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Learned Predictions of Error
Likelihood in the Anterior

Cingulate Cortex
Joshua W. Brown* and Todd S. Braver

The anterior cingulate cortex (ACC) and the related medial wall play a crit-
ical role in recruiting cognitive control. Although ACC exhibits selective
error and conflict responses, it has been unclear how these develop and
become context-specific. With use of a modified stop-signal task, we show
from integrated computational neural modeling and neuroimaging studies
that ACC learns to predict error likelihood in a given context, even for trials
in which there is no error or response conflict. These results support a more
general error-likelihood theory of ACC function based on reinforcement
learning, of which conflict and error detection are special cases.

Despite remarkable recent advances in cogni-
tive neuroscience, it remains unclear how the
brain learns to exert cognitive control over be-
havior. ACC and neighboring areas in the fron-
tal medial wall play a role in monitoring and
controlling goal-directed behavior (1–3). Error-
related negativity (ERN/Ne) (4–6) and single-
unit studies propose that ACC detects errors
as discrepancies between actual and intended
events (7). Alternatively, ACC may detect con-
flict between mutually incompatible response
processes (8–10) such as incorrect versus cor-
rect responses. However, it has not been clear
how the ACC learns what constitutes an er-
ror or that a given set of responses conflict.
We develop here a computational model that
demonstrates how ACC might not detect con-
flict or errors per se but rather more generally
represent a prediction of error likelihood (11).
In particular, the model makes a very specific
prediction regarding ACC activity dynamics:
The ACC response to a given task condition
will be proportional to the perceived likeli-
hood of an error in that condition.

The error-likelihood hypothesis also posits
a training signal by which stimulus-specific

ACC effects are acquired. This training sig-
nal may be dopaminergic. Phasic midbrain
dopamine neuron activity is critically involved
in reinforcement learning (12, 13), and phasic
suppression of dopamine apparently drives
the ERN/Ne (11). Thus, phasic dopamine

suppression occurring in response to errors
might serve as a training signal (14, 15) that
causes ACC to respond more strongly to con-
texts in which errors are more frequent.

We formalized the error-likelihood hypoth-
esis as a computational neural model to (i) ex-
amine how ACC representations might develop
through experience and (ii) explicitly investi-
gate the implications of the hypothesis (16).
To test the model, we used a change variant
(Fig. 1) of the well-known stop-signal para-
digm used to examine inhibitory control (17).
Previous work has demonstrated that stop-
signal trials are associated with increased ACC
activity in humans (18) and related medial fron-
tal areas in other primates (7, 19). The task
consisted of conditions associated with high
and low error rates crossed with the presence
or absence of response conflict. Comparison of
correct trials without response conflict across
high and low error-rate conditions afforded
assessment of error-likelihood effects while
controlling for response conflict and errors.

In the computational model (Fig. 2A), sim-
ulated ACC neuron units received inputs repre-
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Fig. 1. Change signal task. An initial
difficulty cue (plain line) appeared for
1000 ms. For a given trial, cue color
(white or blue, equiprobable and ran-
domly intermixed) predicts low versus
high error likelihood, respectively. Then
a go signal was presented (left- or right-
pointing arrow made by extending the
plain line to Y or @) that indicated the
required button-press response (left in-
dex finger for left arrow and right index
finger for right arrow). On 33% of the
trials, a change (conflict) signal was
added to the go signal after a variable
CSD relative to go signal onset. This
change signal (a second, larger arrow
appearing above the first and pointing
in the opposite direction) indicated that
the response had to be left-right re-
versed from that indicated by the go
signal. Both change and go signals remained visible until a response deadline of 1000 ms after go
signal onset. A 500-ms blank interval occurred before the onset of the next trial. All stimuli for a
given trial were the same color. Error rates were explicitly set and controlled by dynamically
adjusting the CSDs for each error-likelihood condition independently with the use of a staircase
algorithm. The low-error condition had shorter CSDs, whereas the high-error condition had longer
CSDs, reflecting the well-established positive monotonic relationship between CSD and error rate
in stop-signal tasks (17).
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senting stimulus features. Neuroanatomically,
there is a lack of evidence for direct sensory
inputs to ACC; yet such inputs may arrive
either via high-level perceptual pathways or
frontal areas that show stimulus specificity
(20). When errors were committed, ACC units
also received an error signal representing phasic
suppression of afferent midbrain dopaminergic
signals (12, 13). ACC units were adaptive such
that the synaptic weight from a given stimulus-
specific representation to a given ACC unit
increased when both were active and the error
signal was also present. Learning within the
ACC was competitive. As weights increased
from active stimulus-specific inputs to ACC
units that were active during an error trial,
weights decreased from inactive stimulus units.
This constraint, along with lateral excitation
between spatially contiguous ACC units, glob-
al lateral inhibition among ACC units, and ran-
dom activity noise, led to a greater number
of spatially contiguous ACC units representing
conditions reliably associated with errors.

