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Reproducible brain-wide association studies 
require thousands of individuals
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Magnetic resonance imaging (MRI) has transformed our understanding of the human 
brain through well-replicated mapping of abilities to specific structures (for example, 
lesion studies) and functions1–3 (for example, task functional MRI (fMRI)). Mental 
health research and care have yet to realize similar advances from MRI. A primary 
challenge has been replicating associations between inter-individual differences in 
brain structure or function and complex cognitive or mental health phenotypes 
(brain-wide association studies (BWAS)). Such BWAS have typically relied on sample 
sizes appropriate for classical brain mapping4 (the median neuroimaging study 
sample size is about 25), but potentially too small for capturing reproducible brain–
behavioural phenotype associations5,6. Here we used three of the largest 
neuroimaging datasets currently available—with a total sample size of around 50,000 
individuals—to quantify BWAS effect sizes and reproducibility as a function of sample 
size. BWAS associations were smaller than previously thought, resulting in 
statistically underpowered studies, inflated effect sizes and replication failures at 
typical sample sizes. As sample sizes grew into the thousands, replication rates began 
to improve and effect size inflation decreased. More robust BWAS effects were 
detected for functional MRI (versus structural), cognitive tests (versus mental health 
questionnaires) and multivariate methods (versus univariate). Smaller than expected 
brain–phenotype associations and variability across population subsamples can 
explain widespread BWAS replication failures. In contrast to non-BWAS approaches 
with larger effects (for example, lesions, interventions and within-person), BWAS 
reproducibility requires samples with thousands of individuals.

MRI data (such as cortical thickness or resting-state functional connectiv-
ity (RSFC)) are increasingly being used for the ambitious task of relating 
individual differences in brain structure and function to typical variation 
in complex psychological phenotypes (for example, cognitive ability 
and psychopathology). To clearly distinguish such BWAS from other 
neuroimaging research, we formally define them as ‘studies of the asso-
ciations between common inter-individual variability in human brain 
structure/function and cognition or psychiatric symptomatology’. Clas-
sically univariate, BWAS have recently been facilitated by more powerful,  
but more difficult to interpret multivariate prediction techniques (for 
example, support vector regression (SVR) and canonical correlation 
analysis (CCA)). BWAS hold great promise for predicting and reducing 

psychiatric disease burden and advancing our understanding of the cogni-
tive abilities that underlie humanity’s intellectual feats. However, obtain-
ing MRI data remains expensive (approximately US$1,000 per hour), 
resulting in small-sample BWAS findings that have not been replicated7–10.

Factors that have contributed to poor reproducibility of 
population-based research in psychology11, genomics12 and medi-
cine13, such as methodological variability14, data mining for signifi-
cant results15, overfitting16, confirmation and publication biases17, and 
inadequate statistical power5 probably also affect BWAS. Researchers 
are starting to address replication failures by standardizing analyses, 
pre-registering hypotheses, publishing null results and sharing data 
and code18. Nevertheless, there have been concerns that reliance on 
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relatively small samples (the median sample size (n) in openneuro.org 
studies as of September 2021 is 23) may also be contributing to BWAS 
replication failures5,19–21. Small studies are most vulnerable to sampling 
variability, the random variation of an association across population 
subsamples. Sampling variability decreases and associations stabilize 
with increasing sample sizes19,22, at a rate of √n. Thus, if true brain-wide 
associations were smaller than previously assumed (for example, bivari-
ate linear correlation r = 0.2–0.8), larger samples would be required to 
accurately measure them19,20. Other population-based sciences aiming 
to robustly characterize relatively small effects—such as epidemiology 
and genomics (that is, genome-wide association studies (GWAS))—have 
steadily increased sample sizes12 from below 100 to over 1,000,000.

Recently, neuroimaging consortia have collected samples orders 
of magnitude larger than before (for example, the Adolescent Brain 
Cognitive Development23 (ABCD) study, n = 11,874; Human Connec-
tome Project24 (HCP), n = 1,200; and UK Biobank25 (UKB), n = 35,735), 
enabling accurate estimation of BWAS effect sizes. Beginning with 
the ABCD Study and using the HCP and UKB data for verification, we 
performed billions of univariate and multivariate analyses to evaluate 
BWAS effect sizes and reproducibility as a function of sample size, using 
sample sizes from small (n = 25) to large (n = 32,572).

Precise BWAS require large samples
BWAS relate population variability in brain features (for example, RSFC 
between two brain regions (edge)) and behavioural phenotypes (for 
example, cognitive ability). To estimate brain-wide associations in 
ABCD data, we correlated widely used cortical thickness and RSFC 
metrics with 41 measures indexing demographics, cognition and 
mental health (Supplementary Table 1). Brain-wide associations were 
estimated across multiple levels of anatomical resolution in both struc-
tural (cortical vertices, regions of interest (ROI) and networks) and 
functional (connections (edges), principal components and networks) 
MRI data (Fig. 1). To ameliorate the effects of nuisance variables such as 
head motion, we applied strict denoising strategies (n = 3,928; >8 min; 
RSFC data post frame censoring at a filtered framewise displacement 
(filtered-FD) < 0.08 mm; Methods, ‘DCANBOLDproc preprocessing’). 
Repeat analyses using less rigorous motion censoring that retained a 
larger subset of the full ABCD sample (n = 9,753), produced a similar 
BWAS effect size distribution (Supplementary Fig. 1).

BWAS analyses frequently link a single brain feature to a single 
behavioural phenotype. In Fig. 1a, b, we show the distributions of such 
univariate associations between cortical thickness and RSFC and two 
extensively studied phenotypes, cognitive ability (NIH Toolbox total 
score) and psychopathology (child behaviour checklist (CBCL) total 
score; Methods, ‘Psychological and demographic data’; Supplementary 
Table 1; Supplementary Fig. 2 for non-overlapping histograms). In the 
full, rigorously denoised ABCD sample (n = 3,928), across all brain-wide 
associations, the median univariate effect size (|r|) was 0.01 (Extended 
Data Fig. 1). The top 1% largest of all possible brain-wide associations 
(around 11 million total associations) reached a |r| value greater than 
0.06 (Fig. 1a, b). The top 10% largest associations were distributed 
across sensorimotor and association cortex (Fig. 1c, d). Across all uni-
variate brain-wide associations, the largest correlation that replicated 
out-of-sample was |r| = 0.16. Sociodemographic covariate adjustment 
resulted in decreased effect sizes, especially for the strongest associa-
tions (top 1% Δr = −0.014; Extended Data Fig. 2).

Smaller brain-wide association studies have reported larger univari-
ate correlations (r > 0.2) than the largest effects we measured in much 
larger samples. To resolve this apparent contradiction, we simulated 
the effects of independent research groups using samples of vary-
ing sizes to estimate the same brain–phenotype association. For the 
strongest univariate brain-wide associations, we charted sampling 
variability as a function of sample size (Fig. 1e, f, n = 25–3,928). At n = 25, 
the 99% confidence interval for univariate associations was r ± 0.52, 

documenting that BWAS effects can be strongly inflated by chance. 
In larger samples (n = 1,964 in each split half), the top 1% largest BWAS 
effects were still inflated by r = 0.07 (78%), on average (Supplementary 
Fig. 3). At n = 25, two independent population subsamples can reach 
the opposite conclusion about the same brain–behaviour association 
(for example, Fig. 1g, h), solely owing to sampling variability. See Sup-
plementary Figs. 4–6 for sampling variability by sample size plots for 
all brain metrics and behavioural phenotypes.

