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The period immediately after birth is a critical developmental window, capturing rapid maturation of brain structure and a child’s
earliest experiences. Large-scale brain systems are present at delivery, but how these brain systems mature during this narrow window
(i.e. first weeks of life) marked by heightened neuroplasticity remains uncharted. Using multivariate pattern classification techniques
and functional connectivity magnetic resonance imaging, we detected robust differences in brain systems related to age in newborns
(n = 262; R2 = 0.51). Development over the first month of life occurred brain-wide, but differed and was more pronounced in brain
systems previously characterized as developing early (i.e. sensorimotor networks) than in those characterized as developing late (i.e.
association networks). The cingulo-opercular network was the only exception to this organizing principle, illuminating its early role
in brain development. This study represents a step towards a normative brain “growth curve” that could be used to identify atypical
brain maturation in infancy.
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Introduction
The period immediately after birth is a critical window
when the foundational elements of the brain’s functional
and structural architecture are established and early
postnatal experience can begin to influence ongoing
brain development. During this period, a number of
complex, interrelated neurobiological processes (e.g.
myelination, axonal pruning, synaptogenesis, synaptic
pruning, changes in ion channel function, and changes
in gene expression) unfold in an ordered manner
both across the brain and over time (Sydnor et al.
2021). A considerable amount of reconfiguration and
reorganization (e.g. retraction of 70% of callosal fibers in
primates; LaMantia and Rakic 1990) occurs during this
period as a normative response to the environment (e.g.
sensory exposure in the hospital after birth relates to
brain morphometry and later language outcomes; Pineda
et al. 2014). Deleterious experiences in early life including
sensory deprivation (Knudsen 2004), neglect (Bick and
Nelson 2015), stress (Avishai-Eliner et al. 2002; Chen and
Baram 2015), and trauma (Thomason and Marusak 2017)

disrupt these key developmental processes, producing
long-lasting consequences on brain structure and
function. Furthermore, developmental disorders and
developmental psychopathology are now increasingly
recognized to have their origins in infancy, with symp-
tomatic presentation occurring during childhood and
beyond as a result of the cascading effects of atypical
early brain development (Monk et al. 2019; Wakschlag
et al. 2019). Though the importance of this window for
human brain development is irrefutable, long-standing
investigations of the developmental processes occurring
during infancy have yet to delineate the patterns of
change across large-scale brain systems over the first
weeks of life.

Investigating early brain development at the level
of large-scale brain systems can provide innovative
insights into the coordinated developmental mecha-
nisms occurring up to and during infancy. For example,
synaptogenesis (Huttenlocher and Dabholkar 1997),
dendritic growth and arborization (Travis et al. 2005),
the myelination, growth, and functional specialization
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of thalamocortical connections (Flechsig Of Leipsic 1901;
Toulmin et al. 2015), the myelination of intra-cortical
connections (Miller et al. 2012), cortical expansion (Hill
et al. 2010), and the refinement of cortical microstruc-
ture (Smyser et al. 2016b; Natu et al. 2021) occur at
different rates across the brain, largely in line with
the boundaries of large-scale brain systems. During the
prenatal period, there is rapid growth and refinement of
thalamo-cortical fibers such that primary sensorimotor
cortex appears more refined than that of heteromodal
cortex (Huttenlocher and Dabholkar 1997; Travis et al.
2005). Over the course of development from infancy to
adulthood, brain systems important for sensorimotor
function (e.g. somatosensory, motor, visual, and auditory)
generally mature earlier than those important for higher-
order cognition (e.g. default mode, executive control,
and attention networks) such that sensorimotor and
association brain systems have been categorized as
“early developing” and “late developing,” respectively
(Sydnor et al. 2021). Although these neurodevelopmental
processes occur over the course of years for later
developing brain systems (e.g. myelination of executive
control networks into early adulthood (Lebel et al.
2019)), differential rates of development are apparent
early in life (Flechsig Of Leipsic 1901; Huttenlocher and
Dabholkar 1997; Travis et al. 2005; Hill et al. 2010; Miller
et al. 2012; Toulmin et al. 2015; Smyser et al. 2016b;
Natu et al. 2021). However, it is not clear whether the
large-scale organization of the brain constrains the
neurodevelopmental processes occurring during the
neonatal period. Brain activity across large-scale brain
systems has also been shown to be coordinated at rest
(i.e. functional networks) using functional connectivity
magnetic resonance imaging (fc-MRI; Biswal et al. 1995;
Power et al. 2011). Because this coordinated brain activity
is sensitive to changed brain structure (Gratton et al.
2012; Warren et al. 2014) and experience-dependent
change (Newbold et al. 2020, 2021), examining devel-
opmental change in the functional connectivity (FC) of
brain systems during infancy provides a window into the
interrelated structural and functional neurobiological
processes that contribute to maturing brain function.

The development of large-scale brain systems has
been well-characterized through late childhood and
adolescence using FC (Marek et al. 2015, 2019; Nielsen
et al. 2019), but has not been fully described in infancy.
Precursors of mature functional networks have been
observed during gestation (Turk et al. 2019) and at birth
in premature (Smyser et al. 2011; Duerden et al. 2013)
and full-term born infants (Fransson et al. 2007; Gao
et al. 2009; Doria et al. 2010; Gao et al. 2015; Eyre et al.
2021), but most studies have examined developmental
differences in FC over relatively long periods of time
(e.g. infancy to adulthood). The relative maturity of
infant functional networks appears consistent with the
proposed framework of “early” vs. “late” developing sys-
tems; functional connectivity of sensorimotor networks
appears more mature than that of association networks

in infancy (Doria et al., 2010; Eyre et al., 2021; Fransson
et al., 2007; Gao et al., 2009, 2015; Lin et al., 2008; Smyser
et al., 2010). However, this work has not examined how
FC varies on a shorter timescale (i.e. first 4 weeks of
life). Specifically identifying and characterizing how
functional networks vary according to postmenstrual
age (PMA) during this critical window is a necessary step
for identifying variation related to atypical development,
an infant’s environment, and/or a clinical intervention.

The goal of this study was to noninvasively char-
acterize, using fc-MRI, the development of large-scale
brain systems during the neonatal period. Multivariate
pattern classification methods were applied to a large
sample of healthy, full-term infants (n = 262; PMA:
mean = 41.8; std = 1.25; range = 38–45 weeks) and an
independently collected validation sample (n = 50;
PMA: mean = 41.8; std = 1.66; range = 38–45 weeks) to
robustly detect evidence of developmental change in
FC over the first month of life. Then, each individual
functional network was evaluated to reveal whether
the observed developmental differences in FC during
the neonatal period reflected differential development
across brain systems. Whether the development of FC
from sensorimotor and association networks differed
during the neonatal period was specifically tested,
given the evidence distinguishing these “early” and
“late” developing brain systems (Sydnor et al. 2021). Our
findings contribute to an improved understanding of
normative brain development in early life and could be
used to better target the long-lasting consequences of
atypical brain maturation in infancy due to heritable
disorders and/or adverse early life experiences.

