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1. INTRODUCTION 

The study of attention is central to understanding how information is processed in 

cognitive systems. Modern cognitive research interprets attention as the capacity to select 

and enhance limited aspects of currently processed information, while suppressing the 

remaining aspects. Cognitive scientists interpret attention as a solution to a fundamental 

computational trade-off that limited agents face in complex environments: on one side the 

necessity to focus on as much information as possible, in order to be vigilant and 

opportunistic, on the other side the necessity to optimize performance by allocating, in a 

coherent and continuous manner, cognitive resources to the most salient and behaviorally 

relevant events and actions (Allport, 1989). As such, attention turns out not to be a 

unitary phenomenon, but instead is present at many stages of cognitive information 

processing, involves many different brain regions, and relates to almost all psychological 

processes.    

This chapter reviews the existing literature on computational models of attention, 

with the aim of fleshing out the progress that has been made in elucidating the core 

mechanisms of attentional modulation and attentional control. The chapter starts with a 

description of work that focuses on visual selective attention and the computational 

mechanisms that exist at the site of attentional influence within visual perceptual 

pathways. Subsequent sections focus on work at the intersection of attention and 

executive control, which emphasizes the mechanisms by which goal-driven attentional 

control signals are represented, shaped and propagated according to the various 

constraints and dynamics of task-processing. In the concluding section the focus is on the 

contrast or continuum between attentional control and automaticity, an issue which 
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becomes crystallized when examining the distinctions between, or transitions from, 

novice to expert cognitive task performance.  

It is important to begin with a caveat – this chapter is not intended to be 

comprehensive or exhaustive in the coverage of computational cognitive modeling work 

on attention. Instead, the goal is to provide a road map to the relevant literature, 

highlighting example models that best reflect the core mechanistic principles that are 

emerging from recent research, or which illustrate new directions in which the field is 

headed. Moreover, the coverage is admittedly biased towards connectionist or neural 

network models. The reason for this bias is not only due to the expertise of the authors, 

but also to an overarching interest in computational models that have the most potential 

for integrating the large emerging corpus of literature - arising not only out of cognitive 

behavioral research, but also cognitive neuroscience and animal neurophysiology studies. 

Traditionally, this approach has been most closely aligned with connectionist/neural 

network models, although recent trends suggest that this traditional dichotomy between 

connectionist and symbolic models is beginning to blur - e.g., ( e.g., Anderson et al., 

2004). 

Nevertheless, it is still our belief that models which make strong attempts to 

incorporate as many core principles of neural information processing and computation as 

possible are the ones most likely to explain empirical data regarding attentional 

phenomena across the widest-range of explanatory levels, from single-cell 

neurophysiology to observable behavior. Although this philosophical bias is reflected 

throughout the chapter, influential examples are also reviewed from work in symbolic, 

hybrid, or production system modeling, as well as more abstract mathematical models. 
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Readers interested in learning more about both neurally-oriented models of attention and 

symbolic ones are directed towards the many additional reviews of this literature arising 

from a variety of different theoretical perspectives and focus (i.e. Anderson et al., 2004; 

Itti & Koch, 2001; O'Reilly & Munakata, 2000). 

 

2. VISUAL ATTENTION  

 When we observe and interact with our environment, the focus of what we are 

attending to constantly changes. There are a variety of theoretical views regarding why 

attention selectively focuses on some aspects of the environment and away from others. 

Perhaps the oldest argument is that our processing capabilities are limited while the 

computational demands of processing visual input are huge. Under this account, the role 

of attention is to filter this spatiotemporal stream of information to a manageable size  

(Broadbent, 1958; Mozer, Sitton, & Pashler, 2006). A second theoretical argument 

regarding selection in visual attention is that not all of the information present in the 

visual environment is equally relevant at a given point in time. Under this account, the 

role of attention is to quickly detect, orient and select the aspects of the visual 

environment that are most informative or of greatest relevance at the time, so as to 

produce efficient and optimized perceptual processing and subsequent behavior (Chang et 

al., 2001; van der Heijden & Bem, 1997). Yet a third theoretical perspective is that the 

primary role of visual attention is to solve the binding problem: to produce a coherent 

interpretation of the visual environment based on integration of visual features into a 

unified whole. Under this account, selective attention enables visual perceptual 

processing to be concentrated on a restricted set of visual features in order to enable these 
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to be correctly bound together into higher-level object representations (Treisman & 

Gelade, 1980; Treisman, 1999). And lastly, a more recent theoretical view is the biased 

competition framework, which postulates that attention should be interpreted primarily as 

an emergent phenomenon of activation dynamics arising in a system in which inhibitory 

competition and constraint satisfaction is a ubiquitous component of the network 

(Desimone & Duncan, 1995; O'Reilly & Munakata, 2000). 

 Regardless of the particular theoretical perspective one adopts, there is clearly a 

consensus among theorists that: 1) attention is a core component of visual perceptual 

processing; 2) focus of attention is determined by an interaction of bottom-up processes 

that compute the “importance” of visual stimuli, and top-down processes that modulate 

visual processing according to goals and intentions; and 3) top-down processes can 

operate by directing attention either to locations in space or to specific objects or object 

features in the visual field.   

 A number of theories of visual attention have been implemented in computational 

models. The design and scope of the existing computational models of visual attention 

vary widely, and are determined by the problems they are meant to resolve. Some models 

were built to explicitly test specific aspects of existing theories of visual attention, or to 

account for empirical data that apply to specific experimental domains such as stimulus 

filtering, visual search and perceptual cueing (Cave, 1999; Deco & Zihl, 2001a; Heinke 

& Humphreys, 2003; Humphreys & Mueller, 1993; Mozer et al., 1998; Phaf, Van der 

Heijden, & Hudson 1990; Wolfe, 1994). Other models were particularly geared toward 

explaining the mechanisms underlying particular neuropsychological deficits such as 

attentional neglect (Cohen, Romero, Farah, & Servan-Schreiber, 1994; Deco & Rolls, 
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2002; Heinke & Humphreys, 2003). Still other models were designed primarily from a 

neurophysiological perspective, to account for basic aspects of early visual processing 

and identification of salient locations in visual field (Itti & Koch, 2000; Koch & Ullman, 

1985; Lee, Itti, Koch, & Braun, 1999; Parkhurst, Law, & Niebur, 2002), or to understand 

the core neurobiological mechanisms involved in attention (Braun, Koch, & Davis, 2001; 

Hamker, 2003). Finally, some models were built primarily from a machine learning 

rather than cognitive, neuropsychological or neurobiological perspective, such as 

advancing the development of computer vision systems (Tsotsos et al., 1995). Rather 

than detailing each one of these models, the following subsections focus on what might 

be considered a “consensual” model that contains core features common to many of the 

specific implementations.     

 

The base model 

 Computational models of visual attention share a very similar overall organization, 

which follows at least coarsely the structure and organization of the visual perceptual 

system. This commonality enables the description of a core consensual model 

architecture, consisting of a set of primary cognitive elements that are present in different 

forms throughout a variety of computational models. The base model provides a joint 

reference for reviewing and comparing specific computational solutions proposed by the 

individual models. It consists of topographically and hierarchically organized feature 

maps, a spatial map coding locations and two modules providing top-down bias by 

coding target location and content, respectively (Figure 1). 
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Figure 1. Base model depicting core elements of the visual system and their connections, 

within which attention is implemented.  

 

 Feature maps are postulated to code for specific properties of visual input. Such 

feature maps were first proposed in the influential feature integration theory of attention 

(Treisman & Gelade, 1980; Treisman, 1999), which assumed that basic visual features 

are represented in separate topographical maps, each of them linked to a master map of 

locations that allows later binding of individual features for further processing. Feature 

maps, at least in their initial computational implementation, were assumed to code low-

level basic features of visual input, such as color, orientation, and intensity (Koch & 

Ullman, 1985). Yet it has also been appreciated that such maps might as well be used to 

code progressively more complex features such as motion, shape and object identity, 

depending on the focus and complexity of the model. In cognitive neuroscience terms, 
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these maps represent different stages of visual analysis of the ventral or "what" stream, 

starting from primary visual cortex to inferotemporal cortex (IT). Although the initial 

feature maps coding low-level features are supposed to be independent, their combination 

to ever higher levels of representation can be seen as comprising a hierarchical system 

dedicated to object recognition (Mozer et al., 1998). The maps are topographically 

organized with the nodes in the initial maps having relatively small reception fields, and  

the nodes in the higher feature maps having large receptive fields, ultimately covering the 

whole visual field. 