Task fMRI data have also been correlated with cognitive phenotypes. 
Recent studies have suggested that treating task fMRI data similar to 
RSFC and combining the two modalities could strengthen BWAS effects 
slightly26. Therefore, we also estimated univariate BWAS associations for 
combined task and rest functional connectivity in ABCD Study data27, 
which produced the same distribution of association strengths (top 
1% |r| > 0.06) as RSFC. The HCP collected a wide variety of fMRI tasks, 
enabling us to compute all brain-wide associations between 86 task 
activation contrasts and 39 behavioural measures. The distributions 
of BWAS effect sizes for classical task fMRI activations and RSFC were 
closely matched (Extended Data Fig. 3, Supplementary Discussion).

Low measurement reliability can attenuate the observed correlation 
between two variables. Within-person measurement reliability for the 
exemplar behavioural phenotypes (NIH Toolbox28, r = 0.90; CBCL29, 
r = 0.94) and imaging measures (cortical thickness30, r > 0.96; RSFC: ABCD, 
r = 0.48; HCP, r = 0.79; UKB, r = 0.39; Extended Data Fig. 4) are moderate 
to high. Whereas behavioural (NIH Toolbox, CBCL) and cortical thickness 
measures are already close to their reliability ceiling, further improve-
ments in RSFC measurement reliability could theoretically increase effect 
sizes slightly (Supplementary Fig. 7, Supplementary Discussion). Theo-
retical maximum BWAS effect sizes are unlikely to be reached owing to 
fundamental biological limits on the strength of the true association and/
or the limitations of behavioural phenotyping and MRI physics.

Effect sizes replicate across datasets
Since the ABCD Study data (n = 11,874; age range: 9–10 years; 20 min, 
RSFC collected) were from a 21-site paediatric cohort (multiple scan-
ner types), we sought to replicate BWAS effect sizes in single-site, 
single-scanner-type adult data. Thus, we used the HCP dataset which 
contains the most data per participant among large studies (n = 1,200; 
age range: 22–35 years; single scanner; 60 min, RSFC collected), and the 
UKB dataset which has the largest sample size, but less RSFC data per par-
ticipant (n = 35,735; age range: 40–69 years; single scanner type; 6 min, 
RSFC collected), to verify univariate BWAS effect size distributions. All 
three datasets overlapped in containing RSFC and cognitive ability data. 
To control for sample size effects, the ABCD and UKB datasets were 
subsampled to match the HCP (n = 900, strict denoising). Across the 
three size-matched datasets we found similar effect size distributions 
for associations between RSFC and cognitive ability (Fig. 2; top 1% at 
n = 900 ABCD, |r| > 0.11; HCP, |r| > 0.12; UKB, |r| > 0.09; Extended Data 
Fig. 5; see Supplementary Fig. 8 for all ABCD/HCP cognitive measures).

To account for potential multi-site effects, we directly compared 
sampling variability between the HCP (single site) and ABCD datasets 
(Extended Data Fig. 6a), and between a single ABCD site (n = 603) and 
the 20 remaining sites (Extended Data Fig. 6b). Sampling variability 
was equivalent for single- and multi-site samples, underscoring the 
effectiveness of the ABCD Study’s cross-site harmonization efforts23. 
The generalizability of the univariate BWAS effect size distribution 
(Fig. 2, Extended Data Figs. 5, 6) across age (9–69 years), sites, scanner 
types and pulse sequences suggests that it is universal to BWAS with 
current technologies and methods.

Statistical errors limit reproducibility
Statistical error rates depend on effect sizes and significance test-
ing thresholds. To quantify how the pairing of smaller than expected 
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effect sizes and sampling variability (that is, random variation of an 
association across population subsamples) affects BWAS reproduc-
ibility, we used non-parametric bootstrapping19 to generate smaller 
BWAS subsamples and characterized the relationship between statisti-
cal errors and sample size across significance thresholds (P < 0.05 to 
P < 10−7; Fig. 3, Supplementary Fig. 9 for UKB) and verified the results 
with analytic statistical power estimations31 (Supplementary Fig. 10).

Statistical errors were pervasive across BWAS sample sizes. Even for 
samples as large as 1,000, false negative rates (Fig. 3a) were very high 
(75–100%) and half of the statistically significant associations were 
inflated by at least 100% (Fig. 3b). More lenient statistical thresholding 
reduces false negatives and effect size inflation, but increases the rate 
of sign errors (Fig. 3c). Statistical power (1 − false negative rate), which 
indexes the probability of detecting a significant effect, remained low 
even for relatively large sample sizes: maximum statistical power 0.68 
for n = 3,928 (Fig. 3d).

Given the high statistical error rates and low power of univariate 
BWAS in typically sized samples, we quantified the probability that a 
significant univariate association would replicate in a size-matched 
replication dataset (Fig. 3e; P from 10−7 to 0.05). In keeping with com-
mon practice, we defined successful replication as passing the same 
statistical threshold in sample and out of sample. At the largest split 
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Fig. 1 | Effect sizes and sampling variability of univariate brain-wide 
associations. ABCD Study sample data (n = 3,928). a, b, Effect sizes were 
estimated using standard correlations (bivariate linear r). Brain-wide 
association histograms (normalized to per panel maximum bin) of cortical 
thickness with cognitive ability (left, green) and psychopathology (right, 
purple) at all levels of analysis (vertex, ROI and network; for separated levels of 
analysis see Supplementary Fig. 2a, b) (a), and RSFC with cognitive ability (left, 
green) and psychopathology (right, purple) at all levels of analysis (edge, 
network and component) (b). c, d, The largest brain-wide associations (ROI, top 
10%) for cortical thickness with cognitive ability (left, green) and 
psychopathology (right, purple) (c), and RSFC with cognitive ability (left, green) 
and psychopathology (right, purple) (d). e, f, Sampling variability (1,000 
resamples per sample size in logarithmically spaced bins: n = 25, 33, 50, 70, 100, 

135, 200, 265, 375, 525, 725, 1,000, 1,430, 2,000, 2,800 and 3,604 (3,928 for 
cortical thickness)) of the largest brain-wide association for each brain–
behavioural phenotype pair, for cortical thickness with cognitive ability (left, 
green) and psychopathology (right, purple) (e), and RSFC with cognitive ability 
(left, green) and psychopathology (right, purple) (f). Solid lines represent the 
mean across 1,000 resamples. Shading represents the minimum to maximum 
correlation range across subsamples, for a given sample size. Grey dashed line 
represents the 95% confidence interval and the black dashed line represents the 
99% confidence interval. f, g, Examples of two n = 25 subsamples, in which 
inaccurate default mode network (DMN) correlations were observed for cortical 
thickness with cognitive ability (left, green) and psychopathology (right, 
purple) (g), and RSFC with cognitive ability (left, green) and psychopathology 
(right, purple) (h). Black dashed line denotes linear fit from full sample.
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Fig. 2 | Effect sizes of brain-wide associations are consistent across the 
largest neuroimaging study samples. Univariate BWAS effect sizes from 
correlations (linear bivariate r) between fluid intelligence and edge-wise RSFC 
are shown for HCP, ABCD and UKB study samples. The ABCD (n = 3,928) and 
UKB (n = 32,572) datasets were subsampled (with replacement) 100 times to 
match the HCP sample size (n = 900), revealing consistent effect sizes 
(medians: HCP |r| = 0.03, ABCD |r| = 0.03, UKB |r| = 0.02). See Extended Data 
Fig. 5 for UKB resampling to both ABCD and HCP sample sizes.
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half sample size (n = 1,964), 25% of univariate BWAS replications suc-
ceeded with a threshold of P < 0.05. At sample sizes more typical for 
BWAS (n < 500), replication rates were around 5% (Fig. 3e).