Methods and materials
Participants
eLABE sample

This study was approved by the Human Studies Commit-
tees at Washington University in St. Louis and informed
consent was obtained from a parent of all participants.
Neonates were recruited as a part of the Early Life
Adversity, Biological Embedding, and Risk for Develop-
mental Precursors of Mental Health Disorders (eLABE)
cohort, whose participants were recruited under the
parent March of Dimes study (Stout et al. 2021). Pregnant
mothers were recruited and enrolled between the second
and third trimesters. Recruitment oversampled mother–
infant pairs facing adversity (e.g. poverty and stress). The
study includes neonatal magnetic resonance imaging
(MRI) performed shortly after birth. Inclusion criteria for
the study included speaking English, mother age 18 years
or older, and singleton birth. Excluded were women with
alcohol or other substance abuse (cannabis use was
not excluded). Anatomic MR images were reviewed by a
neuroradiologist (J.S.S.) and pediatric neurologist (C.D.S.).
Subjects were excluded from the current analyses if
they had evidence of brain injury or were born preterm
(<37 weeks gestational age, GA). Additional exclusion
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criteria included pregnancy complications (but not
gestational diabetes or hypertension) and known fetal
abnormalities including intrauterine growth restriction.
A maternal medical risk (MMR) score was calculated for
each participant using survey data and medical chart
review (Bateman et al. 2013). Of the 385 participants
who were scanned for eLABE, 262 were included in
the current analyses. Subjects were excluded for the
following reasons: no functional magnetic resonance
imaging (fMRI) data collected (n = 3), no usable T2 for
registration (n = 28), <37 weeks GA at birth (n = 52), brain
injury (n = 17), required intubation or chest tube (n = 4),
neonatal intensive care unit stay for > 7 days (n = 30), and
birthweight < 2,000 g (n = 1). There were 279 neonates
who did not meet any of these exclusion criteria (note
that some met multiple exclusion criteria). An additional
8 neonates were excluded because they did not have
≥10 min of usable fMRI data after motion censoring (see
below), and 9 were excluded based on visible artifacts in
FC data, resulting in 262 subjects in the current dataset.

Validation sample

The following 2 separate studies contributed to the vali-
dation sample (n = 50).

CUDDEL. This study was approved by the Human Stud-
ies Committees at Washington University in St. Louis,
and informed consent was obtained from a parent of all
participants. Neonatal participants were recruited as a
part of the parent study Prenatal Cannabis Use (PCU)
and Development of Offspring Brain and Behavior During
Early Life (0–18 months) (CUDDEL). Pregnant mothers
were recruited and enrolled between the second and
third trimesters. The current study focused on neonatal
MRI performed shortly after birth. Inclusion criteria for
the current study included speaking English, mother
age 18 years or older, cannabis use at least once dur-
ing the subject’s lifetime, and full-term singleton birth
(≥37 weeks GA at birth). Excluded were women with
alcohol or other substance abuse (cannabis use was not
excluded). Both cases (infants born to women that indi-
cated PCU) and controls (infants born to women that
indicated no PCU) were included. Anatomic MR images
were reviewed by a neuroradiologist (J.S.S.) and pediatric
neurologist (C.D.S.). Collection of MRI data for this study
is ongoing. Of the 46 participants that have been scanned
for CUDDEL, 45 were included in the current analyses.
One subject was excluded for brain injury.

O2P2. This study was approved by the Human Studies
Committees at Washington University in St. Louis, and
informed consent was obtained from a parent of all
participants. Neonatal participants were recruited as a
part of the parent Oxygen Part 2 (O2P2) study. Mothers
were recruited during their postpartum stay. The current
study focused on neonatal MRI performed within 72 h of
delivery. Inclusion criteria for the current study included
full-term singleton birth, English speaking, and Covid-19
negative result within the last 5 days. Exclusion criteria
were major fetal anomaly, multiple gestation, category III

electronic fetal monitoring, maternal hypoxia, umbilical
artery Doppler abnormalities, preeclampsia, intrauter-
ine growth restriction, pregestational diabetes, current
tobacco smoker, Covid-19 positive, or declined Covid-19
testing. After delivery, all infants were admitted to the
Newborn Nursery and were not be admitted to the NICU.
Anatomic MR images were reviewed by a neuroradiolo-
gist (J.S.S.) and pediatric neurologist (C.D.S.). Collection of
MRI data for this study is ongoing. Of the 5 participants
that have been scanned for O2P2, 5 were included in the
current analyses.

Estimation of PMA at Scan
PMA at scan was calculated by combining the completed
weeks of gestation at delivery (GA at birth) with the weeks
between birth and scan (chronological age at scan). GA
at birth was acquired through medical records upon
enrollment in the eLABE, CUDDEL, or O2P2 studies and
was determined by best obstetric estimate including last
menstrual period or earliest ultrasound dating available
(Stout et al. 2021). Because due dates can imprecisely
measure the time between conception and birth, in this
study GA at birth was quantified using only the com-
pleted weeks of gestation.

Image acquisition
Both the eLABE and validation samples were imaged
using the same procedures and same MRI sequences.
After feeding, the infant was swaddled and positioned
in a head-stabilizing vacuum fix wrap. A nurse familiar
with neonate transport and resuscitation was present
at all MRI scans. Heart rate and blood oxygenation were
measured continuously throughout all scans, and infants
were monitored visually via video. Based on visual mon-
itoring through a camera, infants slept through scans
as indicated by eye closure and minimal movements.
Imaging was performed without sedating medications
using a Siemens 3T Prisma scanner and 64-channel
head coil. A T2-weighted image (sagittal, 208 slices, 0.8-
mm isotropic resolution, time echo, TE = 563 ms, time
repetition, TR = 4,500/3,200 ms for eLABE) was collected.
For the resting-state fMRI, functional imaging was
performed using a blood-oxygen-level dependent (BOLD)
gradient-recalled echo-planar multiband (MB) sequence
(72 slices, 2.0-mm isotropic resolution, TE = 37 ms,
TR = 800 ms, MB factor = 8). Spin-echo field maps were
obtained (at least 1 anterior–posterior and 1 posterior–
anterior) during each session with the same parameters.
Between 2 and 9 fMRI BOLD scans were acquired,
depending on how the infant tolerated the scan (mean
3.75 runs). Scans were collected in both the anterior–
posterior (AP) and posterior–anterior (PA) direction; a
typical scan session included 2 AP runs and 2 PA runs.
The scans were 420 frames, which is 5.6 min in length.