 While feature maps deal with what is present in visual input, spatial maps code 

information about where visual input is present. Such coding occurs through 

topographical representation of locations in the visual field. In feed-forward models of 

attention, the spatial map also frequently serves as the map that explicitly codes spatial 

attention, earning the name saliency map (Koch & Ullman, 1985), activation map (Wolfe, 

1994) or simply attentional map (Mozer et al., 1998). The spatial map is supposed to be 

instantiated in the dorsal or "where" stream of visual processing, most frequently in 

posterior parietal cortex (PPC). Feature maps and the spatial map are densely 

interconnected. Most models assume each of the feature maps to be connected to the 

location map. In many models these connections are unidirectional, leading primarily 

from low-level feature maps to the spatial map (e.g. Koch & Ullman, 1985); however, 

other models include recurrent feedback connections from spatial map back to low-level 

feature maps (e.g. Deco, 2001). 

 The feature maps and spatial map represent the most frequent core of the model, 

where attentional influences emerge and are expressed. To also model the top-down 
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influence on attention, most models assume modulatory connections from structures 

coding goals and intentions. In the base model, the top-down modulatory effect is exerted 

by an element that is holding a representation of target location, and an element that is 

holding a representation of target content. The former projects to the spatial map and the 

latter to the feature maps. Both are assumed to be located in the anterior part of the brain 

(i.e., in PFC), closely connected to cognitive control processes and the production of 

goal-directed behavior. 

 

Explicit computation and representation of attention  

 Within the architecture of the base model various computational models of 

attention can be implemented differing significantly in the pattern of connectivity, the 

functional roles played by individual components, and the ensuing dynamics and 

behavior of the model. One conceptualization of attention assumes it is a distinct, 

explicitly computed and represented feature of the system enabling selection and filtering 

of visual input for further analysis. Attentional dynamics are assumed to evolve through 

two clearly defined steps. In the first step stimulus features are used to compute and 

identify most salient locations in the visual field, representing the focus of attention. In 

the second step, the representation of spatial attention is used to focus the flow of visual 

information in an object processing stream.  

 Computation of visual attention using saliency map was first explicitly proposed in 

the model of Koch and Ullman (1985) and led to a number of similar implementations in 

other models (Mozer et al., 1998; Wolfe, 1994) as well as more detailed refinements and 

additions to the original proposed mechanisms of feature extraction and saliency 
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computation (Itti & Baldi, 2005; Itti, Koch, & Niebur, 1998; Lee et al., 1999). As 

proposed by Koch and Ullman (1985; see Figure 2) the visual input is first decomposed 

by several feature detection mechanisms working in parallel at different spatial scales. 

Resulting individual feature maps represent the salience of locations in regards to the 

basic visual features being represented. The key element in determining the saliency of a 

location is not the intensity of the feature, but rather its local contrast judged in the 

context of the rest of the visual field. A red dot is more likely to attract attention than a 

uniform field of red. Furthermore, a particular red dot is more likely to attract attention 

when it is the only red dot in the visual field than when it is just one of many in a field of 

red dots. To take both properties of attention into account, the computation of saliency is 

proposed to be based both on short-range centre-surround differences, which identify 

presence of local contrast, as well as long-range spatial normalization, which estimates its 

importance in regard to the entire visual field. Resulting activity in feature maps are 

combined in 'conspicuity maps' for each feature type and summed into a single, ‘master’ 

saliency map coding overall saliency of stimuli within a given location in a topographical 

representation of the visual field.  In this manner, the model collapses the representation 

of saliency over specific visual features, making the map blind and indifferent to which 

feature caused specific locations to be salient. 

 Once saliency is computed, the model has to be able to select a single location on 

which to focus attention. This step in ensured through a separate winner-take-all (WTA) 

network. Receiving topographical input from the saliency map and sporting strong global 

inhibition, WTA network quickly settles on the winning neuron (or a population of them) 

receiving highest activation from the saliency map and representing the focus of 
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attention. 

 Given a static display, the described network would compute and lock on to the 

most salient location in the visual field. To be able to disengage from the winning 

location and explore other salient locations, the model has to incorporate an “inhibition of 

return” (IOR) mechanism that temporarily inhibits the activity in the winning location. 

This inhibition then enables the second most active location in the saliency map to drive 

the shift in activity in WTA network, representing a new focus of attention. Such IOR in 

covert shifts of attention has been experimentally well demonstrated (Kwak & Egeth, 

1992; Posner, Cohen, & Rafal, 1982). In the Itti and Koch (2000) implementation of the 

model it is realized through inhibitory feedback from the WTA network back to the 

saliency map. Other models have been developed that use similar types of active or 

passive (e.g. fatigue-like) inhibition mechanisms (Houghton & Tipper, 1996; O'Reilly & 

Munakata, 2000). Depending on the parameters of the model, IOR enables a network to 

sequentially select or search through a number of most salient locations in the visual field 

before returning to the initial one. 

 A number of implementations of the saliency based computational models have 

shown it to be successful in predicting human performance in psychophysical 

experiments and visual search tasks (Itti & Koch, 2000; van de Laar, Heskes, & Gielen, 

1997) as well as accounting for the pattern of human eye movements made during the 

viewing of images containing complex natural and artificial scenes (Parkhurst et al., 

2002). For an excellent review of saliency based computation of attention see Itti and 

Koch (2001). 
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Figure 2. A schematic representation of saliency map based computational model of 

visual attention initially proposed by Koch and Ullman (1985) and fully implemented by 

Itti, Koch and Neibur (1998). 

 

 Once attention is focused on a specific location, the mechanism of guiding further 

visual processing needs to be specified. The most straightforward solution uses saliency 

representation as a gating signal modulating the flow of information from lower level 

feature maps to higher levels of visual analysis. In a model proposed by Mozer, Sitton, 

and Pashler (1998) the information coming from low-level feature maps is multiplied by 

the activity in the topographically equivalent area of the saliency map limiting further 
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processing to salient locations while attenuating the rest. Significantly more complex 

solutions are based on dynamical routing approach proposed by Olshausen, Anderson and 

Van Essen (1993) and recently instantiated by Heinke and Humphreys (2003) in their 

Selective Attention for Identification Model (SAIM). The routing and SAIM models 

build on the idea that translation-invariant pattern recognition can be achieved by an 

attentional window that can be moved over the visual field, focusing on its relevant 

sections and feeding that partial image to a recognition network. The task is realized by a 

complex network of connections (termed the “contents network”) that map retinal input 

through a number of stages to a smaller “focus of attention” (FOA) layer. The appropriate 

mapping is ensured by a selection network (spatial map analogue), whose mutually 

inhibitory units activate only those contents network connections that project from 

currently relevant part of the input layer to the FOA layer. In this manner the network not 

only gates the visual input, but also translates it to a single layer for further analysis. Both 

models are successful in accounting for a number of empirical findings relating to both 

normal as well as pathological attentional phenomena. For a review see Heinke and 

Humphreys (2005). 

 While bottom-up influences are important in drawing our attention to objects in the 

environment, models of visual attention must also appropriately account for voluntary 

top-down control. The models considered so far allow for both spatially-based as well as 

feature-based top-down control of attention. Intentional guidance of spatial attention is 

presumed to occur via top-down inputs to the spatial map, which either bias or directly 

determine its pattern of activation. On the other hand, feature or object-based attention is 

assumed to be brought about by biasing the computation of saliency. Searching for red 
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horizontal bars in the visual scene would for instance entail selectively enhancing the 

contribution of feature maps coding red color and horizontal orientation to the master 

map of saliency, leading to the highest buildup of activity in location(s) where a 

conjunction of both features is present (Wolfe, 1994). As recently shown by 

Navalpakkam and Itti (2005), top-down control of attention using biased computation of 

saliency map is not limited to simple features. Using learned sets of low-level features 

related to different views of an object their model was successful in locating complex 

visual objects in natural scenes. 

 

Interactive emergence of attention 

 An alternative approach to conceptualizing attention has been to consider it an 

emergent property of the system evolving seamlessly through competitive interactions 

between modules. Dense bidirectional (i.e., recurrent) connections between processing 

modules enable the active representation in any module to be the source or the target of a 

biasing signal affecting the local competition between representations, hence the name 

“biased competition models”. This bi-directional connectivity enables a dynamic settling 

process to occur that stabilizes on a coherent representation expressed throughout the 

system. Attention is not computed explicitly through distinct steps but rather emerges 

continuously as a property of activation dynamics in the system (Desimone & Duncan, 

1995). The initial proposal for these types of models can be traced to Phaf, Van der 

Heijden and Hudson (1990) and Desimone and Duncan (1995) with more recent models 

being proposed by Ward (1994) and Deco (2001; Deco & Rolls, 2005a). 

