptic weights W(HP). Also, the INC controller ðAðINCcÞ

i Þ provides persistent,
slowly decaying excitation to amplify the activity of the corresponding task set and sup-
press other task sets. Finally, sustained activity in the task set layer is maintained by a sig-
moidal recurrent excitation. The Pi units inhibit each other to implement lateral inhibition,
and a tonic inhibitory signal also ensures activity decay in the absence of excitatory inputs.
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The hidden (or plan) layer (H) drives responses given a combination of contextual input
from the task set layer (P) specifying the current task to perform and target information
from the target input layer (T):

Hjðt þ 1Þ ¼ H jðtÞ þ k3 � dt � ½ð1� HjÞð0:5k4T i þ 0:5k5P mÞ � ðHj þ 0:5Þ� ð3Þ

where Pm is the task set representation that drives the hidden nodes implementing the giv-
en task set, and Ti is the target stimulus representation.

The response output layer (R) is driven by the hidden layer (H), the Target input layer
(T), and the output bias (B):

Riðt þ 1Þ ¼ RiðtÞ þ k6dt ð1� RiÞ 0:5k7Bþ 0:44
X

j

T j þ k8

X
j2D

W HR
ij ½H j � k9�þ

 !"

�ðRi þ k10Þ 1:1þ k11

X
m6¼i

Rm

 !
þ

ffiffiffiffiffi
dt
p

Nð0; k12Þ
#

ð4Þ

Eq. (4) indicates that the responses are driven in part by the mere presence of a stimulus, as
inputs Tj drive the response nodes directly without bias toward either a left or right re-
sponse. The tonic excitatory signal B is attenuated by the Change controller (CHc) so that
CHc activity effectively slows response times. Gaussian noise is added in order to fit error
rate data and to yield a distribution of response times. The actual response made is deter-
mined largely by signals Hj from the Hidden layer. The set D represents those hidden layer
cells that drive the particular responses represented by the node Ri. There are two hidden
layer nodes that drive the left response layer node (one pertaining to each task), and like-
wise two that drive the right response layer node.

Units in an additional layer (L) served as a buffer of previous response-related activity.
When the current response differed from the last response before it (e.g., previous left
response and current right response), then a brief period of coactivation between the cur-
rent and previous response representations (L) occurred in the same way that a task switch
led to transient coactivation of task set representations (P). The CHd uses these detections
of task switches and response alternations to non-specifically slow responses.

The response buffer representations (L) are given by:

Liðt þ 1Þ ¼ LiðtÞ þ 3dt
�
ð1� LiÞ 50squelchðRi; 0:5Þ þ 3

x8

x8 þ 0:38
þ 0:1

� �

�ðLi þ 1Þð1þ 1:5
X
i6¼j

LjÞ
�

ð5Þ

In Eq. (5), maintenance of previous responses is driven by the response Ri and sustained by
recurrent excitation. Lateral inhibition prevents multiple response representations from
being simultaneously active.

Priming

All synaptic weights were bounded between 0 and 1. Individual weights were initialized
to 0.5 and were scaled by a weight gain parameter in many of the equations below. Addi-
tionally, certain synaptic connections in the model were adaptive and hence changed
dynamically via an activity-dependent priming mechanism. The priming effects occurred
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via a modified Hebbian (Hebb, 1949) learning law, which can be expressed in finite differ-
ence form as:

wtþ1 ¼ wt þ dt½cxy � aðwt � 0:5Þ� ð6Þ

where wt is the synaptic efficacy or priming strength from presynaptic cell with activity x to
postsynaptic cell with activity y at time t; c is the rate of increase of the weight in response
to paired activity of pre- and post-synaptic cells; a is the rate of passive weight decay to-
ward the baseline, in this case 0.5, which represents the decay of priming effects; the hid-
den-to-task-set weights ðW ðHP Þ

ij Þ are given by:

W ðHPÞ
ij ðt þ 1Þ ¼ W ðHPÞ

ij ðtÞ þ dt ð1000ðsat ðH j; 0:7Þ � squelchðP i; 0:5ÞÞ � 0:5ðW ðHPÞ
ij � 0:5ÞÞ ð7Þ

and bounded such that 0 < W ðHPÞ
ij < 1. Eq. (7) says that these weights increase quickly

when the pre-synaptic hidden layer is active and the post-synaptic task-set cell activity ex-
ceeds 0.5. Decay towards the baseline weight of 0.5 occurs gradually in the absence of
paired pre- and post-synaptic activity.

The weights W HR
ij from the hidden layer to the response layer were also adaptive:

W HR
ij ðt þ 1Þ ¼ W HR

ij ðtÞ þ dt½k13squelchðRi; 0:4Þ½Hj � 0:5�þ � k13k14ðW HR
ij � 0:5Þ� ð8Þ

Eq. (8) follows the form of Eq. (6) and says that the path weight from a hidden layer node
to a response layer node increases when the response layer node is active above 0.4, and
when the hidden layer node is simultaneously active above 0.5. In the absence of such
coactivity, the weight decays passively to a baseline of 0.5. The passive decay rate is such
that 22% of the difference between the weight and its baseline decays away after 1 second,
so that approximately 78% of the difference remains. This decay is exponential. For exam-
ple, after 2 seconds, only approximately 61% of the original weight difference remains.
Thus, as a pathway is used, the path efficacy increases temporarily, which simulates a kind
of priming effect, seen in the RT interaction between current task switch and current re-
sponse alternation.