Image preprocessing and FC processing
Both the eLABE and validation samples were processed
in an identical manner to limit potential differences due
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Fig. 1. Parcellation and functional network definitions used to quantify FC and to group functionally related regions in the neonatal brain. The 333
parcels and 12 functional networks were previously defined in healthy adults in Gordon et al. (2016). Analyses were also conducted with 2 separate
parcellation schemes (Supplement 1) to ensure that results were not dependent on this parcellation. Parcels and functional networks were also grouped
as either early (light blue) or late (light red) developing according to a review of previous studies of the developmental trajectories of these brain systems
from infancy to adulthood (Sydnor et al. 2021).

to analysis across cohorts, incorporating surface-based
strategies to account for individual and developmental
differences in cortical folding. fMRI preprocessing
included correction of intensity differences attributable
to interleaved acquisition, bias field correction, intensity
normalization of each run to a whole-brain mode value
of 1,000, linear realignment within and across runs to
compensate for rigid body motion, and linear registration
of BOLD images to the adult Talairach isotropic atlas.
Neonates were registered: BOLD to individual T2 to
group-average T2 from this cohort to 711-2N Talairach
atlas. Field distortion correction was performed, using
the FSL TOPUP toolbox (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/TOPUP).

Following initial processing, the surface-based neona-
tal parcellation approach, Melbourne Children’s Regional
Brain Atlases (MCRIB), was used to generate surfaces for
each subject and the volumetric resting-state BOLD time-
series were mapped to subject-specific surfaces using
established procedures adapted from the Human Con-
nectome Project as implemented in Connectome Work-
bench 1.2.3.

After mapping to the surface, each dataset underwent
rs–fc preprocessing. In the initial iteration, the data
were processed with the following steps: (i) demean
and detrend within run, (ii) multiple regression with
nuisance timeseries including white matter, ventricles,
extra-axial cerebrospinal fluid, and whole brain, as well
as 24-parameter Friston expansion regressors derived
from head motion. Next, frames contaminated by
motion were censored as described below. Finally, the
initial rs–fc preprocessing stream was repeated on the
output of the initial preprocessing using only the frames

that had passed motion criteria, with the addition of
interpolating censored frames and band-pass filtering
(0.009 Hz < f < 0.08 for children).

fMRI data were censored at FD > 0.25 mm, with the
additional restriction that only epochs of at least 3 con-
secutive frames FD < 0.25 mm were included. This FD
threshold was selected after taking into account the
smaller radius of infants’ heads (Smyser et al. 2010) and
reviewing motion traces in several subjects (Power et al.
2012; Power et al. 2014). In order to be included in the
study, a minimum of 10 min (750 frames) of data were
required. To test for any potential patterns of FC related
to head motion or amount of data, we calculated (i) the
number of frames retained after censoring, (ii) the %
of frames retained after censoring, (iii) the average FD
across all frames (precensoring), and (iv) the average FD
across all frames with FD < 0.25 mm for each individual
subject. The impact of different motion de-noising strate-
gies on age prediction and head motion prediction with
FC was also examined (Supplement 2).

fMRI data were aligned across subjects into the
“fs_LR32k” surface space using spherical registration.
Timecourses for surface data were smoothed with
geodesic 2D Gaussian kernels (σ = 2.25 mm). To test for
potential patterns of FC related to brain size or cortical
folding, we calculated (i) total brain volume (i.e. volume
of the number of voxels that are neither background,
extra-axial centrospinal fluid, ventricles, nor brain stem),
(ii) intracranial volume (i.e. volume of the number of
voxels inside the skull), and (iii) gyrification index (i.e. the
ratio of the area of the mid-thickness cortical surface to
the surface area of the cerebral hull (Shimony et al. 2016;
van Essen 2005)).
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Functional connectivity network construction
For each participant, whole-brain FC was generated by
extracting the timeseries from 333 previously-defined
surface parcels (Gordon et al. 2016, Fig. 1) and calculating
the Fisher z-transformed Pearson correlation between
each pair of parcels. For each individual, this yields a
333 × 333 correlation matrix. Because there is not yet
consensus on the spatial layout of neonatal functional
networks (Lin et al. 2008; Gao et al. 2009; Doria et al.
2010; Gao et al. 2015; Eyre et al. 2021), we used defini-
tions of functional networks derived in healthy adults
(Gordon et al. 2016). Functional networks include pro-
cessing networks like the auditory (AUD), visual (VIS),
somatomotor-hand (SMH), somatomotor-mouth (SMM),
retrosplenial (RST), and control and other association
networks like the frontoparietal (FP), cingulo-opercular
(CO), dorsal attention (DAN), ventral attention (VAN),
salience (SAL), default mode (DMN), and parietal memory
(PM). We also generated whole-brain FC using 400 and
1,000 previously-defined cortical parcels (Schaefer et al.
2018) to examine the potential role of parcellation on
subsequent analyses and results (Supplement 1).

Multivariate machine learning procedures
Support vector regression (SVR) with a linear kernel was
implemented to identify multivariate patterns of FC
that carry information about PMA at scan (Dosenbach
et al. 2010; Nielsen et al. 2019). This approach was
chosen because infant brain development is complex
and comprised of several developmental processes that
occur across many brain systems (Sydnor et al. 2021)
and because these methods have been previously used
to detect differences in brain maturity from FC in
infancy (Smyser et al. 2016b) and later in development
(Dosenbach et al. 2010; Satterthwaite et al. 2013; Nielsen
et al. 2019). SVR is a sensitive and powerful tool to
extract the multivariate relationship between a set of
many features (here, functional connections) and labels
(here, PMA at scan) in a training sample, which can
subsequently be applied to make predictions about
unseen test individuals. Ten-fold cross-validation was
used to identify patterns of FC in the training set (i.e. 90%
of the eLABE sample) and test whether these patterns
could accurately discriminate differences in maturity in
the remaining individuals in the test set (i.e. 10% of the
eLABE sample). Ten-fold cross-validation was repeated
with 100 random partitions of the dataset into training
and test sets to ensure that performance was not due to
serendipitous random seeding (Supplementary Fig. S3).

