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ABSTRACT
BACKGROUND: Cognitive dysfunction is common in mental disorders and represents a potential risk factor in
childhood. The nature and extent of associations between childhood cognitive function and polygenic risk for mental
disorders is unclear. We applied computational modeling to gain insight into mechanistic processes underlying de-
cision making and working memory in childhood and their associations with polygenic risk scores (PRSs) for mental
disorders and comorbid cardiometabolic diseases.
METHODS:We used the drift diffusion model to infer latent computational processes underlying decision making and
working memory during the n-back task in 3707 children ages 9 to 10 years from the Adolescent Brain Cognitive
Development (ABCD) Study. Single nucleotide polymorphism–based heritability was estimated for cognitive
phenotypes, including computational parameters, aggregated n-back task performance, and neurocognitive
assessments. PRSs were calculated for Alzheimer’s disease, bipolar disorder, coronary artery disease (CAD),
major depressive disorder, obsessive-compulsive disorder, schizophrenia, and type 2 diabetes.
RESULTS: Heritability estimates of cognitive phenotypes ranged from 12% to 38%. Bayesian mixed models revealed
that slower accumulation of evidence was associated with higher PRSs for CAD and schizophrenia. Longer
nondecision time was associated with higher PRSs for Alzheimer’s disease and lower PRSs for CAD. Narrower
decision threshold was associated with higher PRSs for CAD. Load-dependent effects on nondecision time and
decision threshold were associated with PRSs for Alzheimer’s disease and CAD, respectively. Aggregated
neurocognitive test scores were not associated with PRSs for any of the mental or cardiometabolic phenotypes.
CONCLUSIONS: We identified distinct associations between computational cognitive processes and genetic risk for
mental illness and cardiometabolic disease, which could represent childhood cognitive risk factors.

https://doi.org/10.1016/j.bpsc.2022.03.012
Mental disorders are highly complex, heritable, and polygenic
(1). Aggregating many small effects of common single nucle-
otide polymorphisms (SNPs) on mental disorders from
genome-wide association studies (GWASs) allow for the con-
struction of polygenic risk scores (PRSs), reflecting an in-
dividual’s cumulative genetic risk for a given trait or disorder.
Mapping PRSs for adult-onset disorders to relevant pheno-
types in childhood represents an opportunity for discovering
the expression of genetic liability in premorbid phases.

Cognitive functions are also heritable traits (2–4), and
cognitive deficits are frequent in patients with mental disorder
(5,6). Working memory (WM) dysfunction is commonly re-
ported in mental disorders including schizophrenia (SZ) (7),
bipolar disorder (8), and major depressive disorder (MDD) (9),
while impaired decision making is observed in, among others,
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obsessive-compulsive disorder (10), MDD (11), and SZ
(12,13).

Deficits in cognition have been found to precede the onset
of illness, in some cases during childhood (14–17). Whether
cognitive aberrations during childhood are associated with
genetic liability for mental disorders is currently being explored.
Recent studies have found PRSs for SZ to be positively
associated (18), negatively associated (19), and not associated
(20,21) with general cognitive function in childhood and
adolescence, while others have reported negative associations
between PRSs for Alzheimer’s disease (AD) and memory (22)
and between PRSs for SZ and emotion identification and
verbal reasoning (23). It is currently unclear how cognitive
variability in childhood is reflected in genetic liability for other
mental disorders. Further, it is unclear how cognitive function
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

science and Neuroimaging - 2022; -:-–- www.sobp.org/BPCNNI

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://doi.org/10.1016/j.bpsc.2022.03.012
http://creativecommons.org/licenses/by/4.0/
http://www.sobp.org/BPCNNI


Mapping Childhood Cognition to Polygenic Risk
Biological
Psychiatry:
CNNI
relates to polygenic risk for cardiometabolic disease, which,
partly owing to shared genetic risk (24), is highly comorbid with
mental disorders (25,26) and, together with mental illness, is
one of the largest causes of disability, morbidity, and mortality
worldwide (27,28). Further, cardiometabolic diseases have
previously been linked to cognitive aberration (29–31). Taken
together, an improved understanding of cognitive deficits
during childhood for mental and cardiometabolic diseases with
adult onset could give insight into the mapping between
cognition and mental and cardiometabolic disease risk.