The adaptive error-likelihood model was
directly compared against an alternative com-
peting computational model of ACC function
(Fig. 2B) in which ACC measures response
conflict in terms of the coactivation of in-
compatible response representations (21). In
the response conflict model, input synaptic
weights to the ACC were fixed rather than
adaptive and originated from response rather
than stimulus-specific representations.

In both models, activity from ACC excited
a control signal that sent persistent, nonspe-
cific inhibition to the response layer. This in

turn slowed responses on trials after high
ACC activity. Although other kinds of con-
trol signals may also be generated by ACC,
this control mechanism has been examined
in previous modeling work and found suf-
ficient to account for trial-to-trial adjustments
in behavioral performance driven by ACC ac-
tivity fluctuations (22).

Simulations conducted with the change-
signal task revealed that both the error-
likelihood and conflict ACC models showed
a similar pattern of behavioral performance,
and subsequent experimental testing revealed
that both provided very good fits to human
behavioral data (16). However, despite being
fit only to behavioral and not neuroimag-
ing data, the two models showed important
differences in the pattern of ACC activity
exhibited across task conditions. In the error-
likelihood model, ACC activity was greater
for change than for go trials Echange activity
was 0.07 and go activity was 0.05, F(1,17) 0
757, P G 0.0001^, as expected (Fig. 2A), but
was also greater on high-error change trials
than on low-error change trials Ehigh activity
was 0.11 and low activity was 0.06, F(1,17) 0
263, P G 0.0001^, even when excluding all
trials where errors were committed. Even
more surprisingly, this error-likelihood effect
was also present on correct go trials, which
should have no associated conflict Ehigh
activity was 0.07 and low activity was 0.03,
F(1,17) 0 519, P G 0.0001^. Nevertheless,
the error-likelihood model exhibited this
effect, because high-error go trials contained
a stimulus feature (color) that was associated

with an increased likelihood of error com-
mission. Because of the learned associations
(embodied as strong synaptic connectivity)
between this stimulus feature and ACC units,
the presentation of this feature, even in the
absence of other features that might cause
conflict or errors (i.e., the change signal), was
sufficient to increase activity in the ACC. In
contrast, the conflict ACC model did not show
this pattern of activation (Fig. 2B). Specifical-
ly, the conflict model did not exhibit a correct-
trial high-error go versus low-error go effect
Ehigh activity was 0.13 and low activity was
0.13, F(1,17) 0 0.47, P 0 0.50^.

Thus, the two models, which instantiate
alternative accounts of ACC function, make
different predictions regarding the pattern of
ACC activity during the change-signal task. In
particular, a critical test of the error-likelihood
versus conflict-monitoring hypotheses is wheth-
er or not the correct, high-error condition go
trials yield greater ACC activity than correct,
low-error condition go trials. Both of these
conditions exclude conflict, change signal de-
lay (CSD), and error effects. Random equiprob-
able interleaving of high- and low-condition
trials further ensures that effects of this com-
parison could only be driven by current cue
color, which predicts error likelihood. We in-
vestigated these predictions experimentally
in an event-related functional magnetic reso-
nance imaging (fMRI) study of 16 human par-
ticipants performing the same change-signal
task simulated with the models (16).

Two regions of interest (ROIs) within the
ACC and the neighboring functionally related

Fig. 2. Error-likelihood effects.
Computational models of
(A) error likelihood and (B)
conflict detection generate
competing predictions re-
garding effects of high versus
low error rate conditions on
ACC activity (16). Only the
error-likelihood model pre-
dicts effects of high-error–
versus low-error–likelihood
conditions in the low-conflict
go (thick green versus thin
green lines) as well as high-
conflict change conditions
(thick red versus thin red
lines). Model activity is pro-
portional to neural firing rate.
(C) Region 1 at (8,33,33) in
right ACC was identified by a
conjunction of several inde-
pendent statistical tests for
significant effects during cor-
rect trials. Shown is the z
score of high/go minus low/
go (restricted to voxels for
which P G 0.05, one-tailed, uncorrected t test), masked by voxels that also
showed a significant effect of both change 9 go and high/change 9 low/
change (each P G 0.05, one-tailed, uncorrected t test). The conjunction
analysis mask reduces the sample size considerably to only a few regions,
effectively correcting for multiple comparisons while maintaining sensitivity
to complex effects. (D) Time course of event-related fMRI activation in