Age prediction in the eLABE sample
and the validation sample
First, all 55,278 functional connections among the 333
parcels were included as features and within-sample
age prediction was evaluated through 10-fold cross-
validation. Predictive approaches like SVR are designed
to optimize prediction and could potentially identify
multivariate patterns of FC that do not generalize to

describe early brain development outside of the original
training sample (Nielsen et al. 2020b). Cross-validation
alone is not a sufficient test of the robustness of data-
driven, multivariate predictive models (Varoquaux et al.
2017). For each fold of cross-validation, the identified
multivariate patterns of FC were also applied to predict
the PMA at scan of the individuals in the validation
sample. This generates a single predicted PMA at scan
based on FC for each individual in the eLABE sample and
10 predicted PMA at scan (i.e. for each fold of 10-fold
cross-validation) for each individual in the validation
sample. Performance was quantified by calculating the
correlation between the predicted PMA and actual PMA
(i.e. R2) in the eLABE and validation samples separately.
We then tested whether the predicted PMA based on
FC was significantly more accurate than expected
by chance. We used SVR to extract the multivariate
relationship between FC and randomly permuted PMA
at scan in the eLABE sample, a null age prediction model
(n = 100). Age prediction performance was then compared
to age prediction with the null models. Mean squared
error (MSE) was also calculated to evaluate age prediction
from FC in both the eLABE and validation samples.

Age prediction in relation to other covariates

The extent to which other variables potentially related to
PMA at scan (e.g. head motion and brain morphometry)
contributed to the observed age prediction with FC was
examined. Two approaches were employed to measure
the impact of the following variables: (i) precensoring
mean FD, (ii) postcensoring mean FD, (iii) amount of
data, (iv) head size (i.e. intracranial volume), and (v)
cortical folding (gyrification index). First, SVR was used
to determine the extent to which multivariate patterns
of FC carried information about these other covariates
(Supplement 2). Second, these covariates were regressed
from the FC and from PMA at scan before age prediction
and the impact on performance were examined. Within
each fold of 10-fold cross-validation, linear models were
fit to capture the relationship between the regressors
and the FC from each functional connection (55,278)
and the relationship between the regressors and PMA
at scan, separately in the training set and testing set.
The residuals from these models were then used as the
features and labels for training and testing with SVR. The
same strategy was used in the independent validation
sample. We examined the separate impact of data quality
regressors (motion and amount of data) and biological
regressors (intracranial volume and cortical folding) as
well as each individual regressor alone (Supplement 2).

Age prediction with FC from individual
functional networks
Second, only the FC from a single functional network was
used for age prediction. Feature selection (i.e. restricting
the number of features used for training) was used to
test the extent to which the FC from a single network
might capture the variance in FC related to age during
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the neonatal period. For each network, all connections
associated with parcels from a single functional network
(e.g. within the CO and between the CO and the rest
of the brain, Supplementary Fig. S1) were sub-selected
and then only those features were used for age predic-
tion. Because age prediction with FC can depend on how
many features are used (Nielsen et al. 2019, 2020b), for
each network a matched set of functional connections
randomly selected from the matrix was also generated
and then these randomly selected features were used for
age prediction. Fifty matched randomly selected feature
sets were generated for each network. The same number
of connections as in a single functional network was
randomly selected from multiple functional networks.
Age prediction with features from a single network was
then compared to age prediction with these matched
randomly selected features.

To further disentangle the relationship between age
prediction, network size, and network identity, age pre-
diction when the same number of features from the same
number of parcels were selected from each functional
network was compared. A number of parcels from a
single functional network was randomly sub-selected,
from a single parcel to the maximum number of parcels
in a network (e.g. for DMN = 41). Only the FC from the
connections associated with those sampled parcels was
then used as features for age prediction (number of
features: 333–13,653). This process was repeated 50 times
for each network and each parcel number. The average
age prediction as a function of sampled parcel number
was generated for each functional network.

Lastly, we compared age prediction when FC was sam-
pled from early developing vs. late developing functional
networks. A set number of parcels (10, 20, 30, 40, and 50)
were randomly sub-selected from either early developing
networks (SMH, SMM, AUD, VIS, and RST) or late devel-
oping networks (CO, FP, VAN, DAN, SAL, and DMN). Only
the FC from the connections with those sampled parcels
was then used as features for age prediction (number
of features: 3,330–16,650). This process was repeated 50
times for the early and late networks and for each par-
cel number. The null was generated by randomly sam-
pling from the entire set of parcels and using the sub-
selected FC for age prediction. Differences in age pre-
diction were statistically evaluated using the Steiger’s
paired t-statistic, which tests the null hypothesis that
2 variables (i.e. predicted PMA at scan using FC from
early or late networks) are equally linearly correlated
with a third variable (i.e. true PMA at scan; Steiger 1980).
Steiger’s t-statistics were used to compare age prediction
when using FC from parcels that were sampled from
early developing networks, late developing networks, or
randomly from the entire set.

Age prediction with permuted FC from individual
networks, blocks, or parcels
Feature permutation (i.e. manipulating a restricted set
of features used for testing) was used to investigate

whether a given set of features was necessary to capture
the brain-wide patterns of FC that facilitate age predic-
tion. Permutation sensitivity analysis disrupts the true
relationship between age and FC present in a limited
set of features by permuting these features across the
subjects in the test set (see Supplementary Fig. S2). The
model trained to predict age using all the features is
then applied to the test set containing permuted fea-
tures. Permuting these features will negatively impact
age prediction with brain-wide FC if a set of features is
uniquely important for age prediction. For each tested
set of features, the impact of 50 different permutations
of subject order in the test set for each fold of cross-
validation was averaged. This approach was applied at
the network, block, and parcel level as described below.

Networks

For each network, all connections associated with
parcels from a single functional network (e.g. within
the CO and between the CO and the rest of the brain,
Supplementary Fig. S1) were sub-selected and these
features were then permuted in the test set as described
above. To ensure that the impact of permuting the FC
of a given network was due to network identity and not
network size, the impact of permuting a matched set of
randomly selected connections was also examined. For
each network, we generated a matched set of functional
connections randomly selected from the matrix and
these features were then permuted in the test set.
Fifty matched randomly selected feature sets were
generated for each network. P-values were calculated
for each network by comparing age prediction (R2)
when features from a single network were permuted
and when randomly selected features were permuted.
False discovery rate was used to correct for the multiple
comparisons (12 networks).

Blocks of within-network and between-network connections

“Blocks” of FC comprised of either all connections among
the parcels within a single network (e.g. within CO) or
all connections between the parcels from 2 different
networks (e.g. CO-to-VIS) were sub-selected and these
features were then permuted in the test set as described
above. To ensure that the impact of permuting the FC of
a given block was due to the identity of the block and not
the number of connections in a block, the impact of per-
muting a matched set of randomly selected connections
was also examined. Fifty matched, randomly selected
feature sets were generated for each block. P-values were
calculated for each block by comparing age prediction
(R2) when features from a single block were permuted
and when randomly selected features were permuted.
False discovery rate was used to correct for the multiple
comparisons (67 blocks).