Cognitive abilities are often inferred from observed behavior
such as task accuracy or response time. Although identifying
associations between mental disorders and observed behavior
can have predictive value, measures of task accuracy and
response time are inherently agnostic about their computa-
tional origins. For example, poor accuracy could result from
impulsive decision making or from a low signal-to-noise ratio in
information accumulation. Computational approaches, in
contrast, allow for model-based delineations of latent cognitive
processes (32) and have provided insight into the computa-
tional cognitive processes underlying aberrant learning and
decision making in clinical groups (33–36). Further, individual-
level parameters from computational models have been shown
to be more sensitive to diagnosis (37) and clinical outcome (38)
than task accuracy and response time.

Thus, computational modeling could aid in identifying
mechanistic cognitive processes associated with genetic lia-
bility for mental disorders. To this end, we took a computa-
tional psychiatry (39) approach to map associations between
latent cognitive processes and PRSs for mental disorders. We
applied the drift diffusion model (DDM) (40) to performance on
the n-back task, a decision-making task probing WM capacity,
from 3707 children ages 9 to 10 years in the Adolescent Brain
Cognitive Development (ABCD) Study (41–44) baseline sam-
ple. DDM analysis allowed us to estimate individual compu-
tational parameters during 2 load conditions (0-back and
2-back), including evidence accumulation, speed-accuracy
tradeoff, response bias, and time spent on motor and
perceptual processes. PRSs were calculated for AD (45), bi-
polar disorder (46), MDD (47), obsessive-compulsive disorder
(48), and SZ (49). In addition, we calculated PRSs for coronary
artery disease (CAD) (50) and type 2 diabetes (51).

We used genome-wide complex trait analysis (52) to assess
whether DDM parameters represent heritable traits. Next, we
tested for associations between DDM parameters and PRSs
using Bayesian linear multilevel models, which allowed us to
describe uncertainty in estimates. To provide a comparison to
DDM parameters, we also tested for associations with
response time and task accuracy, as well as aggregated
neuropsychological scores as a proxy for general cognitive
ability.

METHODS AND MATERIALS

Participants

The total sample consists of 11,875 children ages 9 to 10
years. We analyzed data made available through the curated
data release 2.0.1 (DOI:10.15154/1504041). Informed written
consent for children and parents was obtained from parents,
and child participants separately completed a written assent.
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
n-Back Task

The emotional n-back task (53,54) consisted of 160 trials
divided into 2 runs. The task was performed in the scanner
while collecting functional magnetic resonance imaging data.
Each run consisted of 8 blocks, each with 10 trials. For each
trial, the objective was to decide whether the current stimulus
matched a target stimulus (Figure 1A). In the 0-back condition,
the target stimulus was presented before the first trial in each
block, and the participants were asked to decide whether the
current stimulus matched the target stimulus. In the 2-back
condition, participants responded whether the stimulus on
the current trial matched the stimulus presented 2 trials back.
The stimulus and target matched in 20% of the trials. For the
remaining trials, the stimulus did not match the target, and the
stimulus on the current trial either had (lure, 25% of trials) or
had not (nonlure, 55%) been presented earlier in the block.

Stimulus category (house and happy, fearful, or neutral
faces) varied across blocks but was not incorporated into
these analyses, because it would result in too many parame-
ters for reliable subject-level estimates. Information regarding
the condition (and, for the 0-back condition, the target stim-
ulus) was presented for 2500 ms at the start of each block. The
stimulus was preceded by a plus sign presented for 1000 ms.
The stimulus and the stimulus-response mapping were pre-
sented for 2000 ms.