Conflict Detection

The INC conflict detector A(INCd) is governed by:

AðINCdÞ
ij ðtþ1Þ¼AðINCdÞ

ij ðtÞþ50dt 0:5 1�AðINCdÞ
ij

� � X
k2Cj

stepðH k;0:4Þþ stepðP i;0:4Þ
 !"

�ðAðINCdÞ
ij þ1Þ

i
ð9Þ

where variable i indexes the task set, and variable j indexes the set of possible combina-
tions of conflicting response plans. Each INCd conflict detector cell responds to a unique
combination of conflicting stimuli and a task-set representation. There are two possible
combinations of conflicting stimuli and two task set representations; hence, there are four
INCd conflict detector cells in all. In Eq. (9), the step() function provides an upper bound
on the individual contributions of any one input from the hidden layer as well as inputs
from the task-set layer, so that only the conjunction of inputs is sufficient to elicit a re-
sponse representing conflict.

The CH conflict detector ðAðCHdÞ
i Þ is defined by:

AðCHdÞ
i ðt þ 1Þ ¼ AðCHdÞ

i ðtÞ þ 50dt ðð1� AðCHdÞ
i ÞðAðCHdexcÞ

i Þ � ðAðCHdÞ
i þ 1ÞÞ; ð10Þ
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which is driven by transient coactivations due to transitions of task set or the response
buffer. For input from the response,

AðCHdexcÞ
i ¼ 0:1k16

X
j

stepðLj; 0:3Þ: ð11Þ

For input from the task set representation,

AðCHdexcÞ
i ¼ 0:1k17

X
j

stepðP j; 0:3Þ: ð12Þ

Control adjustment

Changes in INC conflict detection units drive a control output signal A(INCc) defined
by:

AðINCcÞ
i ðt þ 1Þ ¼ AðINCcÞ

i ðtÞ þ dt k15 1� AðINCcÞ
i

� �X
j

AðINCdÞ
ij � 0:05 AðINCcÞ

i þ 0:5
� � !

ð13Þ
Eq. (13) says that phasic INC detector layer activity AðINCdÞ

ij rapidly activates a slowly
decaying control signal AðINCcÞ

i . This signal in turn selectively excites activity in the task-
set layer cf. Eq. (2), such that the task-set unit currently active (which represents the cur-
rent task-set) becomes enhanced while the inactive task-set unit is more strongly
suppressed.

Likewise, activity in the CH conflict detector (A(CHd)) drives a parallel slowly decaying
control signal (A(CHc)) which ultimately slows responses:

AðCHcÞðt þ 1Þ ¼ AðCHcÞðtÞ þ k18dt ð1� AðCHcÞÞ
X

i

W ðCÞ
i AðCHdÞ

i � 0:03ðAðCHcÞ þ 0:5Þ
 !

ð14Þ

For signals A(CHc) driven indirectly by task set representations, W(C) = 0.5k19. For signals
A(CHc) driven ultimately by working memory representations of the last response,
W(C) = 0.5k20.

The CHc(A(CHc)) suppresses a signal (B) that provides tonic excitation to the response
layer (R):

Bðt þ 1Þ ¼ BðtÞ þ 1:76dt ðð1� BÞ � 0:5k21ðBþ 0:5ÞAðCHcÞÞ ð15Þ

Thus, activity in the CH control loop suppresses tonic excitation of the response layer (cf.
Eq. (4)), which generally slows responses.

A.1. Parameter optimization

Model parameters were adjusted in order to optimize the network’s ability to cap-
ture the empirical effects. The optimization procedure was performed using the RNS
simulator’s built-in subplex (Rowan, 1990) optimization algorithm, which essentially
performs gradient descent on a monte carlo objective function. This entails an inher-
ently noisy process, and therefore some error in the final parameter set therefore
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cannot be ruled out. Nonetheless, we attempted to minimize error in the parameters by
increasing the sample size, at the expense of increased computational requirements. In
addition, the subplex algorithm is particularly suited to optimization of noisy objective
functions (Bogacz & Cohen, 2002). A total of 21 parameters were adjusted to yield the
best fit (Table 6). Of note, these parameters are distinct from the learned connection
weights between nodes in the model. The model parameters govern the properties of
the model and are fixed for a given model simulation, while the learning laws allow
connection weights to adapt and change during the simulation as a function of simu-
lated neural activity in the model.

The optimization procedure involved minimizing a cost-function using a least squar-
es fit of model performance to the empirical data. The data fit were the 64 response
time data points obtained by crossing factors of task switch/no-switch, response alter-
nate/repeat, and stimulus congruent/incongruent, associated with both current and pre-
ceding trials. The fitting procedure also used the 8 error-rate data points obtained from
these conditions in just the current trial. Additionally, the model was constrained to
optimize the fit to 4 effect-size (d 0) measures specifying contrasts between task condi-
tions. Specifically, to reveal an interaction of previous congruency and current switch,
the RT effect size of switch vs. no-switch trials for previous incongruent trials (where
previous trials were no-switch and current trials were incongruent) was constrained to
1.0. Conversely, for previous congruent trials (where again previous trials were no-
switch and current trials were incongruent), the effect size was constrained to 0.2.
The effect size on RT of previous switch vs. previous no-switch trials was constrained
to 0.5, and the effect size on RT of previous response alternation vs. repetition was
likewise constrained to 0.5. These constraints on effect size guarded against the type
II error scenario that the subtle but significant sequential effects of the human data
would be lost in the model parameter fit (a noisy process) even though the structure
of the model in principle allowed them to be captured.
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at
doi:10.1016/j.cogpsych.2006.09.005.
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