Parcels

The connections associated with a single parcel (analo-
gous to a seed map) were also selected and these features

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac242/6617686 by W

ashington U
niversity in St. Louis user on 05 July 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac242#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac242#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac242#supplementary-data


Ashley N. Nielsen et al. | 7

Table 1. Variables potentially related to PMA in the eLABE and validation samples.

eLABE sample
N = 262; 53% males; 37% white

Validation sample
N = 50; 58% males; 19% white

PMA at scan (weeks) 41.8 (1.3); 38.6–45.4 41.8 (1.6); 38.4–45.9

Mean (std);
min-max

Correlation w/
PMA at scan

Mean (std);
min-max

Correlation w/
PMA at scan

GA at birth (weeks) 38.5 (1.00);
37–41

r = 0.39;
P < 0.001

38.4 (1.01);
36–41

r = 0.39;
P = 0.004

Total brain size (cm3) 360 (38);
253–486

r = 0.51;
P < 0.001

353 (41);
281–437

r = 0.61;
P < 0.001

Cortical folding
(gyrification index)

1.98 (0.091);
1.72–2.22

r = 0.47
P < 0.001

2.00 (0.083);
1.78–2.19

r = 0.59;
P < 0.001

Amount of low motion
data (minutes)

16.6 (4.4);
10.1–41.9

r = −0.076;
P = 0.22

16.5 (4.5);
10.2–29.6

r = 0.15;
P = 0.29

Head motion (frame
displacement, mm)

0.078 (0.022); 0.036–0.15 r = −0.13;
P = 0.04

0.087 (0.022);
0.044–0.14

r = −0.30;
P = 0.037

were then permuted in the test set as described above.
The impact of permuting a matched set of randomly
selected connections was also examined. Five hundred
matched randomly selected feature sets were generated
as the null for all parcels. P-values were calculated for
each parcel by comparing age prediction (R2) when fea-
tures from a single parcel are permuted and when ran-
domly selected features are permuted. False Discovery
Rate was used to correct for the multiple comparisons
(333 parcels).

Results
Healthy, full-term infants (n = 262) were imaged during
natural sleep without sedation within the first month
of life (PMA: mean = 41.8; std = 1.25; range = 38–45 weeks)
as a part of the Early Life Adversity, Biological Embed-
ding, and Risk for Developmental Precursors of Men-
tal Disorders (eLABE) cohort. More detailed health and
demographic characteristics of the eLABE sample are
reported in Supplementary Table S1. An additional set
of healthy, full-term infants (n = 50) were imaged as a
part of separate studies (CUDDEL + O2P2, see Methods
and materials) using identical imaging parameters and
procedures at similar ages (PMA: mean = 41.8; std = 1.66;
range = 38–45 weeks) and were used to validate the gen-
eralizability of detectable patterns of FC related to PMA
during the first month of life. Among these infants, PMA
at scan was correlated with GA at birth, total brain size,
cortical folding, and also weakly related to estimates of
head motion and other demographic variables (Table 1).

Early development of brain systems can be
detected over the first month of life
Linear SVR—a multivariate pattern classification tech-
nique (Smyser et al. 2016a; Nielsen et al. 2019)—was
implemented to detect patterns of FC across the brain
that varied with age over the first month of life within
the eLABE sample. Multivariate patterns of brain-wide FC
(i.e. all 55,278 functional connection among 333 parcels)

identified with SVR were able to predict differences in
PMA at scan of neonates (R2 = 0.51, Fig. 2A) better than
expected by chance (P < 0.001), even within the narrow
window of development studied here (38–45 weeks; see
Supplement 1 for results with additional parcellation
schemes). Importantly, these patterns of brain-wide FC
identified in the eLABE sample were generalizable and
also predicted PMA at scan in the independent validation
sample (R2 = 0.59, Fig. 2B). Similar performance was
observed when age prediction was repeated with 100
different partitions of the eLABE dataset into training
and testing sets (Supplementary Fig. S3).

Further, age prediction from FC could not be entirely
explained by age-related covariates or other factors
with the potential to influence estimates of FC (e.g.
connection length and head motion). GA at birth,
total brain volume, cortical folding, and head motion
could be predicted from FC (Supplement 2; Table S2),
but prediction of these variables was poorer than
age prediction from FC (Supplement 2; Table S2). More
conservative frame censoring (FD < 0.15, FD < 0.10)
further diminished the prediction of head motion from
FC but did not impact age prediction (Supplement 3),
suggesting that head motion did not explain the relation
between brain maturity and FC. When these variables
(head motion, amount of data, brain size, and cortical
folding) were regressed out of the dataset, the residuals
still significantly predicted PMA at scan in the eLABE
sample (R2 = 0.31; Fig. 2C) and in the validation sample
(R2 = 0.34; Fig. 2D). Similar performance was observed
when this covariate regression procedure was repeated
with 100 different partitions of the eLABE dataset
into training and testing sets (Supplementary Fig. S3).
This reduction in prediction was primarily a result of
controlling for brain morphometry (intracranial volume
and cortical folding) rather than as a result of controlling
for data quality (head motion and amount of data;
Supplement 2, Table S3). However, brain morphometry
could not entirely explain the observed maturation in FC
over the first month of life as age prediction based on
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Fig. 2. A) Age prediction from brain-wide FC (333 parcels; 55,278 connections) in the eLABE sample obtained from a single train-test partition. Predicted
ages based on FC were generated through 10-fold cross-validation. In turn, 10% of the sample was kept aside and the remaining 90% of the sample was
used to identify patterns of FC related to PMA at scan, generating 10 separate models. The 10% of the sample that was left out of training was then used
for testing such that each subject in the entire eLABE sample has a predicted PMA at scan. B) Age prediction from brain-wide FC in the validation sample
using the models generated in the eLABE sample from a single train-test partition. Predicted ages based on FC for the validation sample were generated
for each of the 10 models generated through SVR and 10-fold cross-validation in the eLABE sample. Thus, each subject in the validation sample has 10
predicted PMA at scan. C) Age prediction from brain-wide functional connecting when controlling for head motion (pre- and post-censoring mean FD),
amount of data, head size (intracranial volume), and cortical folding (gyrification index) in the eLABE sample obtained from a single train-test partition.
D) Age prediction from brain-wide FC in the validation sample using the models controlling for these regressors in the eLABE sample from a single
train-test partition.

individual differences in FC outperformed age prediction
based on individual differences in the distance between
parcels (i.e. connection length; Supplement 4). Taken
together, these findings provide evidence of reproducible
developmental change across large-scale brain systems
in the initial weeks of life.