The analysis included data from participants with recorded
response on at least 50 of the total 160 trials to ensure reliable
measures of performance. A total of 8077 participants fulfilled
this criterion. Data on one or more variables of interest were
missing from 248 participants (Table S1), for which data were
imputed using the R package “mice” (55). Participants with a
task accuracy below 60% (n = 468) were excluded, resulting in
a sample of 7609 participants, which were included in the
heritability analysis. Next, because the PRSs were derived
from samples of European ancestry, we excluded participants
of non-European origin, which included 3707 participants.

Drift Diffusion Model

We analyzed trial-by-trial choice and response time data on
the n-back task with the DDM, a cognitive process model that
describes two-alternative forced choice decision making as a
noisy accumulation-to-bound process (Figure 1B). The DDM
provides good fits to observed choice and response time
distributions (56). The accumulation-to-bound processes pro-
posed by sequential sampling models, including the DDM,
have been shown to correlate with neural firing patterns during
decision making in primates, suggesting that the model cap-
tures neural implementations of decision making, providing a
link between behavior and neural activity (57).

The DDM has 4 main parameters. Drift rate (v) reflects the
rate of evidence accumulation, where stronger drift rate leads
to faster and more accurate decisions, due to less impact of
noise. Decision threshold (a) captures the speed-accuracy
tradeoff, where wider decision thresholds require more evi-
dence to be accumulated to reach a decision. This will lead to
slower, but more accurate, decisions. The starting point bias
parameter (z) captures the starting point of the accumulation
process. Finally, nondecision time (ndt) captures the time
spent on encoding the stimulus and motor response, where
022; -:-–- www.sobp.org/BPCNNI
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Figure 1. (A) Emotional n-back task. During the 0-back condition (top), participants were instructed to decide whether a stimulus matched the target
stimulus presented at the start of each block. During the 2-back condition (bottom), participants were instructed to decide whether the currently presented
stimulus matched the stimulus presented 2 trials back. (B) Illustration of the drift diffusion model applied to the n-back task. The model assumes that decision
makers accumulate evidence until reaching a threshold to decide whether the current stimulus is a target (upper bound) or nontarget (lower bound). Illustrated
here are 3 simulated decisions, one for each stimulus type (lure, nonlure, and target). The rate and direction at which evidence is accumulated depends on the
drift rate. Here, sample paths were simulated with a drift rate of22.5 (lure),22.3 (nonlure), and13.05 (target). ISI, interstimulus interval; NDT, nondecision time.
Figure adapted with permission from (42).

Mapping Childhood Cognition to Polygenic Risk
Biological
Psychiatry:
CNNI
shorter nondecision time reflects that less time is spent on
stimulus encoding and motor response. The parameters of the
DDM can be estimated using the Wiener first passage time
likelihood function (58) and thus allows inference on how pa-
rameters vary between groups, individuals, and task
manipulations.

n-Back DDM. For the n-back task, we assumed that par-
ticipants could be biased toward responding target or
nontarget, and therefore we coded upper bound responses as
target responses and lower bound responses as nontarget
(Figure 1B). We allowed the rate of evidence accumulation to
differ across stimulus type and thus estimated separate drift
rates for target, lure, and nonlure stimuli. Further, to capture
effects of load, we estimated all parameters separately for the
0-back and 2-back conditions. In total, 12 parameters were
estimated per subject in a mixed model using the Wiener first
passage time distribution to calculate the likelihood of the
response times of choices (x),

RTðxÞwWienerðas;c;ndts;c; zs;c; vs;c;stimÞ;

where a = decision threshold, c = condition (0-back or 2-back),
ndt = nondecision time, RT = response time, s = subject, stim =
stimulus (target, lure, nonlure), v = drift rate, x = choice (target
or nontarget), and z = starting point bias. In addition, we esti-
mated group-level variability parameters for nondecision time.

To reduce the number of variables, we computed overall
scores for each of the 4 cognitive processes from the 12
estimated parameters, i.e., an average individual value for
decision threshold, nondecision time, drift rate, and starting
point bias across conditions and stimuli. We further calculated
load effects for each parameter by subtracting estimates for
the 0-back from the 2-back condition.