Paradoxically, correcting for multiple comparisons reduces the prob-
ability of successfully replicating univariate BWAS effects (Fig. 3d, e). 
More stringent statistical thresholding reduces false positive rates 
(Fig. 3f) but increases false negative rates (Fig. 3a), thus lowering sta-
tistical power (Fig. 3d, Extended Data Fig. 7). In underpowered BWAS, 
stricter statistical thresholds select for very large correlations, which 
are the most likely to be inflated due to sampling variability (Fig. 1e, f). 
With Bonferroni multiple-comparisons correction (P < 10−7), a sample 
size of 9,500 was required to be 80% powered for detecting the top 1% 
largest (r > 0.06) BWAS effects (Supplementary Fig. 10a), compared 
with a sample size of 2,200 for uncorrected P < 0.05 (Supplementary 
Fig. 10b).

Multivariate BWAS reproducibility
Multivariate methods use weighted brain patterns to predict a single 
behavioural phenotype (SVR; for example, cognitive ability), or com-
binations of multiple phenotypes (CCA; for example, all NIH Toolbox 
subscales). To examine multivariate brain-wide associations as a func-
tion of sample size, we trained SVR (Supplementary Figs. 11–13) and CCA 
(Supplementary Figs. 14, 15) models on discovery set data (in-sample; 
including nested cross-validation (SVR) and principal component 
analysis (PCA) dimensionality reduction (SVR and CCA); Methods, 
‘Multivariate out-of-sample replication’) and subsequently tested their 
generalization to the replication set using standard out-of-sample 
estimates of SVR (rpred) and CCA (rCV1) association strength (Fig. 4). Sam-
pling variability was assessed by generating bootstrapped subsamples 
(n = 100) for each sample size. Multivariate out-of-sample associations 
were tested for statistical significance using nonparametric null dis-
tributions (>99% confidence interval).

Across multivariate methods (SVR and CCA), imaging modalities 
(cortical thickness and RSFC), and behavioural phenotypes (cogni-
tive ability and psychopathology), small discovery samples typical for 
neuroimaging generated variable, inflated in-sample associations that 
frequently did not pass statistical significance thresholds (Fig. 4a–d). 
Increasing sample sizes to thousands of participants provided mod-
erate statistical replication with reduced variability and smaller 
differences between in-sample and out-of-sample associations. On 
average, RSFC (versus cortical thickness) and cognitive (versus psycho-
pathology) measures provided stronger out-of-sample associations 
(Fig. 4a–d) that were closer to in-sample estimates (Fig. 4e). Narrow-
ing the definition of replication to detecting statistical significance 
in out-of-sample data did not alleviate the need for large sample sizes 
(Supplementary Table 2).

Multivariate out-of-sample associations were stronger compared to 
univariate, particularly at large sample sizes (for example, maximum 
RSFC–crystallized intelligence association: SVR rpred = 0.39, univariate 
r = 0.16). Even at the largest sample sizes (n ≈ 2,000), multivariate 
in-sample associations remained inflated on average (in-sample to 
out-of-sample: Δr = −0.29; Fig. 4e, Supplementary Fig. 16; see Extended 
Data Fig. 8 for univariate) and feature weights were variable (Supple-
mentary Fig. 13). Out-of-sample replication was maximized by using 
a relatively low-dimensional feature space (Supplementary Figs. 11, 
12, 14, 15), reaffirming that brain-wide associations are represented in 
widely distributed circuitry, consistent with univariate BWAS (Fig. 1c, 
d). Across behavioural phenotypes, multivariate out-of-sample 
associations were robustly linked to univariate effect sizes (r = 0.79, 
P < 0.001; Fig. 4f).

The underpowered BWAS paradox
At smaller sample sizes, the largest, most inflated BWAS effects are 
most likely to be statistically significant and therefore, paradoxically, 
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the most likely to be published5,21,32. Typically, BWAS have been suf-
ficiently powered to only detect statistical significance for inflated 
associations (Fig 3d). High sampling variability in smaller samples fre-
quently generates strong associations by chance19 (Fig. 1e, f). Stricter 
in-sample statistical thresholding (that is, multiple-comparison  
correction)—which is common in neuroimaging—lowers BWAS 
power, thus trapping us deeper in the paradox by selecting for even 
more inflated effects (Fig. 3). When attempting to replicate inflated 
BWAS associations, regression to the mean (actual effect size) makes 
non-significance (that is, replication failure) the most likely outcome 
(Figs. 3, 4, Extended Data Fig. 8). Bias in favour of significant, larger 
BWAS effects has limited the publication of null results, perpetuating 
inflated effect sizes that form the basis for subsequent power and 
meta analyses.

Importance of small-sample neuroimaging
There is no one-size-fits-all solution for neuroimaging studies; 
minimum sample size requirements depend on the study design. 

Neuroimaging-only studies are typically adequately powered at small 
sample sizes. For example, central tendencies of human functional 
brain organization among groups can be accurately represented by 
averaging within small samples (that is, n = 25; Supplementary Fig. 17). 
Precise individual-specific RSFC and fMRI activation brain maps can be 
generated by repeatedly sampling the same individual33. Small samples 
have also provided blueprints for reducing MRI artefacts34, increasing 
the amount of usable data35.

Using non-BWAS approaches, many fundamental links between 
the human brain and behaviour have been uncovered and repli-
cated in small neuroimaging samples36. Within-person designs (for 
example, longitudinal37), studies with induced effects (for exam-
ple, lesions38 or tasks39), or both (for example, interventions40)  
frequently have increased measurement reliability and effect sizes. 
For rarer clinical conditions, amassing large samples is impossible. 
In many cases, within-person, induced-effects approaches are not 
only cost-effective, but also most relevant to clinical care. Thus, 
small-sample neuroimaging will always be critical for studying the 
human brain.
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Importance of large samples for BWAS
Large neuroimaging consortium data (ABCD, HCP and UKB) have 
revealed that small BWAS effects and population sampling variability 
routinely results in inflated, irreproducible brain–phenotype associa-
tions until sample sizes reach well into the thousands (Extended Data 
Fig. 9). Therefore, BWAS should use datasets with at least thousands of 
high-quality, standardly processed samples14. Additional consideration 
should be given to potential confounding effects and interpretations 
of statistical significance41.

The recovery of genomics from its reproducibility crisis has set a 
valuable example for BWAS12. Early candidate-gene studies were under-
powered and many associations between common genetic variants 
and psychiatric phenotypes could not be replicated42. In response, 
GWAS consortia have grown genomic samples into the millions43 and 
taken advantage of specialized study designs (for example, twins)  
and methodological innovations (for example, polygenic risk scores) 
and set strict data standards. Fortunately, BWAS findings can achieve 
reproducibility in relatively smaller samples than GWAS, owing to larger 
effect sizes.

Reproducibly linking brain and behaviour
All brain–behaviour studies will benefit from technological advances 
that generate higher quality brain and behavioural data with greater 
efficiency, such as real-time quality control35, multi-band multi-echo44 
sequences and thermal denoising for fMRI45, as well as deep behavioural 
phenotyping with ecological momentary assessment46 and passive 
sensing.

As with GWAS47, funding agencies should boost the aggregation of 
BWAS-appropriate datasets through mandatory sharing policies. Even 
for large datasets collected and processed identically, in-sample asso-
ciations are stronger than out-of-sample replications (Fig. 4e, Extended 
Data Fig. 8); therefore, reporting both in-sample and out-of-sample 
effect sizes should be a requirement for publication and funding. BWAS 
may also benefit from focusing data collection on the most robust 
brain–phenotype associations (for example, functional versus struc-
tural and direct behavioural versus questionnaire).