Each individual functional network can predict
age over the first month of life, but age
prediction varies by functional network
Does the development of FC during the neonatal period
differ across the brain and is it constrained by the
large-scale organization of brain systems? Functional
connectivity from each individual functional network
could predict differences in PMA within the neonatal
period better than expected by chance (range: R2 = 0.18–
0.47, P < 0.001), suggesting that both early and later
developing brain systems undergo changes during this

critical phase of development. Prediction of PMA differed
between functional networks, but was highly correlated
with network size (r = 0.89, P < 0.001; Fig. 3A). When FC
measures were sub-selected from the same number
of parcels from each functional network, prediction
of PMA still differed between functional networks
(Fig. 3B and Supplementary Fig. S4). After controlling
for network size in this manner, early developing brain
systems, on average, predicted age within the neonatal
period better than late developing brain systems (Fig. 3C
and Supplementary Fig. S5). The improved ability to
discriminate slight differences in age when using FC from
certain functional networks may be indicative of the
relatively faster development occurring in these brain
systems during the neonatal period. Importantly, FC from
any single network did not outperform prediction of PMA
from brain-wide FC (R2 = 0.51) or from FC using a matched
number of functional connections randomly selected
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from multiple functional networks (Fig. 3D). As such, no
single brain system, either early or late developing, was
sufficient to optimally characterize the maturity of an
individual neonate.

Age prediction worsens without FC from early
developing sensorimotor networks or the
cingulo-opercular network
These findings suggest that development of FC over the
first month of life is occurring brain-wide, such that the
developmental status of multiple functional networks
contributes to the most accurate estimates of the matu-
rity of an individual neonate. What would happen if a sin-
gle brain system were removed? Disrupting the FC from
early developing sensorimotor networks (visual, somato-
motor—hand, somatomotor—mouth, auditory) and one
later developing functional network (cingulo-opercular)
negatively impacted age prediction from brain-wide FC
more than expected by chance (Fig. 4B), suggesting that
these networks contain unique developmental informa-
tion for age prediction not represented elsewhere in the
brain. In line with the finding that FC from multiple func-
tional networks facilitate age prediction, the magnitude
of the effect was small—the largest difference between
the prediction of age from actual FC vs. permuted FC
was only R2 = 0.06. However, disrupting FC from these
functional networks had a significant impact on age
prediction when compared to disrupting FC that was
randomly selected from multiple functional networks.
Disrupting developmental information did not always
significantly impact age prediction, indicating that infor-
mation for age prediction from that network was redun-
dant and present elsewhere in developing brain-wide FC
(e.g. default-mode network, Fig. 4B). Developing FC from
sensorimotor and cingulo-opercular functional networks
differed from the development of FC occurring elsewhere
in the brain, potentially resulting from unique combina-
tions of different neurodevelopmental mechanisms.

This approach was extended to target and sepa-
rately disrupt only within-network connections (i.e.
connections among parcels within the same functional
network) or between-network connections (i.e. connec-
tions between the parcels from 2 separate functional
networks). Patterns of FC used for age prediction among
early developing sensorimotor networks and the later
developing cingulo-opercular network were again unique
such that age prediction worsened without this develop-
mental information (Fig. 4C and Supplementary Fig. S6).
Disrupting within-network connections from the visual,
auditory, somatomotor-hand, somatomotor-mouth, and
cingulo-opercular networks significantly impeded age
prediction from whole-brain FC. Only 1 block of between-
network connections that did not involve either early
developing sensorimotor networks or the cingulo-
opercular network was uniquely important for age
prediction (parietal memory to dorsal attention; Fig. 4C).
FC from all of the blocks that were uniquely impor-
tant for age prediction were examined and several

consistent developmental patterns were noted including
(i) increased connectivity strength of within-network
connections with PMA at scan in all but the somatosen-
sory networks, (ii) more strongly negative connectiv-
ity with PMA in the blocks of connections between
the default-mode and sensorimotor networks, and
(iii) more mixed increases/decreases in connectivity
strength with PMA in between-network connections
(Supplementary Fig. S7).

To address potential bias from the definitions of
functional networks derived in adults (Bryce et al. 2021),
this approach was modified to disrupt only connections
associated with a single parcel (i.e. analogous to a seed
map), independent of a priori network definitions. This
approach was also applied to 2 additional parcellation
schemes to control for any potential bias at the parcel
level (Supplement 1). In these analyses, disrupting FC
from regions belonging to early developing brain systems
(primary visual, auditory, somatosensory, and motor
cortices) and the cingulo-opercular network (anterior
insula and mid-cingulate) impeded the prediction of
PMA (Fig. 4D) and these findings were independent of
parcellation (Supplementary Fig. S8).

Discussion
The goal of this study was to track the development of
large-scale brain systems over the first month of life.
Our findings indicate that there are rapid and widespread
changes in large-scale brain systems during the neonatal
period and that FC can detect evidence of developmental
change within this narrow developmental window. Brain-
wide patterns of FC were able to predict PMA at scan
well and, importantly, generalized to an independently
collected validation sample. Each individual functional
network also predicted PMA, suggesting that developing
FC was present across all functional networks during the
neonatal period. However, the FC involving sensorimotor
networks and the cingulo-opercular network facilitated
better prediction of differences in PMA within the neona-
tal period and contained unique developmental informa-
tion for age prediction. Our findings shed new light on
the relative rate and scope of the development of brain
systems during the neonatal period as well as bolster the
promise of fc-MRI to facilitate the early detection and/or
prevention of atypical neurodevelopment.

Neonatal development occurs brain-wide in both
early and late developing brain systems
Our findings suggest that the neurodevelopmental pro-
cesses taking place after birth occur brain-wide such that
the development change in FC over the first month of life
is detectable in each large-scale brain system. After birth,
the brain matures by several different mechanisms (e.g.
increasing myelination, axonal pruning, synaptogenesis,
synaptic pruning, changes in ion channel function, and
changes in gene expression; Sydnor et al. 2021), and
the postnatal environment and experience can begin
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Fig. 3. A) The relation between age prediction and network size when using only FC involving a single functional network to predict age. Patterns of FC
related to PMA at scan involving parcels from a single functional network were identified with SVR in the eLABE sample. Variance explained (R2) was
quantified by comparing the predicted ages based on FC from a single network and true ages of the eLABE sample. B) The relation between age prediction
and network identity as a function of the number of parcels sampled from a single functional network. Patterns of FC related to PMA at scan involving a
set number (e.g. 20) of randomly selected parcels from a single network were identified with SVR in the eLABE sample. This process was repeated 50 times
for each possible subnetwork size for each functional network (e.g. 1–41 for the default-mode network, 1–4 for the salience network). Curves represent
the average age prediction across the 50 random repetitions. The full distribution of these curves is depicted in Supplementary Fig. S4. C) Comparison of
the variance explained (R2) when using FC sampled from early vs. late developing functional networks for age prediction. The results when 50 parcels
were sampled are depicted here and the results when fewer parcels were sampled are depicted in Supplementary Fig. S5. Statistical comparison of age
prediction was determine by Steiger’s t-test for comparing elements of a correlation matrix. A Steiger’s t-statistic that is larger than 1.95 indicates a
P-value < 0.05. Asterisks indicate that the difference in age prediction observed between the 2 types of feature sets (random, early, or late) generated a
Steiger’s t-statistic that was >1.95 for 28% (∗), 46% (∗∗), and 78% (∗∗∗) of the tested pairs. D) Comparison of the variance explained (R2) when using only FC
from a single network to predict age (circle) and the variance explained when using FC from a matched number (per each individual functional network)
of randomly selected connections from multiple networks to predict age (violin distribution). For each functional network, 50 randomly selected feature
sets were generated and patterns of FC related to PMA at scan were identified with SVR. Variance explained (R2) was quantified by comparing the
predicted ages based on FC from either a single network or randomly selected connections and true ages of the eLABE sample. Functional networks
were grouped according to early (light blue) and late (light red) developing brain systems.