Figure 2A and B shows that the model fit was good and that
predicted choice, response time, and response time
Biological Psychiatry: Cognitive Neuroscien
distributions (Figure S1) across conditions closely matched the
observed data. Briefly, Figure 2C shows that reduced accuracy
and slower response times in the 2-back condition compared
with the 0-back condition were reflected as lower drift rate in
the 2-back condition, with the strongest effect for lures, likely
reflecting a higher propensity to mistake lures for targets.
Participants were more biased toward responding target in the
2-back condition, reflected in an increased starting point bias
toward the target boundary. Finally, participants increased the
decision threshold in the 2-back condition compared with the
0-back condition, which counteracts the effect of higher diffi-
culty on accuracy but also leads to slower responses.

NIH Toolbox

Participants completed the NIH Toolbox (http://www.
nihtoolbox.org), a computerized test battery composed of 7
tasks spanning executive function, WM, episodic memory,
attention, processing speed, and language (59). We performed
principal component analysis on uncorrected scores from all 7
tasks and included the first component in analyses as a
measure of general cognitive ability. See (60) for more details.

Figures S2 and S3 show the distribution and scatter plots of
the included variables across participants.

Statistical Analysis

Drift Diffusion Model. We used the python package
HDDM (61) to model choice and response time data from the n-
back task with Bayesian hierarchical estimation. Because running
all subjects in a single model would be too time consuming, we
randomly assigned subjects to one of 40 groups and ran
Bayesian hierarchical models for each of these 40 groups.

Three chains, each with 2000 samples, were estimated for
each group. The first 1000 samples were discarded as burn-in
to allow the sampling process to identify the region of best-
fitting values in the parameter space. The models were
ce and Neuroimaging - 2022; -:-–- www.sobp.org/BPCNNI 3
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Figure 2. Model fit and group parameter estimates. (A, B) Observed (green) and predicted (orange) mean and standard deviation accuracy (A) and response
time (RT) (B) across condition (0-back and 2-back) and stimuli (lure, nonlure, target). The model slightly overpredicted accuracy for target responses, while
accuracy for nonlures was slightly underpredicted. The model shows a good prediction of the RT distribution but slightly overpredicts mean RT for targets in
the 2-back condition. (C)Mean estimated parameters and their 95% highest-density interval across 0-back (red) and 2-back (blue) conditions and, for drift rate,
stimuli (lure, nonlure, target). Positive (negative) drift rate values indicate that evidence is accumulated toward responding target (nontarget).
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estimated to be reliable, meaning that rerunning the models
yielded similar parameter estimates. This was measured with
the Gelman-Rubin statistic (62), which was below 1.1 for all
group and subject parameters, indicating convergence. Scripts
for HDDM analyses can be found at https://osf.io/ubezy/.

Genetic Data. Genotyping on saliva samples collected at
the baseline visit was performed using the Smokescreen array,
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
consisting of 646,247 genetic variants. Following (63), we
removed genetic variants that were not called in at least 95%
of the sample and individuals with more than 20% missing
data. Variant imputation was performed on 517,724 SNPs and
10,659 participants with the Michigan Imputation Server using
the hrc.r1.1.2016 reference panel, Eagle v.2.3 phasing, and
multiethnic imputation process. PLINK (64) was used to
convert dosage files to plink files, using a best guess threshold
022; -:-–- www.sobp.org/BPCNNI
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of 0.9 for each locus. Further, PLINK was used for post-
imputation quality control, filtering out variants with an impu-
tation INFO score below 0.5, a minor allele frequency below
0.001, failing Hardy-Weinberg equilibrium at p = 1 3 1029, and
missingness above 5%, as well as individuals missing more
than 10% of variants. After these steps, 14,754,215 SNPs and
10,660 individuals remained.