 Representative biased competition models of visual attention have been developed, 
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described and explored by Deco and colleagues (Deco, 2001; Deco & Lee, 2004; Deco, 

Polatos, & Zihl, 2002; Deco & Rolls, 2002, 2003, 2004, 2005a; Deco & Zihl, 2004). The 

simplest instantiation of the model assumes existence of three processing modules, V1, 

PP and IT, respectively corresponding to low-level feature maps, spatial map and high-

level feature map in the base model (Figure 3). Each module consists of a number of 

units, each representing a pool of neurons with similar properties. The activity of each 

unit is described using mean field approximation where each unit i is characterized by its 

activation xi reflecting average firing rate of the pool and an activity level of the input 

current Ai. The input-output relationship is defined as: 

 

 xi = F Ai t( )( )= 1
Tr − τ log 1−1 τAi t( )( )    

 

in which Tr denotes cell's absolute refractory period (e.g. 1ms) and τ stands for membrane 

time constant. The dynamics of each excitatory unit within a module is described by: 

 

 τ δ
δt

Ai t( )= −Ai + aF Ai t( )( )− bF AI t( )( )+ Ii
B t( )+ Ii

T t( )+ I0 + v    

 

 The first term is a habituation decay term. The second term represents the recurrent 

self-excitation that maintains the activity of the cells and mediates their cooperative 

interaction within the unit (a = 0.95). The third term represents a local inhibitory input 

from the inhibitory unit providing the basis for local competition between excitatory units 

within the module (b = 0.8). IB
i denotes a specific bottom-up input from a lower cortical 
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module, while IT
i represents a specific top-down bias from higher cortical modules. I0 

denotes a spontaneous background input, and v is an additive Gaussian noise in the 

system.  

 The inhibitory unit integrates information from all the excitatory units within the 

module and feeds back unspecific inhibition to all excitatory units in the module. Its 

dynamics is defined by: 

 

 τ I
δ
δt

AI t( )= −AI − cF AI t( )( )+ d F Ai t( )( )
i=1

m

∑ .  

 

With τI = 7ms, c = 0.1 and d = 0.1, the first two terms describe decay and self-excitation, 

respectively, while the third term is a function of activities of all excitatory units within 

the module connected to the inhibitory unit. 

Input IS
i of any connected module that provides either bottom-up input or top down bias 

is described by: 

 

 Ii
S t( )= α wijF A j

S t( )( )
j=1

n

∑  ,  

 

where AS
j  denotes activity level of source module unit, wij  denotes the connection weight 

between source unit j and target unit i, and 1/α reflects an attenuation factor. Setting α = 1 

for bottom-up input and α = 0.6 for top-down bias prevents the latter from dominating V1 

units, and allows lower level representations to change the state of higher order modules. 

V1 module represents the input layer of the visual system and consists of a lattice of 33 x 
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33 hypercolumns topographically covering a 66 x 66 pixel scene. Each hypercolumn 

consists of 24 excitatory feature detector units (pools) representing eight spatial 

orientations in three spatial scales. The sensory input to the excitatory units is computed 

using 2D-Gabor functions, which act as local spatial bandpass filters detecting presence 

of sensory input in a given orientation at a given spatial scale in the relevant location of 

the presented input image (for additional detail see Deco, 2001; Lee, 1996). An additional 

inhibitory unit per scale is used to mediate global normalization within units at each 

scale.  

 PP module encodes spatial location in the visual field, representing the function of  

the posterior parietal cortex. It consists of a lattice of 66 x 66 units, each of them 

receiving input from a limited spatial neighborhood of V1 hypercolumns. To capture the 

Gaussian-like nature of the spread of activation, the mutual connection weights between 

the units at hypercolumn pq in V1 and unit ij in PP are given by equation: 

 

 wpqij = Ce
−

i− p( )2 + j−q( )2

2σ w
2

− B  .  

 

With C = 1.5, B = 0.5 and σw = 2, the resulting center-excitatory, surround-inhibitory 

weight profile connects bilaterally each PP unit to a spatial neighborhood of about 5 x 5 

V1 hypercolumns giving effective receptive field of about 17 pixels in diameter. Local 

competition between PP units is ensured by one inhibitory unit that receives input from 

all excitatory units and inhibits all units uniformly, enabling WTA competition within PP.  

 IT module encodes object class or categorical information corresponding to the 

function of inferotemporal cortex. IT consists of a finite set of units each receiving 
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connections from all units in V1 and returning attenuated symmetrical reciprocal 

feedback connections to V1. Similarly to PP, local competition is ensured by an 

additional inhibitory unit receiving excitatory input from and returning inhibitory 

feedback to all excitatory units in IT. Connection weights between V1 an IT are trained 

by supervised Hebbian learning. During learning a target image is presented as input to 

V1 while top-down bias is imposed on PP unit coding for location of the target and IT 

unit coding for its identity. The network is allowed to settle into a steady state after which 

all the relevant V1 - IT connection weights are updated using Hebbian learning rule: 

 

 wij = wij + ηF Ai
V1 t( )( )F A j

IT t( )( )   

  

where η denotes the learning coefficient and t is large enough to allow for convergence. 
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Figure 3. Schematic representation of biased competition model (Deco, 2001). Units 

within V1 hypercolumns coding 8 orientations at three spatial scales are connected to PP 

units bidirectionally with Gaussian spatial distribution of weights. Units in IT are 

bidirectionally connected to every unit in V1 with variable weights defined through 

supervised Hebbian learning rule. (Only sample connections with various weights are 

shown). 

 

 Having successfully learned to perform translation invariant object recognition the 

model can operate in three modes: preattentive mode, spatial attention mode and object 

attention mode (Deco, 2001; Deco & Lee, 2004). In the preattentive mode, no top-down 
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biasing signal is provided. The perceptually most salient object in the visual field will 

cause a stronger input from feature maps to the representation of its location in the spatial 

map. This enhanced activation of the relevant location in the spatial map is then fed back 

to the feature maps, biasing their activation, and thus the flow of information to the object 

recognition pathway. The recurrent, bidirectional flow of activity occurring in biased 

competition models results in a positive feedback loop that leads to iterative convergence 

on a single winning representation both in the spatial map as well as in the feature maps 

and the object identity module. This winning representation effectively marks both the 

position and the identity of the most salient object in the visual field.  

 In the spatial attention mode, object recognition at the attended location is 

implemented through preselecting a particular location in the representation of target 

location, presumably hosted in the dorsal PFC, which provides a top-down bias causing 

the activation of appropriate units in the spatial map. Feedback connections from the 

spatial map to the low-level feature maps enhance the activation of corresponding units, 

acting as a spatial attention beam. Excited by both the sensory input and the top-down 

signal from the spatial map, those units representing the features at the attended location 

will provide a stronger input to the related identity units in the higher level maps enabling 

them to win the local competition leading to identification of the object present at the 

attended location. In a model simulation implementing a top-down spatial bias to PP 

results in an early differentiation of activity between the cell assemblies coding the target 

and distractor locations, respectively. The differentiation spreads both to V1 and IT, 

causing the cell assemblies coding the target object to be significantly more active than 

the ones coding the distractor object, signaling object identification. 



 21

 The dynamics of the “object attention” mode mirrors that of the “spatial attention” 

mode. A biasing signal arising presumably from the ventral PFC leads to activation of the 

higher level map units coding the identity of the attended object. Feedback connections to 

the low-level feature maps enhance the activity of units coding visual features of the 

attended object, effectively "back-projecting" the response pattern associated with the 

object across all retinotopic locations in parallel. The units receiving input from an 

appropriate visual stimulus will resonate best with the feedback signals leading to their 

enhanced activation. Providing stronger input to the units in the spatial map that code the 

position of the attended object will enable them to win the local competition, effectively 

completing visual search. Monitoring the dynamics of the model simulation reveals that 

the local competition is first resolved in IT module, which then drives the competition in 

V1 and PP modules in favor of the units corresponding to the target object. The object is 

considered found when competition is eventually resolved in PP.   

 Simulations using biased competition model were found to be successful in 

accounting for a number of empirical results in visual search (Deco & Lee, 2004; Deco & 

Zihl, 2001b). For example, the model showed that added difficulty of constraints in 

conjunction search tasks causes the network to take longer to settle. Congruent with 

behavioral findings, the times for the network to settle were independent of the number of 

distractors in a feature set task, while the times in conjunction search tasks were 

progressively longer with increasing number of distractors. Furthermore, reaction time 

slopes related to different types of conjunction search obtained by model simulations 

were successful in predicting subsequent psychophysical investigations (Deco et al., 

2002). The model thus demonstrated that some, seemingly serial cognitive tasks may 
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actually be a result of neuronal dynamics in a fully parallel system, bypassing the need 

for a dedicated implementation of a serial process guiding attentional spotlight from one 

item to the other.  