to directly influence brain development (Dawson et al.
2000). Developing FC during the neonatal period was
present in both early and late developing brain systems,
demonstrating the scope of the potential impact of early
development on functional brain organization. Even
though the FC from sensorimotor networks appears
the most mature in infancy (Fransson et al. 2007; Lin
et al. 2008; Gao et al. 2009, 2015; Doria et al. 2010;
Smyser et al. 2010; Eyre et al. 2021), development is
ongoing during the neonatal period across all functional
networks. Furthermore, the presence of developing FC
during the neonatal period in late developing brain sys-
tems suggests that maturation, environment, and experi-

ence during this critical developmental window may also
shape the function and subsequent development of late
developing brain systems in which behavioral capacities
are not yet observable.

Developing FC differed in early developing brain
systems, potentially due to rapid maturation and
unique neurobiological mechanisms
Developing FC differed in early developing sensorimotor
networks (and the cingulo-opercular network) such that
the developmental change in these functional networks
was more pronounced and they were differentially
important for age prediction. Many developmental
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Fig. 4. A) Schematic of the comparison used to assess the unique importance of FC from a single network, block, or parcel for prediction of age within the
neonatal period. Connections from a single network, block, or parcel were randomly permuted before testing in each fold of cross-validation, removing
any potential developmentally relevant information for prediction of PMA. Age prediction with this permuted FC (white circle) was then compared to
age prediction with permuted FC from a matched set of randomly selected connections (gray distribution). Age prediction with actual FC (as depicted
in Fig. 2A) is also provided for reference (black line). Functional networks, blocks, or parcels were considered uniquely important if disrupting their
FC significantly impeded age prediction when compared to matched randomly selected connections and after correcting for multiple comparisons.
B) Reduction in age prediction when permuting FC from a single functional network. C) Blocks of within-network and between-network FC that are
uniquely important for age prediction. D) Parcels whose FC is uniquely important for age prediction colored by early vs. late developing and by functional
networks as depicted in Fig. 1.
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processes occur earlier and at a faster rate in sen-
sorimotor brain systems, potentially enabling better
prediction of an infant’s age in comparison to other brain
systems. During prenatal and postnatal development,
synaptogenesis (Huttenlocher and Dabholkar 1997),
dendritic growth and arborization (Travis et al. 2005),
the myelination, growth, and functional refinement of
thalamocortical connections (Flechsig Of Leipsic 1901;
Toulmin et al. 2015), the myelination of intra-cortical
connections (Miller et al. 2012), cortical expansion (Hill
et al. 2010), and the refinement of cortical microstructure
(Smyser et al. 2016c; Natu et al. 2021) occur earlier
and more rapidly in sensorimotor cortices than in
association cortices. The rapid maturation of brain
systems important for sensorimotor function coincides
with the sensitive periods for visual, motor, and language
development in which a child’s experience can shape
ongoing brain development (Johnson 2005; Lewis and
Maurer 2005; Werker and Tees 2005). Since FC is thought
to reflect a statistical history of co-activation across
the lifespan (Lewis et al. 2009; Harmelech and Malach
2013; Shannon et al. 2016), it is possible that developing
FC in sensorimotor brain systems can detect the rapid
changes in the expression of sensorimotor behaviors that
occur shortly after birth. The emergence of white matter
tracts prenatally foreshadows subsequent maturation
of functional networks as projection tracts involving
sensorimotor brain systems (e.g. internal capsule, corona
radiata, corticospinal tract, and thalamic radiations) are
identifiable earlier than association tracts (e.g. interior
longitudinal fasiculus, superior longitudinal fasiculus,
and uncinate) (Ouyang et al. 2019). The rapid growth and
refinement of thalamo-cortical fibers during the third
trimester such that primary sensorimotor cortex (i.e.
early developing brain systems) appears more refined
that that of multimodal cortex (i.e. late developing brain
systems; Huttenlocher and Dabholkar 1997; Travis et al.
2005; Petanjek et al. 2011) may potentially set the stage
for differential rates of maturing brain function over the
first month of life (Toulmin et al. 2015). The combination
of differential changes to brain structure (Flechsig Of
Leipsic 1901; Huttenlocher and Dabholkar 1997; Travis
et al. 2005; Hill et al. 2010; Miller et al. 2012; Toulmin
et al. 2015; Smyser et al. 2016c; Natu et al. 2021), gene
expression (Kwan et al. 2012; Pletikos et al. 2014), and
experience (Johnson; Lewis and Maurer 2005; Werker and
Tees 2005) during gestation and infancy is unique to each
sensorimotor brain system and potentially underlies the
unique patterns of FC that were necessary for optimal
prediction of PMA within the neonatal period. Our find-
ings corroborate that there is differential development of
early developing sensorimotor brain systems and these
differences in maturation can be distinguished shortly
after birth. Further work is needed to isolate the specific
neurobiological processes contributing to the unique and
rapid maturation of FC in sensorimotor networks during
the neonatal period.