Heritability. We used the GCTA-GREML analysis (54,65,66)
in genome-wide complex trait analysis (52) to simultaneously
estimate SNP-based and pedigree-based heritability of DDM
parameters, response time, accuracy, and NIH Toolbox scores
using a relatedness threshold of 0.05 and 20 ancestry com-
ponents of the genetic relationship matrix as covariates. Here,
we report SNP-based heritability.

Polygenic Risk Scores. Using PRSice v.2 (67), we calcu-
lated PRSs for AD (45), bipolar disorder (46), CAD (50), MDD
(47), obsessive-compulsive disorder (48), SZ (49), and type 2
diabetes (51). We processed the GWAS summary statistics
using a standardized pipeline (https://github.com/precimed/
python_convert) and ran PRSice using default settings. We
performed principal component analysis on PRSs across all p
thresholds and used the first component of this analysis to
associate to cognitive phenotypes.

Bayesian Linear Multilevel Models. We tested for as-
sociations between cognitive phenotypes (computational pa-
rameters, mean response time and accuracy from the n-back
task, WM load effects for computational parameters, response
time and accuracy, and the first principal component calcu-
lated from the NIH Toolbox) and PRSs with Bayesian linear
multilevel models using brms (68) built on top of Stan (69).
Models were run for all combinations of cognitive phenotypes
and PRSs. Further, we tested the effect of load by computing
the difference between parameter estimates (and response
time and accuracy) between the 2-back and 0-back condi-
tions. All models included sex and age as fixed effects and
scanning site, family (siblings and twins), and model group (40
pools of subjects used for DDM analysis) as random effects:

cognitive phenotypewPRS1 age1 sex1 ð1j siteÞ1ð1j familyÞ
1ð1jmodel groupÞ

Models also included 10 genetic ancestry principal compo-
nents and genetic batch as covariates. Priors strongly
centered around 0 (mean = 0, SD = 0.5) were used for all co-
efficients to reduce the likelihood of false positives. All vari-
ables were standardized prior to analysis. To assess whether
measures of socioeconomic status influenced the association
of cognitive phenotypes and polygenic risk, we ran additional
models including family income, marital status, and highest
education of caregivers as covariates. Scripts for Bayesian
linear multilevel model analyses can be found at https://osf.io/
ubezy/.

Statistical Inference. We describe the effect size of pre-
dictors as the mean and 95% highest-density interval of
posterior distributions (70).
Biological Psychiatry: Cognitive Neuroscien
RESULTS

SNP-Based Heritability

Individual differences in DDM parameters showed moderate
SNP heritability (decision threshold: h2 = 0.15, SE = 0.05;
nondecision time: h2 = 0.19, SE = 0.05; drift rate: h2 = 0.23,
SE = 0.05; bias: h2 = 0.12, SE = 0.06). Similar results were
found for response time (h2 = 0.16, SE = 0.05) and accuracy
(h2 = 0.21, SE = 0.05), while heritability of the first principal
component from the NIH Toolbox was estimated to be h2 =
0.38 (SE = 0.05).

Associations Between Cognitive Phenotypes and
PRSs

Figure 3 and Table 1 summarize results from the Bayesian
linear multilevel models estimating the association between
cognitive phenotypes and PRSs for mental illness and car-
diometabolic disease. Figure S4 shows the strong overlap
between posterior distributions for models that included family
income, marital status, and highest education of caregivers as
covariates. Further, Figure S5 shows the estimated interaction
of all combinations of polygenic risk for mental illness and
cardiometabolic disease on cognitive phenotypes. Finally,
Figure S6 shows the association of cognitive phenotypes from
the n-back task for each condition and contrasted for stimulus
type.

Higher PRSs for AD were associated with slower responses
(beta = 0.05, 95% highest-density interval = [0.01 to 0.08]),
reflected in longer nondecision time (0.04 [0.01 to 0.07]).

Higher PRSs for CAD were associated with lower accuracy
(20.04 [20.08 to 20.01]) and faster responses (20.05 [20.08
to 20.01]), reflected in lower drift rates (20.05 [20.08
to 20.01]) and faster nondecision times (20.07 [20.1
to 20.03]).