The brain, in contrast to the genome, is expected to change over time 
and can be manipulated ethically. For greater effect sizes and statistical 
power, neuroscience should focus on within-participant study designs 
over cross-sectional study designs, and on interventional (therapy, 
medications, brain stimulation and surgery) over observational study 
designs. Rather than associating pre-defined psychological constructs 
and brain features48, data-driven, combined brain–behaviour pheno-
types will further advance our understanding of cognition and mental 
health. Altogether, our prospects for linking neuroimaging markers to 
complex human behaviours are better than ever.
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maries, source data, extended data, supplementary information, 
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Methods

ABCD Study sample
This project used the baseline ABCD BIDS (Brain Imaging Data Struc-
ture) data consisting of RSFC data from 10,259 participants released 
through the ABCD-BIDS Community Collection51 (ABCD collection 
3165; https://github.com/ABCD-STUDY/nda-abcd-collection-3165) 
and demographic and behavioural data from 11,572 9–10 year old par-
ticipants from the ABCD 2.0 release52. The ABCD Study obtained cen-
tralized institutional review board (IRB) approval from the University 
of California, San Diego. Each of the 21 sites also obtained local IRB 
approval. Ethical regulations were followed during data collection and 
analysis. Parents or caregivers provided written informed consent, and 
children gave written assent.

In addition to data from the ABCD 2.0 release, we used the ABCD 
reproducible matched samples51 (ARMS), available in ABCD collec-
tion 3165, that divided individuals from the full behavioural sample 
(n = 11,572) into discovery (n = 5,786) and replication (n = 5,786) sets, 
which were matched across 9 variables: site location, age, sex, ethnic-
ity, grade, highest level of parental education, handedness, combined 
family income, and prior exposure to anaesthesia. Family members 
(that is, sibling pairs, twins and triplets) were kept together in the same 
set and the two sets were matched to include equal numbers of single 
participants and family members. These split ARMS datasets were used 
for replicability analyses.

Head motion can systematically bias neuroimaging studies53. How-
ever, these systematic biases can be addressed through rigorous head 
motion correction. Therefore, we used strict inclusion criteria with 
regard to head motion. Specifically, inclusion criteria for the current 
project (see Casey et al.23 for broader ABCD inclusion criteria) consisted 
of at least 600 frames (8 min) of low-motion54 (filtered-FD < 0.08) RSFC 
data. Our final dataset consisted of RSFC data from a total of n = 3,928 
youth across the discovery (n = 1,964) and replication (n = 1,964) sets. 
The final discovery and replication sets did not differ in mean frame-
wise displacement (difference in means = 0.002, t = 0.60, P = 0.55) or 
total frames included (difference in means = 6.4, t = 0.94, P = 0.35). 
The participant lists for ARMS samples can be found in the ABCD-BIDS 
Community Collection (ABCD collection 3165) for community use51.

ABCD MRI acquisition
Imaging was performed at 21 sites in the United States, harmonized 
across Siemens Prisma, Philips and GE 3T scanners. Details on image 
acquisition can be found in ref. 23. Twenty minutes (4 × 5 min runs) of 
eyes-open resting-state blood oxygenation level dependent (BOLD) 
data were acquired to ensure at least 8 min of low-motion data. All 
resting-state scans fMRI scans used a gradient-echo echo planar imag-
ing (EPI) sequence (repetition time = 800 ms, echo time = 30 ms, flip 
angle = 90°, voxel size = 2.4 mm3, 60 slices). Head motion was moni-
tored using framewise integrated real-time MRI monitoring (FIRMM) 
software at many of the Siemens sites35.

ABCD-BIDS processing overview
ABCD and UKB MRI data processing was completed with the freely 
available ABCD-BIDS pipeline51 (https://github.com/DCAN-Labs/
abcd-hcp-pipeline). Data were downloaded and converted to the BIDS 
format using ABCD-Dicom2BIDS (https://github.com/DCAN-Labs/
abcd-dicom2bids). Only data that passed the fast-track quality con-
trol (QC; tagged prior to ABCD release 2.0) were processed (also see 
release notes: https://collection3165.readthedocs.io/en/stable/). 
The ABCD-BIDS pipeline is a modification of the original HCP pipe-
line55. In brief, this MRI data-processing pipeline comprises six stages. 
 (1) PreFreesurfer normalizes anatomical data. This normalization 
entails brain extraction, denoising, and then bias field correction 
on anatomical T1 and/or T2 weighted data. The ABCD-HCP pipeline 
includes two additional modifications to improve output image quality. 

ANTs56 DenoiseImage models scanner noise as a Rician distribution 
and attempts to remove such noise from the T1 and T2 anatomical 
images. Additionally, ANTs N4BiasFieldCorrection attempts to smooth 
relative image histograms in different parts of the brain and improves 
bias field correction. (2) FreeSurfer57 constructs cortical surfaces from 
the normalized anatomical data. This stage performs anatomical seg-
mentation, white–grey and grey–CSF cortical surface construction, 
and surface registration to a standard surface template. Surfaces are 
refined using the T2 weighted anatomical data. Mid-thickness surfaces, 
which represent the average of white–grey and grey–CSF surfaces, 
are generated here. (3) PostFreesurfer converts prior outputs into an 
HCP-compatible format (that is, CIFTIs) and transforms the volumes to 
a standard volume template space using ANTs nonlinear registration, 
and the surfaces to the standard surface space via spherical registra-
tion. (4) The Vol (volume) stage corrects for functional distortions 
via reverse-phase encoding spin-echo images. All resting-state runs 
underwent intensity normalization to a whole-brain-mode value of 
1,000, within run correction for head movement, and functional data 
registration to the standard template. Atlas transformation was com-
puted by registering the mean intensity image from each BOLD ses-
sion to the high resolution T1 image, and then applying the anatomical 
registration to the BOLD image. This atlas transformation, mean field 
distortion correction, and resampling to 3 mm3 atlas space were com-
bined into a single interpolation using the FSL58 applywarp tool. (5) The 
Surf (surface) stage projects the normalized functional data onto the 
template surfaces, as described below. (6) We have added an fMRI and 
fcMRI preprocessing stage, DCANBOLDproc, also described below. 
 (7) Last, an executive summary is provided for easy participant-level 
QC across all processed data.

fMRI surface processing
The BOLD fMRI volumetric data were sampled to each participant’s 
original mid-thickness left and right-hemisphere surfaces constrained 
by the grey-matter ribbon. Once sampled to the surface, time courses 
were deformed and resampled from the individual’s original sur-
face to the 32 k fs_LR surface in a single step. This resampling allows 
point-to-point comparison between each individual registered to this 
surface space. These surfaces were then combined with volumetric 
subcortical and cerebellar data into the CIFTI format using Connectome 
Workbench59, creating full brain time courses excluding non-grey mat-
ter tissue. Finally, the resting-state time courses were smoothed with a 
2 mm full-width-half-maximum kernel applied to geodesic distances 
on surface data and euclidean distances on volumetric data.

DCANBOLDproc preprocessing
Additional BOLD preprocessing steps were executed to reduce spuri-
ous variance unlikely to reflect neuronal activity34. First, a respiratory 
filter was used to improve framewise displacement estimates calcu-
lated in the Vol stage54. Second, temporal masks were created to flag 
motion-contaminated frames using the improved framewise displace-
ment estimates53. Frames with a filtered-FD > 0.3 mm were flagged as 
motion-contaminated for nuisance regression only. After computing 
the temporal masks for high motion frame censoring, the data were 
processed with the following steps: (1) demeaning and detrending, 
(2) interpolation across censored frames using least squares spectral 
estimation of the values at censored frames so that continuous data 
can be (3) denoised via a GLM with whole brain, ventricular, and white 
matter signal regressors, as well as their derivatives. Denoised data 
were then passed through (4) a band-pass filter (0.008 Hz < f < 0.1 Hz) 
without re-introducing nuisance signals60 or contaminating frames 
near high-motion frames.