 Introducing artificial lesions in the model, enables testing of possible accounts of 

attentional deficits caused by brain lesions. Selective damage to the right side of PP 

module reproduced some of the symptoms of the left spatial hemineglect typically caused 

by lesions to the right parietal cortex (Heinke, Deco, Zihl, & Humphreys, 2002). 

Replacing global inhibition with the local lateral inhibition enabled the model to also 

account for object-based neglect in which only the left side of the objects in the visual 

field is not seen (Deco & Rolls, 2002). Additionally, it also provided novel predictions 

about how patients with object-based neglect might perceive objects when they are joined 

with cross-links or brought towards each other (Deco & Rolls, 2002). 

 

Key issues in models of visual attention 

 The present overview of visual attention models offers only selected highlights of 

some of the important progress being made in recent years. Advances in understanding of 

the architectural structure of the visual system have enabled the design of computational 

models that closely mimic the known neurophysiology of vision and are able to 

qualitatively match a wide variety of neurophysiological findings. They also agree with 

behavioral results coming from the basic experimental paradigms and with the data from 

brain-damaged patients suffering from attentional impairments. Nevertheless, despite 

convergence in a number of areas, important dilemmas still remain, most of them 

illustrated by the differences between the two basic categories of attentional architecture 
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described above: feed-forward vs. biased competition (see Figure 4). 

 

 

 

Figure 4. Two possible routes of top-down object attention. A) In feed-forward models 

attention is guided by biasing input from the low-level feature maps to the spatial map 

that gates the flow of information to the higher levels of visual processing. B) In biased 

competition account the attention is guided by propagation of bias over rich recurrent 

connections from a high level object representation to the low level feature maps and 

through them to the spatial map, ultimately leading the network to settle in a state 

representing the target object and its location. 

 

 The core dilemma relates to the question of representation of attention: Should 

attention be represented explicitly in a single or perhaps multiple spatial maps that code 

saliency of visual areas, or should it be represented implicitly in the interactive dynamics 

of the network? The first alternative is embodied in the models of attention centered 

around a feed-forward saliency map mechanism, that can be traced back to the proposal 
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by Koch and Ullman (1985). In focusing on the problem of effective computation of 

saliency, these models have been effective in capturing the known neurobiology of low-

level visual processing, while at the same time simulating findings from the empirical 

visual search and natural scene viewing, and providing a successful architecture for 

various computer vision applications.  

 The second alternative builds on the conceptualization of attention as an emergent 

property of activation dynamics. It relies on rich recurrent connections between 

processing modules that bias local competition between representations. While successful 

in replicating visual search findings, the true strength of these models lies in their ability 

to model the qualitative pattern of impairments associated with neuropsychologically-

based attentional disorders, such as the spatial neglect syndrome (Deco & Rolls, 2002), 

and in providing a coherent and seamless neural architecture that relates perception to 

action (Ward, 1999).  

 Both types of models exhibit a range of specific strengths and weaknesses. Their 

future development will depend on their ability to relate to the known brain anatomy and 

physiology (Shipp, 2004). In this regard those models that incorporate detailed 

mathematical description of neuronal dynamics are already successful in replicating and 

predicting spiking activity of single neurons (Deco & Rolls, 2003; Deco & Rolls, 2005b) 

as well as local population dynamics as reflected in the hemodynamical response 

observed with fMRI (Deco, Rolls, & Horwitz, 2004). Beside the models presented here, 

there are also other contenders providing alternative approaches which should be 

considered. Among them Bundesen's Theory of Visual Attention (TVA) deserves a 

mention. It started as a formal mathematical theory describing behavioral results 
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(Bundesen, 1998), but was recently developed into a neural theory (NTVA; Bundesen, 

Habekost, & Kyllingsbaek, 2005), which successfully applies the same basic equations to 

provide both a quantitative account of human performance on a set of attentional 

experimental paradigms as well as an account of a range of attentional phenomena 

studied on a single cell electrophysiology level.  

 Furthermore, the models of visual attention will also need to successfully scale up 

towards the more complex visual tasks including higher level cognitive processing (Deco 

& Rolls, 2005a; Navalpakkam & Itti, 2005). Moreover, to provide a comprehensive 

description of visual attention and to eliminate any remnant of the "ghost in the 

machine", the models of attention in visual processing will have to be related to those 

explaining the ways in which top-down, goal-driven intentions are represented, 

manipulated and controlled. These models have been developed and explored within the 

research of cognitive control, which will be addressed in the following section.  

 

3. MODELS OF GOAL-DRIVEN ATTENTIONAL CONTROL  

For many theorists, the terms executive control, cognitive control, controlled 

attention, and executive attention are interchangeable (and they will be used somewhat 

interchangeably here as well), referring to the notion that sometimes attention appears to 

be directed in a top-down, volitional fashion according to abstract, internally represented 

goals, rather than by detection or extraction of specific perceptual features or objects. 

Similarly, in some cases attention appears to have its effect in biasing the selection of 

actions rather than inputs, or more globally, in modulating whole task-processing 

pathways rather than specific components of perception. 



 26

Cognitive control is often described in opposition to automaticity. Automaticity 

refers to the capacity of a cognitive system to streamline well-practiced behavior, so that 

task-relevant actions can be executed with minimal effort. As a complement to automatic 

behavior, cognitive control refers instead to the effortful biasing or inhibiting of sensory-

motor information in the service of novel and unpracticed goal-directed behaviors. Top-

down attention is what arises out of the neuronal activity shift guided by cognitive 

control, and it is typically assumed to be the product of biasing representations (such as 

intentions, rules, goals, and task demands) in the PFC that compete with perceptually-

based representations in posterior cortex. Cognitive control is the mechanism that guides 

the entire cognitive system and orchestrates thinking and acting, and top-down attention 

is interpreted as its main emergent consequence.  

Computational models seem best positioned to describe how top-down attentional 

control is engaged during the course of task processing, and to indicate the consequences 

of such engagement. Critically, the explanations that arrive out of computational models 

are explicitly mechanistic in character and they minimize the reliance on a hidden 

homunculus. Although formal theoretical investigations in the study of cognitive control 

have not advanced to same degree as those in visual selective attention, there have been a 

number of computational models developed in this domain. Many of these models adopt 

the biased competition framework discussed in the preceding section, as a core 

architectural assumption. Additionally, a primary focus of most models has been to 

address human experimental data, arising from basic cognitive performance, 

neuropsychological impairment, and neuroimaging findings, particularly regarding PFC 

function. This may be because many of the core phenomena of cognitive control relate to 
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tasks most easily examined in humans - although this has begun to change more recently 

(e.g., Miller & Cohen, 2001). In the next section it is first described a fundamental, but 

minimal model which illustrates core principles of cognitive control; then other key 

cognitive control models and the attentional issues they address are discussed. 

 

The base model 

A basic model which illustrates key hypothesized mechanisms of attentional 

control is one developed by Cohen, Dunbar, and McClelland (1990) to account for 

processing and behavioral performance during the classic Stroop test of selective 

attention. The Stroop test (Stroop, 1935) may represent the paradigmatic example of the 

relationship and contrast between automaticity and cognitive control. The basic paradigm 

(although there have been many different variants) involves processing of colored word 

stimuli, and selectively attending to either the word-name or ink-color. Attention is 

thought to be more critical for color-naming than word-reading, because the latter skill is 

so highly over-learned and practiced for most literate adults. The role of attention is 

especially critical for color-naming in incongruent trials in which there is a direct conflict 

between the ink-color and the color indicated by the word name (e.g., the word GREEN 

in red ink). In such a case, cognitive control over attention must enable preferential 

processing in a weaker task-pathway (color-naming) over a competing and stronger, but 

task-irrelevant one (word-reading).  

The Cohen et al. (1990) model put forth a highly influential framework for 

understanding the mechanisms of cognitive control and attention in the Stroop task. 

Critically, the model illustrates very simple principles of biased competition, in that 
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attention is just another source of input that serves to strengthen the activation of hidden 

layer units, which then leads to a shift in the outcome of competition within a response 

layer (see Figure 5). The original model is feed-forward, though later models have used a 

fully bidirectional architecture (Cohen & Huston, 1994; O’Reilly & Munakata, 2000) that 

includes more natural lateral inhibitory mechanisms. The model uses a standard 

connectionist activation framework in which the activation aj of each unit j at time t is a 

logistic function of the net input: 
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The net input from every unit i into unit j is first computed as: 
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where wij is the weight from each unit i to unit j. This raw net input is then transformed 

into a “cascade” form McClelland (1979) to simulate continuous time dynamics: 
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where τ is a constant.  