Higher PRSs for SZ were also associated with lower task
accuracy (20.04 [20.07 to 20.01]), reflected in lower drift rates
(20.04 [20.08 to 20.01]).

WM contrasts, captured as the difference between 2-back
and 0-back conditions in the n-back task, were found to be
negatively associated with PRSs for AD (20.04 [20.07
to 20.003]) on nondecision time and with PRSs for CAD on
decision thresholds (20.04 [20.08 to 20.003]).

None of the polygenic scores were associated with the first
principal component from the NIH Toolbox (Table 1).

DISCUSSION

Cognitive impairments are frequently observed in patients with
mental disorders and often precede the emergence of clinical
symptoms (71). While not included among the diagnostic
criteria, mapping specific cognitive functions to PRSs for
mental illness in children could provide new knowledge on the
cognitive architecture of psychopathology.

We used computational modeling to identify and associate
latent variables of decision making and WM in 3707 children to
PRSs for mental illness and cardiometabolic disease. Individ-
ual variation in computational parameters were reflected in
genetic variability, suggesting that the parameters represent
heritable phenotypes. We found small but robust associations
between DDM parameters and PRSs for mental illness and
ce and Neuroimaging - 2022; -:-–- www.sobp.org/BPCNNI 5
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Figure 3. Posterior distributions for the association of polygenic scores on cognitive phenotypes. Error bars represent 95% highest-density interval. ad,
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cardiometabolic disease. The cognitive measures associated
with PRSs were related to task performance across load
conditions, and to a lesser extent to effects of load, suggesting
a link to decision making in general and not to aberrations in
WM.

We did not find any associations of genetic liability to
general cognitive function, as reflected in the first principal
component of the neurocognitive battery. If this reflects a true
null effect, it suggests that general cognitive dysfunction in,
e.g., SZ is linked to nongenetic factors (72), has a later onset
than the specific processes captured by the n-back task, and/
or reflects that PRSs, as approximations of the underlying
genetic variability associated with mental illness, do not cap-
ture these associations fully. Alternatively, the decomposition
of general cognitive function may have favored some common
or latent cognitive processes not associated with genetic lia-
bility of mental illness. Finally, it is possible that nonrandom
study sampling processes influence the associations and
subsequent interpretations. Previous findings from a similar
U.S.-based youth sample have indicated a positive association
between PRSs for SZ and IQ (18), which may arise if individuals
with both high genetic risk and low function are not repre-
sented in the sample for various reasons. Future ABCD studies
including information on familial risk and prevalence and later
development of mental illness in the participants may be able
to delineate some of these potential confounders.

Our analyses revealed several associations between DDM
parameters and PRSs. We also identified comparable
6 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
associations and heritability estimates of response time and
accuracy. However, computational modeling is assumed to
give insight into the latent computational processes that give
rise to alterations in observed behavior and, as such, represent
phenotypes potentially more closely related to brain function.

Higher PRSs for AD were associated with slower responses,
which were captured by the DDM as longer nondecision time.
Slowed reaction time has been suggested as an early sign of
AD and has been identified as being partly driven by longer
nondecision times, which encompass time spent on sensory
encoding and motor output (73). Premorbid cognitive
dysfunction has been shown in preclinical AD and as a pre-
dictor of progression from mild cognitive impairment to AD in
older adults (16,74). Associations between PRSs for AD and
nondeclarative memory, but not executive memory, in children
ages 6 to 14 years has been reported (22). Longitudinal studies
could test whether these cognitive profiles are predictive of AD
over and above PRSs.