region 1 (averaged across all voxels) in each task condition. Analysis of the
activation-magnitudes (again, averaged across whole region) confirms that
all predicted effects are statistically significant [for change 9 go, t(15) 0
2.52 and P G 0.03; for high/change 9 low/change, t(14) 0 2.25 and P G 0.05;
and for high/go 9 low/go, t(14) 0 2.17 and P G 0.05]. Time courses shown
are those without reaction time effects partially correlated out.
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medial wall performance-monitoring areas (23)
were identified that showed significant ef-
fects (P G 0.05) for all three of the following
contrasts (analyzed by using only correct trials):
change greater than go (change 9 go), high
error-likelihood/change greater than low error-
likelihood/change (high/change 9 low/change),
and high error-likelihood/go greater than low
error-likelihood/go (high/go 9 low/go). Re-
gion 1 (22 voxels; right dorsal ACC; Talairach
8,33,33) (Fig. 2C) overlapped anatomically
with an ACC region previously identified to
show conflict effects in several go/no go and
stop tasks (18). Region 2 was found more superi-
orly (18 voxels; left anterior pre-supplementary
motor area (pre-SMA); –2,27,54) with change 9
go Et(15) 0 2.87, P G 0.02^ and high 9 low
effects in both change Et(14) 0 3.52, P G 0.004^
and go Et(14) 0 2.56, P G 0.03^ conditions (24).
Critically, ROI analyses (Fig. 2D) confirmed
that the effects observed within these regions
were highly similar to those observed in the
error-likelihood model simulation (Fig. 2A) (25).

Other ROIs in the right dorsolateral prefrontal
cortex and bilateral inferior parietal lobule and
cerebellum also showed these same effects
(table S1) (16) but were not analyzed in detail.
Nevertheless, it is possible that these regions
implement ACC-driven control signals (1),
consistent with our computational model.

The error-likelihood hypothesis further
postulates that error predictions in the ACC
are acquired through task experience via a
dopaminergic-training signal that is elicited
after error commission. Simulations of the
error-likelihood and conflict models again
made competing predictions in this regard
(Fig. 3, A and B). Specifically, the error-
likelihood but not the conflict-detection sim-
ulation showed gradually emerging effects of
high versus low conditions over the course of
a session. fMRI results (Fig. 3C) are consist-
ent with the error-likelihood model (Fig. 3A)
but not the conflict model (Fig. 3B). With
regard to the origin of training signals driving
these learning effects, analysis of fMRI blood

oxygen level–dependent (BOLD) responses
also revealed increased ACC activity on error
trials that differentiated between errors com-
mitted in the high and low conditions in a man-
ner consistent with a dopaminergically based
training signal (Fig. 4).

The current results support an error-
likelihood account of ACC function in which
ACC learns to signal, via the magnitude of
its activity, the predicted likelihood of an
error occurring in response to a given task
condition. This proposed function may be
highly adaptive, serving as an early-warning
system that recruits cognitive control to match
its predicted demand. This matching behav-
ior of ACC responses (and subsequent cogni-
tive control) may be seen as a complement to
Herrnstein_s matching law (26). Whereas the
matching law predicts increases in neural activ-
ity associated with motor responses in propor-
tion to the likelihood of positive reinforcement
(27), the error-likelihood model predicts that
ACC activity will occur in proportion to the
likelihood of negative reinforcement. Further-
more, our results are consistent with the idea
that a dopaminergic training signal in ACC
plays a common role in reinforcement learning
and recruitment of cognitive control (11).

Conflict and error detection ACC effects
are accounted for as special cases of the error-
likelihood model. Errors generally occur more
frequently with cues that map to conflicting
responses compared with cues that map to the
same response. Thus, response conflict effects
in ACC may reflect a higher error likelihood
rather than an explicit computation of response
conflict per se. Similarly, previous studies show
frontal medial activity in response to errors,
even before external feedback (4, 28). Adding
a connection in the error-likelihood model from
the response to ACC layers might allow ACC
to respond selectively to particular combina-
tions of stimuli and internal representations of
incorrect response execution, which are highly
predictive of undesired consequences. Under
these conditions, the model would be expected
to show error effects in ACC, even before ex-
ternal feedback (11, 28). Thus, the model (and
the associated theoretical framework) provides
a tool for understanding how error, conflict,
and error-likelihood prediction effects may all
be acquired by ACC after continued exposure
to task environments. More generally, the re-
sults presented here illustrate the benefits of
tightly integrating neuroimaging studies with
computational modeling, because the two meth-
ods together provide a strong basis for hypoth-
esis generation and theory testing regarding
the neural mechanisms of cognition.
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Flexible Control of Mutual
Inhibition: A Neural Model of
Two-Interval Discrimination