Developing FC from the cingulo-opercular
network resembled early developing brain
systems, highlighting a key role in early brain
development
Even though the cingulo-opercular network exhibits
extensive development later in childhood and adoles-
cence (i.e. late developing) as children begin to acquire
more sophisticated cognitive control strategies (Luna
et al. 2015), rapid and unique development of the cingulo-
opercular network was found over the first month
of life, similar to early developing sensorimotor brain
systems. When fully mature, the cingulo-opercular
network (originally labeled the salience network by
Seeley et al. 2007; see Uddin et al. 2019 for discussion of
taxonomy) plays a crucial role in executive functioning
and is important for detecting, responding to, and
learning from errors (Neta et al. 2014; Roe et al. 2021),
for pain/disgust processing (Nevian 2017; Sharvit et al.
2019), and for conflict monitoring (Carter et al. 1998;
Botvinick et al. 1999). In particular, the insula plays a
key role in the cingulo-opercular network integrating
sensorimotor, chemical sensory, cognitive, and social–
emotional processing (Kurth et al. 2010). It is possible
that during this developmental period, the cingulo-
opercular network is critical to learning the patterns
of sensorimotor activity that code for errors, pain,
and conflict later in development. Our results indicate
that FC between the cingulo-opercular network and
sensorimotor networks was important for capturing
differences in maturity during the neonatal period
(Fig. 4C). These results are consistent with structural
studies of fetal brain development, which demonstrate
the insula (part of the cingulo-opercular network) is
first to undergo differentiation (Streeter et al. 1912),
folding, and vascularization (Afif et al. 2007). Maturation
of cortical microstructure emanates outward from the
insula during early gestation in nonhuman primates
(Sidman 1982; Kroenke et al. 2007). Lastly, the anatomy
and cytoarchitecture of regions in the cingulo-opercular
network vary substantially across individuals in adult-
hood (Vogt et al. 1995); the current results indicate
that FC of these regions matures in a unique and rapid
manner over the first month of life suggesting that the
individualization of functional networks might begin in
infancy. Further work is needed to better elucidate the
special role of the cingulo-opercular network in early
brain development.

Functional connectivity MRI is a promising tool
for evaluating neonatal brain maturity
This work has demonstrated that FC can be used to
detect slight differences in age during the first month of
life and may be a powerful neuroimaging tool to assay
early brain maturity. This result, combined with studies
of prematurely born infants identifying FC related to
small differences in age (i.e. GA at birth from 28 to
40 weeks; Doria et al. 2010; Smyser et al. 2010, 2016a;
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Ball et al. 2016), corroborate that FC is a sensitive indi-
cator of brain development during infancy. In the eLABE
sample, estimates of age from resting-state functional
MRI were more accurate and sensitive (R2 = 0.51) than
estimates from total brain volume (R2 = 0.25) or corti-
cal folding (R2 = 0.23), demonstrating the added value of
assessing brain function. When PMA was split into pre-
natal and postnatal components (i.e. gestational age at
birth and weeks between birth and scan), FC could better
predict postnatal maturation (weeks between birth and
scan: R2 = 0.35) than prenatal maturation (GA at birth:
R2 = 0.10; Supplement 2), providing further evidence that
FC continues to mature after birth and may be influ-
enced by postnatal experience and environment. The
potential clinical utility of estimates of brain maturity
using FC is also bolstered by our demonstration of the
generalizability of age prediction in an independently
collected validation sample composed of newborns that
were studied independently, but in a similar manner (e.g.
procedures, sequences, scanner, and site). This demon-
stration of a robust, normative brain “growth curve” dur-
ing infancy is a crucial first step towards clinical trans-
lation, the identification of atypical brain maturity, and
investigation of the impact of protective or deleterious
experiences on early brain development. Deviations from
expected brain maturity estimated from neuroimaging
have been used to indicate clinical impairment in adoles-
cence (Nielsen et al. 2020a; Parkes et al. 2021), but future
work remains necessary to determine the clinical signif-
icance and predictive value of deviations from expected
brain maturity in infancy.

Limitations
Our findings should be viewed in light of the current
study’s limitations. First, the current study leveraged
cross-sectional differences in PMA across neonates to
track the development of large-scale brain systems over
the first month of life, but it did not directly examine
longitudinal developmental changes in brain systems.
As such, individual developmental trajectories of brain
systems may differ from the cross-sectional develop-
mental differences described in this work. Second, our
ability to assay brain maturity is limited by the preci-
sion of estimates of an infant’s maturity. The date of
an infant’s conception is difficult to determine (except
in the case of in vitro fertilization) such that GA at
birth is an estimate within ± 2 weeks of the true matu-
rity of the newborn. Furthermore, multivariate pattern
classification techniques are a powerful tool to detect
subtle and complex differences in neuroimaging data,
but also come with a set of challenges (Cui and Gong
2018; Bzdok and Ioannidis 2019; Davatzikos 2019; Nielsen
et al. 2020b). Because these approaches are sensitive to
multivariate patterns but are agnostic to the source of
these patterns, the observed age prediction from FC could
be artificially enhanced by variation in FC attributable to
age-related confounding variables (Nielsen et al. 2020b).
This study demonstrated that prediction of PMA within

the neonatal period using FC was not driven entirely
by confounding variables like brain size, cortical folding,
or head motion (Supplement 2), but it is possible that
other unknown or unmeasured variables are contribut-
ing to our observed age prediction. Because the infant
FC was acquired during sleep, it is possible that age-
related changes in sleep activity or sleep stage may pro-
duce differences in FC and might facilitate age predic-
tion. Although this study employed cutting-edge surface-
based strategies to process the infant resting-state fMRI,
aligning these data with an adult template may not
be ideal (Gaillard et al. 2001; Kazemi et al. 2007) and
may have consequences for age prediction because of
the neuroanatomical differences between infants and
adults. These findings should be replicated as infant
atlases become more available (Dufford et al. 2022). In
addition, though several approaches were employed to
demonstrate the importance of different functional net-
works for age prediction, the multivariate nature of pat-
tern classification techniques makes it difficult to truly
isolate and interpret what specific functional connec-
tions enable age prediction (Nielsen et al. 2020b). Lastly,
brain systems and parcels were defined according to the
functional network organization of healthy adults (Power
et al. 2011; Gordon et al. 2016). Even though consistent
results were identified when examining developing FC at
the parcel level (Fig. 4D) and across 2 additional parcella-
tions (Supplement 1), it is possible that the development
of FC during infancy may better align with functional
networks and/or parcellation schemes defined in infants
Bryce et al. 2021.

In summary, the current study reveals that the devel-
opment of large-scale brain systems over the first month
of life involves the complex coordination of multiple
brain systems. During this foundational developmental
window marked by rapid maturation, novel experiences,
and heightened plasticity, developing FC was present
brain-wide, highlighting the potential cascading impact
of atypical brain maturation during infancy. Early brain
development appeared to be constrained by the large-
scale brain organization and the different functions and
behaviors these neural systems support. These obser-
vations highlight the promise of fc-MRI as a tool for
investigators wanting to study the neural mechanisms
underlying the early development of large-scale brain
systems and for clinicians desiring to detect atypical
brain development early to prevent negative outcomes.
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