Attention demands arise in the model because of the asymmetry of weight strengths in 

the word reading vs. color naming task pathways. This asymmetry arises during a 

learning phase in which the network receives greater practice in word reading than color 
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naming. Because the training phase is accomplished with the backpropagation learning 

algorithm (Rumelhart & McClelland, 1986), weight strengths change in direct proportion 

to training experience. The key attentional mechanism arises from the task demand units, 

which represent top-down attentional effects arising out of the PFC. These units have a 

sensitizing effect on hidden layer activation, particularly for the color pathway, such that 

with task demand (attentional) input the color hidden units are maximally sensitive to 

stimulus input and can compete strongly with activation arising out of the word pathway. 

The magnitude of the attentional effects depend on the size of the weights from the task 

demand units to the hidden layer, and they are computed as a cascading net input defined 

as in the previous equation. 

Another core principle behind this model, which was also present in the original 

Norman and Shallice (1986) theory of cognitive control, is that the attentional system 

does not directly enable task-processing, but only modulates its efficacy. This can be 

illustrated in the model in that the two task pathways, representing word-reading and 

color-naming, can each work in isolation (i.e., for unidimensional stimuli) to produce 

task-appropriate processing and responses even in the absence of attentional signals. 

However, when both the word-reading and color-naming pathways are simultaneously 

engaged, competition between the two dimensions that occurs at the level of overlapping 

response representations, produces a demand for attentional intervention. This demand 

for attention is most acute when performing color naming under competition conditions, 

because of the weaker strength of the color pathway. Thus, in the absence of attentional 

modulation, the word reading pathway will dominate processing competition at the 

response layer.  
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In contrast, when there is an attentional influence from the task demand input on 

the color pathway, this pathway can successfully compete with the otherwise stronger 

word pathway, by providing a stronger input to the response layer from the color naming 

hidden layer. In the model, the mechanism of attentional modulation occurs via a non-

linearity of the activation function in task processing units, such that, under the influence 

of top down control, the activation function will be in its most sensitive region to be 

activated by bottom-up input, whereas without such an influence the sensitivity to input is 

greatly reduced. Such top-down biasing mechanisms cause the color pathway to be more 

sensitive to the presence of color stimuli. This effect leads to a shift in the outcome of 

competition such that the color dimension successfully drives the response.  

 It is important to note that in the Stroop model, attention serves as an emergent 

influence, in that the activity in the task demand unit has a top-down biasing effect on the 

information processing taking place in the rest of the network. But this top down biasing 

role does not have any special property – i.e., these higher level units are conceptually 

identical to the other units in the network. Therefore, attention is framed as a very general 

property, that can arise out of the influence that representations of any kind can have on 

processing of information taking place in any other area.  
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Figure 5 J. Cohen's model of the Stroop Test (Cohen et al., 1990) This model provides a 

minimal account of top-down attentional biasing effects emerging from PFC-based task-

set representations.  

 

A further postulate of the Cohen et al. model of attentional control, which was 

further elaborated in later papers (Cohen & Servan-Schreiber, 1992; Cohen & Huston, 

1994; Cohen, Braver, & O’Reilly, 1996), goal-driven attentional biasing effects are 

critically related to the functions of PFC. In this region, goal-related contextual 

information is thought to be actively represented, and feeds back into other regions of 

posterior neocortex, where it can exert a top-down bias on competitive interactions 

occurring among local populations (Miller & Cohen, 2001). As a consequence of this 

coordinative activity, the PFC can both implement a top down sustained attentional 
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function (to keep active and operate on representations elsewhere in the brain), and also 

an inhibitory one (to suppress task-irrelevant pathways), but with this latter function 

emerging as an indirect consequence of excitatory attentional bias on local competitions, 

rather than via a direct top-down inhibitory signal.  

 

Extensions and Alternatives to the Base Model 

This basic mechanism of PFC-mediated top-down attentional biasing that forms 

the core of the Stroop model has provided a relatively comprehensive and influential 

account of a range of empirical phenomena. Moreover, the same architectural framework 

has been utilized to simulate a range of other attentional phenomena in the Stroop task 

and in other attention and cognitive control paradigms (e.g., Barch et al., 1999; Braver & 

Cohen, 2001; Carter et al., 1998; Cohen, Romero, Farah, & Servan-Schreiber, 1994; 

Dehaene & Changeux, 1991; Servan-Schreiber, Bruno, Carter, & Cohen, 1998). A recent 

extension of the basic model was utilized to address fMRI data regarding the activation of 

PFC and posterior cortical regions during Stroop performance (Herd, Banich, & O'Reilly, 

2006). A key feature of this recent model was the addition of a separate task demand unit 

coding for general color related representations, both perceptual and linguistic. In other 

studies using the Stroop model as a theoretical framework, the primary motivation was to 

investigate the cognitive impairments in schizophrenia, a psychiatric condition believed 

to involve impairments of cognitive control due to alterations in the transmission of 

dopamine in the PFC. Individuals with schizophrenia, for example, are well known to 

show particularly large interference effects in the Stroop task, although recent data has 

suggested that the empirical phenomena are more complex than originally thought 
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(Barch, Carter, & Cohen, 2004). The Cohen et al. (1990) model suggests that weakened 

attentional representations in schizophrenia patients impair the ability to successfully bias 

competition in favor of color-naming over word-reading, even when required by task 

conditions (Cohen & Servan-Schreiber, 1992).  

Given the role of the Stroop task as the paradigmatic example of selective 

attention, it is perhaps not surprising that a variety of alternative computational models 

have been developed to explain attention in the Stroop. Yet in many ways these 

alternative models, which have been developed in both connectionist and symbolic 

architectures, can be seen as been formally very analogous in terms of attentional 

mechanisms to the Cohen et al. (1990) account. However, some of the models have had 

different emphasis, such as to try to explain Stroop phenomena within more generic and 

comprehensive architectural frameworks, such as modeling of visual attention more 

broadly (Phaf et al., 1990) and word reading (Roelofs, 2000), or to account for potential 

high-level strategic variability (Lovett, 2002).  

However, another recent model, put forth by Melara and Algom (2003), may 

provide an important conceptual alternative to the Cohen et al. (1990) Stroop model. In 

this so-called “tectonic” model, Stroop attentional effects are conceived of as being due 

to a continuous process of experience-dependent learning within two memory-based 

structures (the name tectonic for this theory, from the ancient Greek word tektonikon 

meaning to structure, is due to this central feature of the model). One structure is a short 

term memory of the dimensional uncertainty of the most recent trials, where values along 

the word dimension are more varied perceptually than values along the color dimension. 

The other structure is a long term memory of the dimensional unbalance, storing 
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asymmetry in the record of the observer’s past efficiency in accessing the target 

dimension relative to the distractor dimension. This structure reflects the relative 

difficulty with which the currently accessed representations can be activated in long-term 

memory. Each structure contributes to building up excitations of the task relevant 

dimension and inhibitions of the task irrelevant dimension. This complex model (see 

paper for equations and all technical details) has shown to account for an impressive set 

of empirical behavioral phenomena, that extend from the standard Stroop findings to 

other related effects such as Garner interference. Nevertheless, it may be the case that the 

differences in the models relate not to top-down attentional mechanisms per se, but to 

their interaction with a dynamically changing perceptual representation. Further work 

should be conducted to test the relationship between the Cohen et al. (1990) and tectonic 

model framework more systematically. 