Christian K. Machens,1 Ranulfo Romo,2 Carlos D. Brody1*

Networks adapt to environmental demands by switching between distinct
dynamical behaviors. The activity of frontal-lobe neurons during two-interval
discrimination tasks is an example of these adaptable dynamics. Subjects first
perceive a stimulus, then hold it in working memory, and finally make a de-
cision by comparing it with a second stimulus. We present a simple mutual-
inhibition network model that captures all three task phases within a single
framework. The model integrates both working memory and decision making
because its dynamical properties are easily controlled without changing its
connectivity. Mutual inhibition between nonlinear units is a useful design motif
for networks that must display multiple behaviors.

In our daily lives, our minds can flit from
thought to thought with remarkable speed and
flexibility (1). A simplified task that requires
rapid shifts between different mental actions
is known as two-interval discrimination (two
stimuli separated by a time interval; Fig. 1A).
Subjects must first perceive a brief stimulus,
called f1, maintain it in working memory for
several seconds, and then compare it with a
brief second stimulus, called f2, to immediately
decide which of the two stimuli was larger. The
task requires both working memory and de-
cision making, interfacing between the two in
a rapid switch from one to the other.

The biophysical mechanisms underlying
the performance of this task remain unknown.

Spiking neural-network models, built to serve
as mechanistic accounts of cognitive neural
activity, have focused so far on only single
cognitive processes (2–8). Few models (9, 10),
and no spiking network models, have address-
ed the question of how more than one com-
putation and dynamic can be implemented in
a single network. Yet cognitive acts typically
require more than one type of computation.
Many cognitive psychology models do inte-
grate multiple processes, but do not address
biophysical mechanisms (11). On the basis
of recent neurophysiological data (Fig. 1)
(12–17), we use a nonlinear dynamical sys-
tems approach (18–21) to design a simple and
testable spiking-neuron model of two-interval
discrimination. The model integrates three
key processes into a single framework that
proposes mechanistic links between the differ-
ent processes, as well as between biophysical
properties and neural and behavioral phenome-
na. These processes are fast initial loading
of stimulus f1 into working memory, slow

maintenance of working memory, and fast
decision making.

Figure 1, C and D show the firing rates of
two prefrontal cortical (PFC) neurons recorded
from previously trained macaque monkeys
while they performed a two-interval discrim-
ination task in which f1 and f2 were the fre-
quencies of mechanical vibrations applied to
the tip of a finger (12, 16, 22). The dynamics
of the activity of these neurons depends strong-
ly on the phase of the task. During the loading
of f1 into working memory, there is a rapid
flow to an f1-dependent firing rate. During the
maintenance of f1 in working memory, there is
a long-lasting persistence of f1-dependent firing
rates, despite the absence of the stimulus. During
the comparison/decision phase, upon presenta-
tion of the second stimulus f2, the firing rates
quickly segregate into one of two categories,
depending on the monkey_s subsequent choice
of a Byes[ or Bno[ push-button answer to the
question, BIs f1 greater than f2?[ Responses
similar to these PFC responses are also found
in ventral (17) and medial (14) premotor corti-
ces. For brevity, here we will refer collectively
to these three areas as Bfrontal lobe areas.[ We
highlight two aspects of the frontal lobe data.
First, signals are encoded in complementary
sets of roughly equal numbers of neurons
(12, 14, 17). One set is composed of Bplus[
neurons, defined as neurons with a delay-
period firing rate that is a monotonically in-
creasing function of f1 (Fig. 1C). Plus neurons
typically fire the most for Byes[ decisions af-
ter presentation of f2. The complementary set
are Bminus[ neurons, defined as those which
have delay period firing rates that are mono-
tonically decreasing functions of f1, and fire the
most for Bno[ decisions (Fig. 1D). Because
higher f2 stimuli are more likely to lead to
Bno[ decisions; plus neurons are excited by
high f1 stimuli but inhibited by high f2 stim-
uli. The converse occurs for minus neurons

1Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold
Spring Harbor, NY 11724, USA. 2Instituto de Fisiologı́a
Celular, Universidad Nacional Autónoma de México,
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