Generation of RSFC matrices
ABCD RSFC data consists of 4 × 5 min runs. For each participant with 
full brain coverage, all available RSFC data were concatenated and high 
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motion frames (filtered-FD > 0.08) were censored. The timeseries of 
BOLD activity for each ROI was correlated to that of every other ROI (333 
cortical ROIs from Gordon et al.61; 61 subcortical ROIs from Seitzman 
et al.62), forming a 394 × 394 correlation matrix, which was subsequently 
Fisher z-transformed. For network level analyses, correlations were 
averaged across previously defined canonical functional networks61. 
Inter-individual difference connectome-wide spatial components, 
which are not bound by network boundaries63,64, were computed by 
performing PCA on a matrix composed of all ROI × ROI pairs (edges) 
from each participant.

Generation of cortical thickness metrics
For each participant, cortical thickness was extracted from 59,412 
cortical vertices. For ROI level matrices, cortical thickness was aver-
aged within each cortical parcel61 (n = 333). For network level matri-
ces, cortical thickness was averaged within each cortical network61 
(n = 13). Inter-individual spatial components were computed by per-
forming PCA on a matrix composed of all cortical vertices from each  
participant.

Psychological and demographic data
The ABCD Study population is well-characterized with hundreds of 
demographic, physical, cognitive, and mental health variables65. The 
current project examined the associations between 41 of these vari-
ables (Supplementary Table 1) and brain structure (cortical thickness) 
and function (RSFC). Psychological and demographic variables were 
selected to reflect the primary domains of interest, cognition (individ-
ual subscales and composite scores from the NIH Toolbox) and mental 
health (individual subscales and composite scores from the CBCL), as 
well as demographic and physical variables relevant to development 
(for example, age) and health (for example, body mass index).

Psychological and demographic covariates
The primary goal of this project was to study how the pairing of brain–
phenotype effect sizes and sampling variability (random variation 
across samples, as opposed to systematic variation threatening 
causal inference66) can account for wide-spread replication failures. 
Hence, our results focus on bivariate associations (correlation) and 
standard multivariate models linking brain structure and function to 
psychological and demographic variables without covariate adjust-
ment. However, we did examine the influence of sociodemographic 
covariates standardly used in ABCD analyses (race, gender, parental 
marital status, parental income, Hispanic versus non-Hispanic ethnic-
ity, family and data collection site) on BWAS effect sizes noting that 
they generally decrease effect sizes, particularly for the largest BWAS 
effects (see Extended Data Fig. 2). Furthermore, the ABCD subsamples 
(ARMS; see above) we used for replication analyses are matched for 
salient demographic factors (site location, family composition, age, 
sex, ethnicity, grade, highest level of parental education, handed-
ness, combined family income and prior exposure to anaesthesia; 
see above). Also, where possible, ABCD-distributed age-corrected 
scores were used, given (1) well-established age-related changes in 
these measures and (2) age-corrected scores improved normality for 
many measures (for example, CBCL syndrome scales and broadband 
factors).

Capture of psychological and demographic data
The ABCD Data Analysis and Informatics Center (DAIC) has released 
an online tool called DEAP (Data Exploration and Analysis Portal), 
which can be accessed at https://deap.nimhda.org/. In this Article, we 
introduce an additional tool called ABCDE (ABCD Boolean Capture 
Data Explorer, developed by B.P.K.), which we have used for prepa-
ration of the data herein. ABCDE complements DEAP by allowing 
for finer-grained control of data extraction on the researcher’s own 
computer rather than through a web portal. The source code and 

documentation can be accessed at https://gitlab.com/Dosenbach-
Greene/abcde.

Univariate brain–behavioural phenotype correlations
For each brain measure at a given level of organization, we correlated 
the brain measures (structure: cortical thickness; function: RSFC) 
with each psychological variable. Cognitive ability (total composite 
score on the NIH Toolbox) and psychopathology (total score on the 
CBCL) are presented in the main text; all others are included in the 
Extended Data Fig. 1. Correlations between brain and phenotypes 
were generated for RSFC at the edge level (ROI–ROI pair (n = 77,421)), 
network level (average of RSFC within and between each network 
(n = 105)) and component level (principal component weights 
(n = 100)). To extract components representing inter-individual 
differences, we vectorized each participant’s RSFC matrix, concat-
enated the vectorized matrices and then performed PCA (Matlab’s 
pca.m function). Correlations between brain and phenotypes were 
generated for cortical thickness at the vertex level (n = 59,412), ROI 
level (n = 333) and network level (n = 13). Repeat analyses employing 
less rigorous motion censoring and thus retaining a larger subset of 
the full ABCD sample (n = 9,753) replicated the effect sizes (top 1% 
largest effects: |r| > 0.06).

Resampling procedures
To examine the distribution of correlations for iteratively larger sam-
ple sizes, we randomly selected participants with replacement from 
the full sample (n = 3,928, post denoising) at logarithmically spaced 
sample sizes (16 intervals: n = 25, 33, 50, 70, 100, 135, 200, 265, 375, 525, 
725, 1,000, 1,430, 2,000, 2,800 and 3,928). For cortical thickness data, 
the full sample contained the same sampling bins, with the exception 
of the final bin (full sample), which contained n = 3,604 participants. 
At each sample size, we randomly sampled participants 1,000 times, 
resulting in 16,000 brain–psychological phenotype resamplings for 
each brain–phenotype correlation. For multivariate approaches, 100 
bootstrap samples were computed across the logarithmically spaced 
sample sizes (16 intervals: n = 25, 33, 45, 60, 80, 100, 145, 200, 256, 350, 
460, 615, 825, 1,100, 1,475 and 1,964 (1,814 for cortical thickness)). We 
note that the iterations were reduced for multivariate methods (100 
iterations) owing to their high computational costs. In addition, the 
multivariate analyses were primarily focused on mean estimates, rather 
than the full distribution. We also performed sensitivity analyses to 
quantify sampling variability using data from only singletons (that is, 
no sibling and/or twin pairs), which was nearly identical to sampling 
variability in the full sample (included siblings and/or twins; Extended 
Data Fig. 10; Δr = 0.0005). For highlighting the effects of sampling vari-
ability (Fig. 1e, f), we extracted the brain–phenotype correlation with 
the largest effect size for each imaging modality (cortical thickness and 
RSFC) and exemplar phenotype (cognitive ability and psychopathol-
ogy). The sampling variability (range of possible correlations, 99% 
confidence interval and 95% confidence interval) at each sampling 
interval for correlations between RSFC and cortical thickness with 
cognitive ability and psychopathology are presented in the main text 
(Fig. 1e, f); correlations between brain measures and other behaviours 
can be found in Supplementary Figs. 4, 5.

Sampling variability examples with a sample size of 25
Using the outputs from the resampling procedures above, we used 
the 1,000 resamplings with n = 25 to examine the correlation between 
the DMN and cognitive ability (total composite score on the NIH Tool-
box), as well as the DMN and psychopathology (total problem score on 
the CBCL), for both cortical thickness and RSFC. To demonstrate how 
sampling variability affects correlations, the 1,000 resamples were 
ranked by effect size. Subsequently, we selected two samples from the 
top 10 samples (in terms of effect size); one with a significant positive 
association and one with a significant negative association.

https://deap.nimhda.org/
https://gitlab.com/DosenbachGreene/abcde
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ABCD task data
Data from three in-scanner fMRI tasks (n-back, stop signal, monetary 
incentive delay) were concatenated to the 4 × 5 min resting-state runs 
(rest + task) to determine whether additional data affected the effect 
size estimates. After data were concatenated across the 4 conditions 
(rest + 3 task states), correlation matrices were generated and cor-
related with psychological phenotypes as detailed above, under uni-
variate brain–behavioural phenotype correlations. Task events were 
not regressed67. Data processing steps for task data were the same as 
RSFC, including the removal of frames with a filtered-FD > 0.08 mm.