Subsequent models have attempted to expand the scope of the basic Stroop 

account, by addressing the issue of the relationship of attention to the related construct of 

working memory. In particular, Cohen, Braver and colleagues developed a model which 

integrated top-down biasing with the well-established active maintenance functions of 

PFC, and also attempted to more thoroughly capture both the facilitation and inhibition 

effects of attention (Braver, Cohen, & Barch, 2002; Braver, Cohen, & Servan-Schreiber, 

1995; Cohen, Braver, & O'Reilly, 1996). In this model, the central role of PFC is still to 

adapt the behavior of the entire cognitive system to the task demands via active 

representation of goal-related context, but additionally, the later models incorporated 

explicit mechanisms by which PFC representations could be actively maintained over 

time. Thus, in these models top-down attentional effects could emerge following a delay 
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interposed after presentation of a contextual cue. A further feature of this work was 

explicit incorporation of dopamine-mediated neuromodulation of PFC representations 

(Braver et al., 1995; Braver, Barch & Cohen, 1999; Braver & Cohen, 2000; Cohen, 

Braver & Brown, 2002). This dopamine modulatory input served both to stabilize active 

maintenance processes (via tonic dopamine activation in PFC) and to enable appropriate 

updating of PFC representations (via phasic dopamine activation, synchronous with cues 

indicating a new task goal or context). Other recent work has explored how 

norepinephrine neuromodulation, in addition to dopamine, might also play a particular 

role in modulating attentional focus (Aston-Jones & Cohen, 2005; Usher & Cohen, 1999; 

Yu & Dayan, 2005). More recently, a number of other models have been developed by 

distinct groups of investigators to address similar issues, but with more biologically-

detailed and realistic computational architectures (e.g., spiking units, distinct synaptic 

currents) (Brunel & Wang, 2001; Durstewitz, Kelc, & Gunturkun, 1999; or see visual 

attention section on Deco et al. models). Nevertheless, these models have converged on 

similar prinicples regarding the role of biased competition mechanisms, active 

maintenance in PFC, and also dopaminergic neuromodulation in accounting for 

attentional effects in Stroop-like and other selective attention and working memory 

paradigms (for reviews of this work see Durstewitz et al., 2000; Cohen et al., 2002; 

O’Reilly, 2006). 

Another key issue first addressed by the Stroop model, but expanded in 

subsequent work, is the role of inhibitory mechanisms in attention. In the Stroop model 

and many other biased competition based models of top-down attentional control, 

inhibition effects emerge as an indirect consequence of local competition, rather than as 
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direct explicit inhibitory mechanism. Yet it is still controversial as to whether or not top-

down attentional mechanisms might include a special inhibitory function, at least in some 

cases, such as in response inhibition tasks (Aron & Poldrack, 2006). Nevertheless, there 

have been computational models developed that have postulated a specialized role for 

direct attentional inhibition mechanisms as an alternative to the standard biased 

competition account as a means of explaining distractor suppression and negative 

priming type effects (Houghton & Tipper, 1996). However, even in this model there is no 

“central” top-down inhibition mechanism – rather the inhibitory effects are achieved by 

local off- and on- positive and negative feedback circuits thought to be widely distributed 

throughout the brain.  

A final area of recent activity in elaborating on the computational mechanisms of 

goal-driven attention concerns mechanisms by which attentional biases arise or are 

modulated during the course of task performance. In particular, one influential account 

has suggested that top-down attentional biases are modulated in response to mechanisms 

that monitor dimensions of on-going performance. Specifically, it has been postulated 

that the anterior cingulate cortex (ACC) detects response conflict present during task 

performance, and translates this conflict index into an output signal that modulates 

attentional biases within lateral PFC (Botvinick, Braver, Barch, Carter, & Cohen, 2001). 

The basic hypothesis is that when high conflict occurs between different motor or 

behavioral responses, cognitive control mechanisms intervene to bias the relevant 

response versus the others, thus overcoming the conflict. These interactions have been 

characterized in terms of a single conflict-control loop mechanism, where the 

performance of certain task conditions leads to detection of response conflict, which in 
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turn leads to the engagement or increase of cognitive control, and in improved conflict 

resolution in subsequent performance. However, a new model proposes that ACC-PFC 

interactions are interactions are described by two, rather than one, distinct conflict-

control loops (De Pisapia & Braver, 2006). The first loop implements a reactive control 

mechanism, in which conflict detected in ACC over a short-time scale transiently 

modulates PFC activity in order to adjust within-trial attentional biases. The second loop 

implements a proactive control mechanisms, in which long-time scale conflict is also 

detected in ACC and more slowly adjusts attentional biases in PFC across trials. The 

model was used to successfully account for detailed aspects of behavioral and brain 

activation patterns in the Stroop task.  

 

Multi-tasking 

The previous sections described computational models of attention that operate at 

different levels of information processing, from fine-grained influence on visual 

perception, to representations of goal-information actively maintained in working 

memory. An intriguing question that has been recently been garnering a great deal of 

theoretical interest is whether there are even higher forms of attention, such as those that 

can aid in the selection of one out of many possible tasks to perform. In particular, the 

question is whether the attentional biasing effects discussed above can operate not just at 

the level of perceptual features (e.g., red vs. green colors) or dimensions (color vs. word), 

but that can also influence the activation of whole task-pathways over competing 

pathways. This issue becomes more clear when considering multi-tasking situations, 

which seem to approximate well the real-world demands of everyday cognition. In the so-
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called multi-tasking situations more than one task needs to be performed at a time, either 

through simultaneous (i.e., nested or interleaved) engagement, or through rapid sequential 

alternation. Such situations seem to pose heavy attentional demands, and therefore they 

provide an excellent test bed for cognitive theories on attention at the task or dimensional 

level, rather than at the featural level of the stimuli.  

One particular focus has been on task switching, an experimental paradigm 

requiring rapid switching among two or more tasks, in either an uncued-but-predictable 

or cued-but-random sequence. One consistent finding of such task-switching experiments 

is that there are reliable and robust switch costs, such that on a trial where the task just 

switched , as compared to when the task repeated, performance is poorer, in terms of both 

longer reaction times and a higher percentage of errors. The original explanation for this 

finding is that a special time-consuming internal reconfiguration process is required to 

switch between tasks, which enables the engagement or “loading in” of the appropriate 

task representations that can bias attention appropriately during task performance. 

However, an important question is whether this task-set reconfiguration process actually 

requires a dedicated mechanism that enables the appropriate form of attentional shift. 

There have now been a few theoretical models developed which provide an account of 

the types of attentional control and reconfiguration mechanisms involved in task-

switching.  

One influential theoretical account of task-switching that has been instantiated as 

a computational model is that of Gilbert & Shallice (2002) (see Figure 6), which adopted 

the basic interactive architecture used in later models of the Stroop task (Cohen & 

Huston, 1994; O’Reilly & Munakata, 2000). The network consists of two separate input 
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and output layers for words and colors, and a task demand layer. In addition to top-down 

attentional effects, the task-demand units receive bottom-up connections from the input 

layers and the response layer. These bottom-up inputs allow for associative learning 

effects and item-specific priming based on past experiences. The task demand layer has 

one unit for the color-naming task and one unit for the word-reading task. Thus, the 

model has the potential to implement task switching paradigms, by shifting which task-

set unit is active. Lateral inhibition between task-pathways provides a means for top-

down excitatory input to bias the outcome of representational competition. Task-demand 

units receive an input from a top-down control input, which specifies which of the two 

tasks the network has to execute for a particular trial.  

All units in the model compute activations in response to the weighted sum of all 

incoming inputs, both top-down and bottom-up. Thus, as in the Cohen et al. (1990) 

Stroop model, there is no distinction between task-demand (attentional) input and 

bottom-up perceptual signals. The activations themselves are computed as in the standard 

interactive activation equations (McClelland & Rumelhart, 1981), where the increase in 

activation for each cycle is given by: 

 

- if the net input is positive: ∆act = step * net * (max - act)  

- if the net input is negative: ∆act = step * net * (act - min)  

 

where step is the step size (establishing the speed of the activation update in each cycle), 

net is the net input, max is the maximum activation value allowed, and min is the 



 40

minimum activation value. A random Gaussian noise is also added to the activation 

values of each unit.  

The core feature of this model is that the task-demand units retain a residual level 

of activation even after that task is completed. This type of mechanism implements a 

version of the task-carryover account (Allport, Styles, & Hsieh, 1994), which postulates 

that switch-costs are due to interference between this residual task-set activation and the 

engagement of a new task-set representation corresponding to the currently relevant task. 

Importantly, however, the model suggests that there is no specialized reconfiguration 

mechanism that is only engaged on switch trials. Activation of the relevant task-set 

representation occurs in the same way on every trial, it is just that on switch trials there is 

increased competition between this new representation and the residual activation from 

the previously engaged task representation. Such competition does not occur on task-

repeat trials when the same task-set representation as the previous trial is activated again.  

A second important attentional mechanism implemented in the Gilbert and 

Shallice (2002) model is the bottom-up activation of task-set representations from 

features of task stimuli. The model implements a Hebbian (i.e., activity-dependent) 

learning mechanism. The weights between the stimulus input j and task demand units i 

are set with the learning rate lrate according following equation: 

 

wij = lrate * aj * ai  

 

This equation does not establish an update of the weights based on previous 

values, but instead the weights are calculated as new at the end of each trial, and the 
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weights derived only affect the model’s performance in the next trial. This mechanisms 

allows the learning of associations between an active task-set representation and the 

particular stimulus features present on a task trial. This learning effect means that if such 

features are presented again on the subsequent trial, they will have the ability to “prime” 

the previously associated task-set representation due to strengthened associative weights.  