Higher PRSs for SZ were associated with slower evidence
accumulation and lower accuracy. These results are in line with
case-control studies reporting impairment in SZ for decision
making (12,13). Previous studies have reported negative
(19,75), positive (18), and no associations (21,76,77) between
PRSs for SZ and cognitive function across age spans in the
general population. A longitudinal study showed that polygenic
risk for SZ was not associated with childhood cognitive per-
formance, but rather with the rate of cognitive decline from
ages 11 to 70 years (78). These results were based on general
022; -:-–- www.sobp.org/BPCNNI
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Table 1. Posterior Distributions of Associations Between Cognitive Phenotypes and Clinical and Polygenic Scores

Cognitive Phenotype PRS AD PRS BD PRS CAD PRS MDD PRS OCD PRS SZ PRS T2D

Decision Threshold 20.006
(20.038 to 0.027)

0.014
(20.019 to 0.048)

20.019
(20.053 to 0.015)

0.006
(20.029 to 0.042)

0.004
(20.029 to 0.038)

0.014
(20.02 to 0.047)

20.07
(20.041 to 0.027)

Drift Rate 20.024
(20.055 to 0.008)

20.007
(20.039 to 0.026)

20.046
(20.079 to 20.012)

20.02
(20.055 to 0.016)

0.005
(20.027 to 0.038)

20.043
(20.076 to 20.011)

20.001
(20.034 to 0.033)

Nondecision Time 0.042
(0.011 to 0.074)

0.015
(20.017 to 0.046)

20.066
(20.1 to 20.034)

0.024
(20.011 to 0.058)

0.015
(20.018 to 0.047)

20.00
(20.031 to 0.033)

20.027
(20.058 to 0.004)

Bias 0.01
(20.022 to 0.041)

0.00
(20.031 to 0.032)

20.007
(20.04 to 0.027)

0.025
(20.01 to 0.06)

20.019
(20.051 to 0.013)

20.022
(20.055 to 0.009)

20.019
(20.052 to 0.013)

WM Accuracy 20.01
(20.043 to 0.023)

20.01
(20.044 to 0.022)

20.00
(20.035 to 0.034)

0.011
(20.026 to 0.046)

20.01
(20.043 to 0.024)

20.009
(20.043 to 0.024)

20.027
(20.062 to 0.006)

WM Reaction Time 20.023
(20.056 to 0.01)

0.006
(20.028 to 0.038)

20.024
(20.059 to 0.01)

20.022
(20.059 to 0.014)

0.007
(20.026 to 0.041)

20.019
(20.052 to 0.015)

20.014
(20.049 to 0.02)

WM Drift Rate 0
(20.032 to 0.033)

20.02
(20.053 to 0.013)

0.023
(20.012 to 0.057)

0.026
(20.011 to 0.062)

20.016
(20.5 to 0.017)

0.009
(20.025 to 0.041)

20.021
(20.056 to 0.013)

WM Decision Threshold 0.002
(20.033 to 0.033)

0.008
(20.025 to 0.041)

20.045
(20.079 to 20.011)

20.018
(20.053 to 0.019)

0.021
(20.013 to 0.054)

20.023
(20.058 to 0.009)

20.021
(20.054 to 0.014)

WM Nondecision Time 20.035
(20.07 to 20.003)

20.028
(20.06 to 0.005)

0.012
(20.021 to 0.047)

20.00
(20.036 to 0.037)

20.015
(20.048 to 0.019)

0.006
(20.028 to 0.039)

20.01
(20.041 to 0.023)

WM Bias 20.004
(20.036 to 0.03)

0.02
(20.012 to 0.053)

20.026
(20.059 to 0.008)

0.001
(20.025 to 0.046)

20.005
(20.038 to 0.028)

20.021
(20.054 to 0.012)

20.012
(20.045 to 0.023)

Response Time 0.045
(0.013 to 0.076)

0.015
(20.017 to 0.046)

20.047
(20.081 to 20.014)

0.022
(20.013 to 0.056)

0.012
(20.02 to 0.044)

0.018
(0.015 to 0.05)

20.028
(20.061 to 0.005)

Accuracy 20.032
(20.063 to 0.001)

20.003
(20.035 to 0.03)

20.042
(20.076 to 20.006)

20.013
(20.048 to 0.023)