Correlations between behavioural phenotypes
To examine the range of sampling variability as a function of sample size 
between 41 psychological and demographic measures (Supplementary 
Fig. 6), we randomly selected participants with replacement from the full 
behavioural sample (n = 11,572) at logarithmical spaced sample sizes (9 
intervals: n = 25, 50, 100, 200, 500, 1,000, 2,000, 4,000 and 9,000). At 
each interval, we randomly sampled participants 1,000 times, resulting 
in 9,000 behaviour–behaviour phenotype correlation resamplings for 
each association. For each association between behavioural phenotypes, 
we quantified sampling variability at each sampling bin as the range of 
correlations observed through this resampling procedure.

False positives, false negatives and power
False negative (Fig. 3a) and false positive (Fig. 3f) rates were derived 
through resampling (see ‘Resampling procedures’) for all edge-wise 
brain-wide associations. For each sample size bin (16 total), we ran-
domly sampled with replacement n individuals (1,000 subsamples) and 
computed the brain–behavioral phenotype correlation and associated 
P value. A correlation was deemed significant if it passed a threshold 
(P value range: <0.05 to <10−7 (Bonferroni-corrected) across 77,421 
ROI–ROI pairs) in the full sample (cortical thickness n = 3,604, RSFC 
n = 3,928). At each sample size, if a correlation in the full sample was 
not significant, we determined the percentage of studies that resulted 
in a false positive significant correlation across a broad range of P val-
ues (0.05 to 10−7). Conversely, if a correlation in the full sample was 
significant (P < 0.05 to 10−7), we determined the percentage of studies 
that resulted in a false negative non-significant correlation across a 
broad range of P values (10−7 to 0.05). Statistical power (Fig. 3d) was 
calculated as 1 − false negative rate.

BWAS correlation inflation
For each univariate brain-wide association in the full sample (cortical 
thickness n = 3,604; RSFC n = 3,928) at the vertex/edge level, we deter-
mined whether or not a correlation was significant (using two-tailed 
P < 0.05 (uncorrected) and P < 10−7 (Bonferroni corrected for multiple 
comparisons) thresholds). Then, for each significant correlation in the 
full sample, we extracted all of the significant correlations (P < 0.05 
and 10−7) observed across 1,000 subsamples at each sample size bin. Of 
these significant correlations in subsamples at each sample size bin, we 
determined the percentage that were inflated, relative to the full sample 
effect size, across varying magnitudes (50%, 100% and 200%; Fig. 3b).

BWAS sign errors
Each brain-wide association was extracted from the full sample as 
a reference. Across the 1,000 subsamples within a sampling bin, we 
determined the percentage of correlations that had the opposite cor-
relation sign as the correlation sign in the full sample, thresholding 
the subsamples at the same P values as all other analyses of statistical 
errors (P < 10−7 to 0.05).

Univariate BWAS replication
Replication is commonly defined as detecting a significant associa-
tion (for example, P < 0.05) that was deemed significant (P < 0.05) in a 

previous sample (Fig. 3e). To determine the probability of replicating a 
brain–phenotype association in a new data (out-of-sample) at a given 
sample size, we correlated every brain feature (RSFC edge, cortical 
thickness vertex) with each behavioural phenotype in 1,000 boot-
strapped samples across sample sizes (same sampling bins as listed 
under ‘Resampling procedures’). For each behavioural phenotype, 
sample size (n = 25, 33, 45, 60, 80, 100, 145, 200, 256, 350, 460, 615, 825, 
1,100, 1,475 and 1,964 (1,814 for cortical thickness); note: data end at 
n ≈ 2,000 as the replication sample is half of the full), and bootstrapped 
subsample, we first determined the brain–behavioural phenotype 
associations that were significant (at P < 10−7 to 0.05) in the discovery 
(in-sample) dataset. Next, we extracted the same brain features from 
the replication (out-of-sample) dataset and quantified the percentage 
of associations that were also significant in the replication dataset. 
Note, to mirror a process of replicating existing effects, we used the 
number of identified significant associations in the discovery sample 
as the total number of features that could be replicated (as opposed 
to the total number of brain features regardless of discovery sample 
significance). For example, if all significant BWAS in the discovery sam-
ple were also significant in the replication sample, the probability of 
replication would be 100%.

Effect sizes in HCP replication
We used data from n = 900 individuals from the HCP 1,200 Subject Data 
Release (aged 22–35 years). All HCP participants provided informed 
consent. A custom Siemens SKYRA 3.0T MRI scanner and a custom 
32-channel head matrix coil were used to obtain high-resolution 
T1-weighted (MP-RAGE, TR = 2.4 s, 0.7 mm3 voxels) and BOLD contrast 
sensitive (gradient-echo EPI, multiband factor 8, TR = 0.72 s, 2 mm3 
voxels) images from each participant. The HCP used sequences with 
left-to-right (LR) and right-to-left (RL) phase encoding, with a single 
RL and LR run on each day for two consecutive days for a total of four 
runs68. MRI data were preprocessed as previously described62. All HCP 
data are available at https://db.humanconnectome.org/.

Similar to the ABCD data, we extracted the timeseries from a total of 
394 cortical and subcortical ROIs, correlated and Fisher z-transformed 
them. Data from the NIH Toolbox were correlated with each edge of the 
RSFC correlation matrix across participants. Across all NIH Toolbox 
subscales, the tails of the distributions of the resulting brain–behav-
ioural phenotype correlations were compared to 100 subsampled 
ABCD brain–behavioural phenotype correlations (n = 877, matching 
HCP sample size). In Supplementary Fig. 8, we show the distributions 
of brain–behavioural phenotype correlations for ABCD and HCP data, 
for each NIH Toolbox subscale.

Effect sizes in UKB replication
We used pre-processed resting-state data from n = 32,572 individu-
als from the January 2020 UKB release69, processed with the same 
processing pipeline as the ABCD data. All UKB participants provided 
informed consent. For a complete description of study flow and imag-
ing protocols, see Littlejohns et al.70. The UKB collects measures of 
fluid intelligence, which we used to correlate with RSFC, mimicking 
ABCD and HCP samples. For Fig. 2, we used 100 × n = 900 subsamples 
from the ABCD and UKB datasets to match the sample size of HCP for 
the associations between RSFC and fluid intelligence (n = 900). We 
subsequently determined the threshold to reach the top 1% strongest 
RSFC associations with fluid intelligence in each of the three datasets.

Sampling variability in HCP replication
To quantify the degree of sampling variability in single site, single 
scanner HCP data compared to multi-site, multi-scanner ABCD data, 
we subsampled ABCD RSFC data to match HCP sample sizes (n = 877, 
denoised and complete behavioural data across all NIH Toolbox sub-
scales). For each dataset, we carried out resampling, as detailed under 
‘Resampling procedures’ (12 intervals: n = 25, 33, 50, 70, 100, 135, 200, 
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265, 375, 525, 725 and 875), across all NIH Toolbox subscales. The range of 
correlations and 95% confidence interval observable in each sampling 
bin are shown in Extended Data Fig. 6a for both HCP and ABCD data.

Sampling variability for single-site ABCD versus multi-site ABCD
We directly compared single site ABCD data (site 16; n = 603) with 
multi-site ABCD data (n = 3,325, 20 sites—site 16 was excluded) using 
1,000 bootstrapped samples at 10 sample size intervals: n = 25,33, 50, 
70, 100, 135, 200, 265, 375 and 525. For this analysis, we used the asso-
ciations between RSFC and all NIH Toolbox subscales (Extended Data 
Fig. 6b). The range of correlations and 95% confidence interval in each 
resampling bin is shown in Extended Data Fig. 6b for single-site and 
multi-site ABCD data.