 

 

Figure 6 Gilbert and Shallice (2002) model of task-switching. This model is built upon, 

and extends earlier connectionist models of the Stroop task (Cohen et al., 1990; Cohen & 

Huston, 1994).  

 

Gilbert and Shallice (2002) applied their model to a task-switching version of the 

Stroop task (in which word-reading and color-naming randomly alternate across trials). 

The model was able to account for a wide range of experimental phenomena, including 
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not only switch cost effects and their temporal dynamics, but also phenomena related to 

item-specific priming effects as well. Importantly, the model’s ability to account for task-

related attention does not rely upon any type of specialized representations or 

mechanisms, but instead generalized mechanisms of biased competition, which play out 

not only in task-specific processing layers, but also within the task-demand layer. 

Moreover, because the model is fully bi-directional and interactive, attention effects are 

fully emergent, and can arise not only because of task-demand inputs, but also via effects 

emanating from the input level. However, one limitation of the Gilbert and Shallice 

(2002) model is that it does not address the question of whether task-demand 

representations themselves involve specialized content or coding schemes, nor how such 

“global” representations develop. This issue is taken up again in the concluding section of 

the chapter.  

The Gilbert and Shallice (2002) model provides a useful starting point for 

understanding some of the core issues regarding computational mechanisms of task-

switching. In the last few years other researchers have begun developing models that 

address some additional key issues in this literature. One issue regards the mechanisms of 

task-set updating and advance task preparation and biasing. Some models have suggested 

that updating and advance preparation may occur in an all-or-none manner, but 

probabilistically across trials (Reynolds, Braver, Brown, & Stigchel, 2006), or across the 

preparation interval (Sohn & Anderson, 2001). Interestingly, the Reynolds et al. (2006) 

model also makes contact with earlier models by postulating that dopamine 

neuromodulation is the source of the task-set updating and maintenance signal. In a 

second set of mathematical models, Logan and colleagues have argued that it is not 
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necessary to postulate mechanisms of advance preparation, and that task-switching can 

occur purely retroactively as a retrieval process driven by the target presentation 

(Schneider & Logan, 2005). A different issue that has been addressed is the role of 

higher-order sequential processes in task-switching (Brown, Reynolds, & Braver, 2006). 

In this work, conflict-control loops similar to those postulated in the previously described 

models of ACC-PFC interactions (i.e., Botvinick et al., 2001), adjust both attentional 

biases and response speed across trials in response to the experience of interference due 

to either task-switches or the processing of task-irrelevant features.  

 

Dual-task coordination 

A second important component of multi-tasking arises in dual-task conditions, 

where two tasks must be performed in an overlapping period of time, such that some 

coordination or time-sharing of processing resources is needed. Within this latter domain 

there has been a great deal of interest in the so-called psychological refractory period 

(PRP) paradigm. In this dual-task paradigm, the relative timing of the two-tasks is strictly 

controlled, by manipulating the onset time of the target stimulus for the second task 

(termed T2) relative to the timing of the first task stimulus (termed T1). The basic finding 

is that that when the T2 onset time is short (relative to T1 reaction times), this causes an 

additional slowing of T2 reaction time (but not T1) – which is termed the PRP effect. The 

primary theoretical interpretation of this effect is that there are certain stages of task 

processing which are particularly sensitive to dual-task overlap or interference, and that 

some form of coordination mechanism is invoked to “serialize” processing as a means of 

minimizing this interference (Pashler, 1994).  
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Logan and Gordon (2001) developed a formal mathematical model which 

accounts for dual task situations, and used the model to extensively investigate the PRP 

effect. They found that only a model with a dedicated attention switching mechanism was 

capable of fitting the behavioral data, thus suggesting that some form of reconfiguration 

of attention control takes place in overlapping task situations. Specifically, according to 

the model, a task-set refers to a particular set of control parameters that govern strategic 

aspects of how task stimuli are processed. When processing must rapidly shift from one 

task to another, new control parameters have to be loaded, which may take a fixed 

amount of time. Ironically, as discussed above, this attention-switching mechanism was 

not found to be necessary to account for switch cost effects in explicit task-switching 

paradigms (Logan, 2005). This is because the model does not assume any form of 

persistent storage of old control parameters after a task trial has been completed. In other 

words, according to the model, task-set switching processes will only affect performance 

latency when two tasks are overlapping in time. 

Kieras and colleagues (Meyer & Kieras, 1997) have also modelled PRP effects in 

multitasking situations using the EPIC (Executive-Process Interactive Control), symbolic 

computational architecture. Their account of PRP phenomena assumes that dual-task 

coordination is purely under strategic control, and that any form of serializing, time-

sharing or switching processes are not mandatory for performance. Instead, scheduling 

and task deferment is introduced in PRP situations in order to avoid potential interference 

or ordering confusions between tasks (e.g., responding to T2 before T1). Task deferment 

is accomplished by activation of a time-consuming control mechanism which implements 

lock and unlock commands on T2 processing. Thus, the engagement of this control 
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mechanism is the source of PRP effects. Nevertheless, a key aspect of the model is that 

the point at which further T2 processing is “locked-out” (and then “unlocked” again) can 

depend upon complex relationships between the two tasks and other experimental 

demands. Such flexible deferment implies an attentional control system that is strategic 

and subject to adjustments based on task experience. Typically, in simulations with the 

model, the primary determinant of changes in task-scheduling and deferment strategies is 

the presence of response level conflict or cross-talk. Thus, although as yet unexplored, 

the EPIC model may provide an account of the PRP effect that relies upon dynamic 

conflict-control loop mechanisms similar to that postulated in the conflict monitoring 

account.  

Other symbolic architectures, such as ACT-R, have also addressed the issue of 

dual-task coordination and PRP effects (Byrne & Anderson, 2001). In the ACT-R 

framework, the different modules - containing production rules - are intrinsically serial. 

Thus, in overlapping dual-task situations ACT-R naturally implements a task processing 

bottleneck that can induce PRP-type slowing. The inherent seriality of ACT-R sets it 

apart from both EPIC and other cognitive architectures in the treatment of dual-task 

attentional control.  

A final issue that is just beginning to be explored is the more generic role of task-

scheduling processes during multi-task environments. The critical problem is that many 

multi-task situations require a continuous and repeated inter-leaving of processing across 

different tasks, due to the tasks’ complexity and duration. Thus, in addition to the 

problem of time-sharing, multi-task coordination in these situations also requires 

mechanism that can handle more complex scheduling processes, such as interruption and 
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time-dependent resumption. Such complexity might seem to require a more general-

purpose high-level controller that can carry out the appropriate scheduling and 

coordination functions when needed, across a wide variety of multi-task situations. A 

recent model using the ACT-R architecture has been used to examine the functionality of 

a general purpose executive controller (Salvucci, 2005). The model proposes that generic 

multi-tasking abilities are accomplished through a goal queuing mechanism that sets 

time-based priorities on the execution of different goals, and so allows effective 

scheduling within the constraints of a serialized goal execution process. The model was 

effectively applied to the task of driving in a virtual environment, with required control 

and monitoring of all its subtask components. It seems clear that this form of generic goal 

queuing mechanism may represent the highest-form of attentional control, by specifying 

not only how attention gets allocated to a particular task, but also when and with what 

priority does the attentional allocation process occur.  

 

Automaticity: actions without attention? 

The general concept that behaviors executed repeatedly become less demanding 

and effortful – a view which is clearly in line with subjective experience - has been 

studied at least since the dawn of modern psychology (James, 1890). More recently, this 

idea of automaticity has been considered to describe a specific mode of functioning in the 

mind/brain after extensive training in the execution of tasks. This automatic mode of 

processing enables performance to be qualitatively more efficient, robust, and rapid 

(Posner & Snyder, 1975; Schnider & Shiffrin, 1977). The key aspects that define 

automatic task processing are: 1) a decrease in effort; 2) an increase in speed along with 
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practice; 3) no dependency on voluntary control; 4) no interference with concurrent 

processes. A hybrid symbolic-connectionist computational architecture (CAP2) that 

accounts for these aspects can be found in (Schneider & Chein, 2003). It consists of a 

network of task processing modules - each of which is a connectionist network linked 

with a central control system sending priority signals. The key process in this framework 

that enables a transition from controlled to automatic processing is a reduction in the 

requirement for such control signal intervention to ensure appropriate processing and 

selection in the distributed network of task processing modules. Specifically, in the 

controlled processing state, control signal input is required for selection and amplification 

of the output of task-relevant processing modules, such that these outputs can be 

broadcast to other modules (e.g., those involved in response generation). In the automatic 

state, learning has occurred that enables certain outputs of a module to be coded as high 

priority, which then enables transmission to other modules even in the absence of control 

system inputs. Thus, the transition from controlled to automatic processing in this model 

can be seen as a shift in whether attentional selection is governed by top-down or bottom-

up biasing mechanisms.  