0.005
(20.029 to 0.037)

20.038
(20.071 to 20.005)

20.003
(20.036 to 0.032)

NIH Toolbox 20.025
(20.055 to 0.005)

0.008
(20.028 to 0.034)

20.024
(20.057 to 0.008)

20.018
(20.052 to 0.015)

20.003
(20.034 to 0.028)

20.027
(20.059 to 0.003)

20.021
(20.044 to 0.021)

Values are given in mean (95% HDI).
AD, Alzheimer’s disease; BD, bipolar disorder; CAD, coronary artery disease; HDI, highest-density interval; MDD, major depressive disorder; NIH Toolbox, first principal component from

the NIH cognitive test battery; OCD, obsessive-compulsive disorder; PRS, polygenic risk score; SZ, schizophrenia; T2D, type 2 diabetes; WM, working memory.
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cognitive function, for which we did not find an association.
Instead, focusing on domain-specific cognitive functions and
their computational processes could be more sensitive to un-
derlying aberrations captured by genetic liability.

Given the strong association between mental illness and
cardiometabolic disease, we also tested for interactions of all
combinations of PRSs for psychiatric disorders and car-
diometabolic health (Figure S5). Despite revealing 5 weak as-
sociations, none of these were found to amplify main effects,
i.e., they did not indicate that a high risk for both mental and
cardiometabolic risk is even more strongly associated with
cognition.

Although WM is strongly linked to mental disorder through
case-control studies (7–9), our analyses did not identify as-
sociations between reduced WM capacity (captured as
reduced accuracy or drift rate) and heightened polygenic risks
for the included mental and cardiometabolic disorders. The
only polygenic associations to WM load were altered adjust-
ment of speed-accuracy tradeoff for CAD and changes in
nondecision time for AD, which was not reflected in task ac-
curacy or response time.

Although the first principal component from the NIH
Toolbox was estimated to be more than twice as heritable as
phenotypes from the n-back task, we found no associations to
PRSs. These results are in line with previous studies reporting
no associations between polygenic risk for mental illness and
general cognitive function (21,76,77). Future investigations of
follow-up data from the ABCD Study can indicate whether
speeded decision making and not WM capacity or general
cognitive ability are predictive of mental illness in adolescence.

The work described here is not without limitations. First, the
computational parameters from the DDM cannot identify the
separate contributions of WM components, including active
maintenance and updating of target stimuli and inhibition of
non-N stimuli. Although biophysical models of these pro-
cesses exist (79), to our knowledge, they cannot be used for
model fitting on a subject level [see (80) for computational
modeling of an alternative WM task]. Second, because of the
block design used for functional magnetic resonance imaging
scans, which does not allow insight into trial-by-trial brain
activity, we did not analyze the accompanying functional
magnetic resonance imaging data and therefore cannot
describe the association between computational parameters
and their neural underpinnings. Third, because the GWAS
summary statistics used to compute PRSs were based on
individuals of European ancestry, we chose to limit our multi-
level models with PRSs to participants of European descent.
This limits the generalizability of our findings. Future GWASs
should include a broader spectrum of populations in their
sample.

In conclusion, we identified associations between compu-
tational cognitive processes and PRSs for mental illness and
cardiometabolic disease in children ages 9 to 10 years. Recent
studies have shown that the associations between psycho-
logical variables and mental disorders in large datasets typi-
cally are small (81), likely reflecting the decreased likelihood of
false positives (and false negatives) (82). The results reported
here are no different, suggesting that cognition generally, and
decision making and WM specifically, is only one of many
factors associated with the development of severe mental
8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
illness. However, mapping the associations between compu-
tational cognitive processes and genetic load for mental dis-
orders can improve our understanding of the small but robust
effects that do exist and assist in parsing the massive het-
erogeneity of mental disorders (83,84). Future studies could
use follow-up data from the ABCD Study to identify how WM
and decision-making capacity predict problem behavior,
mental disorders, and cardiometabolic health later in
adolescence.
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