BWAS effect sizes in task activation versus RSFC in HCP
We estimated the effect sizes between task activations (86 total con-
trasts, see Supplementary Table 3) and behavioural phenotypes71 (39 
total, see Supplementary Table 4) across three levels of analysis: ver-
tices, ROIs and networks (n = 844). In these same individuals, we esti-
mated the effect sizes between RSFC and the same phenotypes across 
three levels of analysis: edges, principal components, and networks. To 
compare the resulting effect size distributions (for example, Extended 
Data Fig. 3), we determined the top 1% strongest effect sizes, as well as 
the maximum correlation (absolute value).

Multivariate out-of-sample replication
For multivariate out-of-sample replication, we used SVR and CCA. SVR 
with a linear kernel was performed using the e1071 package in the R 
environment (version 3.5.2) to predict primary phenotypes (psycho-
pathology and cognitive ability) and other demographics and psy-
chological phenotypes (Supplementary Figs. 11, 12) from individual 
differences in either RSFC or cortical thickness. One hundred bootstrap 
samples (sampling with replacement) were generated for each sample 
size. Hyperparameter tuning was examined in (1) split halves of the full 
discovery sample for multiple cognitive (NIH Toolbox) and psycho-
pathology (CBCL) scales and (2) tenfold cross-validation within the 
full discovery sample for primary phenotypes (psychopathology and 
cognitive ability; Supplementary Figs. 11, 12). Hyperparameter tuning 
did not appreciably change out-of-sample prediction estimates to the 
replication sample (for example, average out-of-sample correlation dif-
ference between tuned and non-tuned models: RSFC = −0.006, cortical 
thickness = 0.014; Supplementary Figs. 11, 12). Figure 4a, b use default 
hyperparameters and PCA dimensionality reduction (with a threshold 
of 50% variance explained in the discovery set, for each sample size) 
prior to SVR, given that this procedure balanced out-of-sample predic-
tion and model complexity for nearly all model types (Supplementary 
Figs. 11, 12). Replication set data were not used to estimate principal 
components, but rather replication set data were projected into com-
ponent space via independently estimated loading matrices for each 
subsample of the discovery set to prevent bias. An alternative strategy 
of univariate feature ranking was also examined, where SVR models 
were trained on the 5,000, 10,000 or 15,000 vertices (cortical thickness) 
or edges (RSFC) with the highest bivariate correlation to the variable 
of interest in the training dataset, but this approach resulted in lower 
out-of-sample prediction (Supplementary Figs. 11, 12). Out-of-sample 
association strength is reported as the correlation between predicted 
and observed phenotypic scores (rpred; using models trained on the 
discovery set). Significance thresholds for out-of-sample replication 
(rpred) were estimated via permutation testing (1,000 iterations) with 
models trained on the full discovery set (RSFC: n = 1964; cortical thick-
ness: n = 1,814) and tested on the full replication set.

CCA was performed using Matlab’s (2019A) cannoncor.m function 
for joint associations of the NIH Toolbox and CBCL with individual dif-
ferences in either RSFC or cortical thickness. Equivalent bootstrapping 
and subsampling of the in-sample discovery set were tested and applied 

to the out-of-sample replication set, as in the SVR analyses. To model 
sampling variability across sample sizes, 100 bootstrap (sampling with 
replacement) samples were generated for each sample size. As with 
SVR, Fig. 4c, d used PCA dimensionality reduction (threshold of 20% 
variance explained in the in-sample discovery set, for each sample size) 
prior to CCA given that this maximized out-of-sample correlation (rCV1; 
Supplementary Figs. 14, 15). CCA models were fit on iteratively larger 
subsamples of the in-sample discovery dataset. The first canonical vec-
tor (CV1) weights were extracted and applied to the full out-of-sample 
brain and behavior data. This resulted in the out-of-sample correla-
tion (rCV1) between multivariate brain and behavior data. Significance 
thresholds for out-of-sample replication were estimated via permuta-
tion testing (1,000 iterations) with models trained on the full ABCD 
discovery set (RSFC: n = 1964; cortical thickness: n = 1,814) and tested 
on the full replication set.

Towards a new era of BWAS
In Extended Data Fig. 9, sampling variability, statistical errors (false 
positives, false negatives, inflation and sign errors), and out-of-sample 
multivariate associations (rpred, rCV1) were plotted as a function of sample 
size (y-axis: 0–1 for sampling variability (r), 0–100% for statistical errors 
(cumulative sum across all four error types), 0–100% for out-of-sample 
associations). To account for differences between in-sample and 
out-of-sample multivariate associations, out-of-sample multivariate 
associations were normalized by the mean in-sample (discovery) cor-
relation at the full sample size. All three curves (sampling variability, 
statistical errors, and out-of-sample association) were based on the 
largest univariate and multivariate brain-wide association (RSFC with 
cognitive ability).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Participant level data from all datasets (ABCD, HCP, UKB) are openly 
available pursuant to individual consortium-level data access rules. The 
ABCD data repository grows and changes over time (https://nda.nih.
gov/abcd). The ABCD data used in this report came from ABCD collec-
tion 3165 and the Annual Release 2.0 (https://doi.org/10.15154/1503209). 
The UK Biobank is a large-scale biomedical database and research 
resource containing genetic, lifestyle and health information from 
half a million UK participants (www.ukbiobank.ac.uk). UK Biobank’s 
database, which includes blood samples, heart and brain scans and 
genetic data of the 500,000 volunteer participants, is globally acces-
sible to approved researchers who are undertaking health-related 
research that is in the public interest. Data were provided, in part, by 
the Human Connectome Project, WU-Minn Consortium (principal 
investigators: D. Van Essen and K. Ugurbil; 1U54MH091657) funded 
by the 16 NIH institutes and centers that support the NIH Blueprint 
for Neuroscience Research; and by the McDonnell Center for Systems 
Neuroscience at Washington University. Some data used in the present 
study are available for download from the Human Connectome Project 
(www.humanconnectome.org). Users must agree to data use terms for 
the HCP before being allowed access to the data and ConnectomeDB; 
details are provided at https://www.humanconnectome.org/study/
hcp-young-adult/data-use-terms. Source data are provided with this 
paper.

Code availability
Analysis code specific to this study can be found at https://gitlab.com/
DosenbachGreene/bwas. Code for processing ABCD and UKB data can 
be found at https://github.com/DCAN-Labs/abcd-hcp-pipeline. MRI 
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data analysis code can be found at https://github.com/ABCD-STUDY/
nda-abcd-collection-3165. FIRMM software is available at https://firmm.
readthedocs.io/en/latest/release_notes/ (the ABCD Study used version 
3.0.14). The MuMln R package (version 1.43.17) is available at https://
cran.r-project.org/web/packages/MuMIn/index.html.
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Extended Data Fig. 1 | Distributions of brain-wide association effect sizes 
by imaging modality and behavioral phenotype. Histograms of all (a) 
cortical thickness and (b) resting-state functional connectivity (RSFC) 
associations, with demographic, cognitive, and mental health/personality 
variables. Correlations (r; linear bivariate) between brain measures and 