One question that has been debated is whether automaticity reduces or even stops 

the demands of attention. The view taken in connectionist modeling is that automaticity 

does not completely shut off the requirement of attention, but simply reduces it. In other 

words, the role of controlled attention in task execution is not of the all-or-none variety. 

Graded and continuous attributes of automaticity, as well as of attention, should instead 

be considered. In the Stroop models of Cohen et al. described earlier, color naming is 

considered in need of attention. However, word reading, even though considered to be 
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automatic, also still requires a top-down modulatory input from the task-demand units in 

order to generate a response within an appropriate timeframe. Therefore, word reading 

requires attentional control, though to a much lesser extent than color naming due to the 

stronger weights on the word reading pathway.  

A rather detailed analysis and model of the processes associated with automaticity 

can be found in the ACT-R framework, e.g., in (Anderson, 1992). The basic view is that 

automaticity is due to the progressive compilation and associative linking of task related 

production rules, due to extensive training. The ACT-R framework has provided the most 

successful and comprehensive account to date regarding phenomena associated with 

automatization of processing, such as the power law rule of learning.  

Another formal theory of automaticity can be found in Logan (2005). The key 

principle of this theory is that novel actions must be executed sequentially, according to a 

step-by-step algorithm. However, after the completion of each such action, a memory 

trace of its execution is formed. In the future, when that action is required again, it can be 

executed step by step as before, or by accessing its memory, depending on which is 

faster. Each performance of an action and accumulation of experience leads to the storage 

of further (discrete) instances of the action in memory, which in turn leads to a higher 

likelihood that one of these instances will be retrieved from memory and faster than the 

algorithm, thus producing automaticity.  

 

Unresolved Issues and Future Directions 

Several key issues remain unresolved in research on attentional control, and many 

research challenges still await a solution. A fundamental issue regards the well-known 
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capacity limited nature of attention and cognitive control. Cognitive control is effortful, 

and the capacity to maintain task relevant representations active even for intervals of 

seconds is a very limited ability, as several studies on these constraints have shown 

(Ansorge, 2004; Cowan, 2001; Engle, Kane, & Tuholski, 1999; Schneider & Shiffrin, 

1977). But a clear theoretical justification for capacity constraints is still lacking, except 

that for speculations that they are due to limitations of metabolic resources (Just et al., 

2001), or that they are an emergent computational property arising from the necessity to 

constrain a massively parallel computer (the brain) into actions that have to be performed 

serially and unequivocally (Allport, 1989). A further speculation may have to do with 

competitive interactions between actively maintained goal representations in PFC, such 

that only a limited number can be sustained simultaneously without mutual interference 

or decay (O'Reilly, Braver, & Cohen, 1999; Usher & Cohen, 1999).  

Another issue relates to how exactly attentional control is engaged and 

implemented, and its relationship with conflict. The conflict monitoring hypothesis of 

ACC-PFC interactions starts to tackle this issue, but convincing explanations and 

experimental verification of how conflict modulates control is still an open question. Is 

the information conveyed by the conflict signal precise enough to even address specific 

attentional control strategies that may be implemented in PFC? Other more general issues 

relate to the nature and functioning of the attention-related representations thought to be 

housed in PFC. These are usually referred to as rules, task demands, intentions, or goals, 

but explanations of how the anterior part of the neocortex implements and develops these 

representations is only just beginning. Such theoretical developments are critical for 
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understanding the potentially specialized role of PFC representations in attention, and for 

understanding their power in enabling flexible behavior.  

One attempt to examine and understand the nature and development of PFC goal 

representations, involved simulations training a single model to perform several different 

cognitive control tasks through an interleaved learning protocol (Rougier, 2005). As a 

result of this training the model self-organized to develop abstract rule-like 

representations that preferentially coded dimensional properties of task stimuli. These 

representations were found to be sufficient to enable the model to successfully perform 

new attentional tasks, such as the Stroop without additional specialized training. Most 

importantly, the developed representations also enabled a high degree of within-task 

generalization, such that appropriate performance could be exhibited by the model for 

stimuli that it had never previously encountered during training. However, this model 

constitutes only a first attempt to understand the nature of PFC representations and their 

functionality. More complex forms of complex symbolic reasoning still remain to be 

addressed – for example, the dynamical recombination of different representations, and 

how these interact with other cognitive systems. Nonetheless it is an important 

manifestation of how computational modeling can provide an understanding of even hard 

dilemmas - such as flexible attentional control - without recourse to the homunculus.  

Even setting aside questions of how goal-related representations develop, there 

are other important questions of the activation dynamics of such representations. For one, 

how it is possible to maintain a goal or intention for days and years, and not just seconds, 

as usually modelled? These representations cannot be explained just by active 

representations in PFC, but necessarily by some other flexible mechanism acting in a 
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much larger time scale. One such mechanism may involve the storage and retrieval of 

goal information in episodic memory. However, the specifics of whether, how and when 

such storage occurs are as yet unknown. A related issue concerns the scheduling of 

attentional control for goals and subgoals in the execution of complex tasks. The precise 

neural mechanisms involved in the coordination, transformation, and integration of stored 

and hierarchically organized information in complex task situations are still poorly 

understood. Recent empirical studies have begun to focus investigation on the most 

anterior part of the PFC as critical for a variety of goal scheduling functions, such as 

branching (Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999), deferral (Burgess, 2003) 

and integration / coordination (Braver & Bongiolatti, 2002; De Pisapia & Braver, in 

press) during multi-task conditions. But as yet there have been no computational models 

developed which can integrate and synthesize the accumulating data into an account of 

how anterior PFC mechanisms might specifically contribute to high-level multi-tasking 

functions.  

A final important issue relates to how attention relates to other critical constructs 

such as emotion, motivation, and consciousness. With regard to the former, it is clear that 

any comprehensive theory of attention will need to address how attentional mechanisms 

are modulated by internal estimates of value. Yet at this point models of attention have 

been developed independently of affective/motivational considerations and vice versa. 

Nevertheless, the inclusion of neural mechanisms in attentional models that are also 

thought to have affective and motivational functions, such as the ACC and dopamine 

neurotransmitter system, may point to the route for these constructs to be eventually 

integrated within a unified framework.  



 52

With regard to consciousness, it seems critical to understand why voluntary 

attentional control and the effort it requires seem very prominent in subjective 

experience, whereas other forms of attentional modulation seem to go on in the absence 

of awareness. A recent review (Maia & Cleeremans, 2005) suggests the intriguing 

possibility that computational modeling of cognitive control and the biased competition 

framework could provide the theoretical path for an integration of attentional control with 

consciousness and working memory based on the idea of global competition between 

representations with the top-down biasing from PFC. These and other questions on 

attentional control and related cognitive constructs, as interesting as they are – still 

remain without convincing answers. 

 

CONCLUSION 

This chapter has reviewed key computational models and theoretical directions 

pursued by researchers trying to understand the multi-faceted phenomenon of attention. A 

broad division is drawn between theories and models addressing the mechanisms by 

which attention modulates specific aspects of perception (primarily visual), and those that 

have focused on goal-driven and task-oriented components of attention. Although the 

scope of the field is broad, the various accounts that have been put forth all seem to 

converge on the idea that attention can be understood as the mechanisms of focused 

selection and enhancement of currently processed information, and the suppression of 

perceived background aspects. Inquiring more specifically into how these mechanisms 

actually work has produced many more questions than answers, and this proliferation of 

unresolved issues likely will not end soon. On the other hand, over the last twenty years 
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there has been tremendous progress in the number and success of attempts to embody 

theoretical hypothesis into explicit computational and mathematical models. A 

particularly noteworthy point of convergence has been the widespread adoption of the 

biased competition framework as the core computational backbone of many attention 

models. More islands of growing convergence will probably emerge in the coming years. 

Implemented models are the main instrument that researchers have available to 

substantiate or falsify their theories. The use of formal models that serve as explicit 

information processing devices, and which do not assume an internal observer or hidden 

homunculus, will be critical in the effort to eventually fit, predict and decompose human 

data from complex cognitive activities down to the most elemental components. 
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