behavioral phenotypes were computed at multiple levels of scale (cortical 
thickness: vertices, regions of interest (ROIs), networks; RSFC: ROI-ROI pairs 
(edges), principal components, networks). The ordering of subgraphs follows 
the ordering of measures in the legend. All data shown are from the ABCD Study 
(n = 3,928).
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Extended Data Fig. 2 | Impact of sociodemographic covariates on 
brain-wide association effect sizes. The influence of sociodemographic 
covariates (race, gender, parental marital status, parental income, hispanic 
versus non-hispanic ethnicity, family, data collection site) on BWAS (brain-wide 
association studies) effect sizes was examined in the ABCD Study dataset 
(n = 3,587 with complete cases for this analysis) through the model comparison 
strategy developed by the ABCD Data Analysis and Informatics Core and used 
in the Data Exploration and Analysis Portal (deap.nimhda.org). The 
percentages of variance explained by fixed effects in multilevel models 
(pseudo-R2) were calculated with the MuMIn package in R (1.43.17) and square 
root transformed to approximate an absolute-value BWAS correlation (|r|).  
The estimated BWAS effect sizes (|r|) prior to covariate adjustment are plotted 
on the x-axis and those after sociodemographic covariate adjustment on the 
y-axis. Values below the identity line indicate a reduction in effect size after 
covariate adjustment, values above an increase in effect size. BWAS models 
with and without covariate adjustment always included cognitive ability or 
psychopathology as the outcome variable and nested random effects of family 
and data collection site, in order to maximize comparability for subsequent 
fixed effects model comparisons. BWAS effect sizes without covariate 
adjustment were taken from models that only included these random effects, 
the brain feature of interest (cortical thickness [vertex]/RSFC [edge]) as a single 
fixed effect, and the psychological phenotype (cognitive ability/
psychopathology). BWAS effect sizes without covariate adjustment estimated 
the unique, covariate-adjusted effect linking the brain feature of interest to the 
psychological phenotype by comparing a model with sociodemographic fixed 
effects but no brain feature fixed effect, to one with both the 
sociodemographic fixed effects and the brain feature. The difference in 
pseudo-R2 (subsequently transformed to |r|) represents the additional 
fixed-effect variance the brain feature explained beyond the 
sociodemographic covariates.



Extended Data Fig. 3 | Brain-wide association effect sizes derived from 
functional MRI (fMRI) task activations are similar to resting-state 
functional connectivity (RSFC). (a) Cognitive ability (NIH Toolbox total 
composite score) plotted as a function of dorsal attention network working 
memory task activation (z). Note that this correlation with fMRI task activation 
(r = 0.34) is much larger than the largest replicated univariate effect size for 
RSFC. (b) Cognitive ability plotted as a function of working memory task 
accuracy. Individual differences in cognitive ability (phenotype of interest) are 
strongly correlated with individual differences in working memory (r = 0.54). 

Thus, task-specific effects (behavioral performance) confound links between 
brain function and the phenotype of interest (e.g. cognitive ability).  
(c) Residualizing the behavioral phenotype of interest (cognitive ability) with 
respect to individual differences in working memory task accuracy 
(task-specific effect) produces an association between task fMRI and cognitive 
ability (r = 0.14) similar to the (d) the association between dorsal attention 
network RSFC and cognitive ability (r = 0.11). Data shown are from the HCP 
Study (n = 844).
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Extended Data Fig. 4 | Split-half reliability of resting-state functional 
connectivity (RSFC) in HCP, ABCD and UKB study samples. Distribution of 
within-person split-half reliability33 of ROI (333 cortical ROIs from Gordon 
et al.61) connectivity matrices derived from RSFC data. The UKB data contain a 
single 6 min. resting-state run; the ABCD Study collected 4 x 5 min. runs 
(20 min. total), and the HCP collected 4 x 15 min. runs of resting-state data 
(60 min. total).



Extended Data Fig. 5 | Effect size distributions for HCP, ABCD, UKB studies 
and expected sampling variability. To determine whether smaller effect sizes 
in larger samples can be explained by the expected reduction of sampling 
variability, we estimated sampling variability (grey) for the full range of BWAS 
(brain-wide association studies) effect sizes observed in UKB (edge-wise 
resting-state functional connectivity [RSFC]; cognitive ability) as a function of 
sample size (x-axis). As in our primary ABCD analyses, UKB effects were 
resampled using a bootstrap procedure (1,000 iterations per edge). The actual 
distributions of the HCP, ABCD, and UKB BWAS effect sizes were then visualized 
relative to the expected sampling variability in UKB across sample sizes (grey). 
Consistent with an inflation of BWAS effect sizes due to sampling variability, 
relatively larger BWAS effect sizes in HCP (n = 900) and ABCD (n = 3,928) align 
with effect sizes in subsamples of the UKB data at corresponding sample sizes.
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Extended Data Fig. 6 | Comparison of single- and multi-site BWAS 
(brain-wide association studies) sampling variability. (a) Sampling 
variability of resting-state functional connectivity (RSFC) associations with the 
NIH Toolbox subscales in equally-sized samples (n = 877) from HCP (grey) and 
ABCD (red). Effect sizes (center of error bands) were matched across datasets 

(r = 0.06) to isolate sampling variability for a given effect. (b) Sampling 
variability of RSFC associations with the NIH Toolbox subscales in a single-site 
ABCD sample (site 16; n = 603; teal) and every other ABCD site (n = 3,325; red). 
Effect sizes (center of error bands) were matched across datasets (r = 0.06).



Extended Data Fig. 7 | Relationship between power and statistical 
threshold. Statistical power (1 – false negative rate) is plotted as a function of 
the P value (two-tailed; < 0.05, < 10−2, < 10−3, < 10−4, < 10−5, < 10−6, < 10−7) used for 
significance testing in the denoised ABCD Study sample (n = 3,928). P < 0.05 
represents an uncorrected threshold, whereas P < 10−7 represents a Bonferroni 
correction. More stringent control for multiple comparisons decreases power 
and increases sample size requirements.
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Extended Data Fig. 8 | Inflation of univariate BWAS (brain-wide association 
studies) effect sizes (top 1% largest) by imaging modality and behavioral 
phenotype. Better out-of-sample replication is indexed by a smaller difference 
between the discovery and replication datasets effect sizes (right side of 
histogram). Negative values indicate that an association was inflated in the 
discovery dataset, relative to what was observed in the replication dataset. 
Out-of-sample reductions in effect sizes greater than 100% reflect sign errors. 
The leftward shift of cortical thickness relative to resting-state functional 
connectivity (RSFC), and for psychopathology relative to cognitive ability 
indicates worse univariate BWAS reproducibility.



Extended Data Fig. 9 | Influence of sample size on the robustness of 
brain-wide associations. Trajectories of sampling variability (99% confidence 
interval; orange), statistical error rates (cumulative sum of false negatives, 
false positives, magnitude errors, sign errors; yellow), and support vector 
regression (SVR) out-of-sample association strength (as % of full in-sample 
association; dark red) as a function of sample size. Sample size (n ~ 4,000) 
represents a full sample (discovery + replication datasets of ~2,000 each). Data 
shown are from ABCD Study.
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Extended Data Fig. 10 | Sampling variability is nearly identical when 
considering singletons vs. all participants. Data were from the ABCD Study 
sample. Sampling variability (y-axis) as a function of sample size (x-axis; n = 25, 
35, 45, 60, 80, 100, 145, 200, 256, 350, 460, 615, 825, 1,100, 1,475, 2,000) for all 
participants (black) and singletons only (twins and siblings excluded; green). 
Sampling variability was quantified as the difference between the upper and 
lower 95% confidence interval across 1,000 bootstraps (resampled with 
replacement) across all 77,421 resting-state functional connectivity (RSFC; 
edges) associations with cognitive ability. The effect size magnitudes were 
likewise nearly identical in size-matched resamples (singletons-only 
[n = 2,528]: median |r| = 0.017; siblings-included [n = 2,528]: median |r| = 0.020).
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