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ABSTRACT
BACKGROUND: The experimental therapeutics approach that combines a placebo-controlled clinical trial with
translational neuroscience methods can provide a better understanding of both the clinical and physiological
effects of pharmacotherapy. We aimed to test the efficacy and tolerability of low-dose augmentation with
buprenorphine (BPN) for treatment-resistant depression, combined with multimodal assessment of target
engagement.
METHODS: In this multisite randomized clinical trial, 85 participants $50 years of age with a major depressive
episode that had not responded to venlafaxine extended release were randomized to augmentation with BPN or
placebo for 8 weeks. The primary outcome measure was the Montgomery–Åsberg Depression Rating Scale. In
addition, three linked experiments were conducted to test target engagement: 1) functional magnetic resonance
imaging using the monetary incentive delay task, 2) brain positron emission tomography of healthy participants
using a novel kappa opioid receptor antagonist tracer [11C]LY2795050, and 3) transcranial magnetic stimulation
measure of cortical transmission after daily BPN administration.
RESULTS: The mean 6 SD dosage of BPN was 0.59 6 0.33 mg/day. There were no significant differences between
the BPN and placebo groups in Montgomery–Åsberg Depression Rating Scale changes over time or adverse effects.
BPN administration had minimal effects on functional magnetic resonance imaging blood oxygen level–dependent
responses in regions involved in reward anticipation and response, no significant displacement of kappa opioid
receptor radioligand in positron emission tomography imaging, and no significant changes in transcranial magnetic
stimulation measures of inhibitory and excitatory cortical transmission.
CONCLUSIONS: Our findings suggest a lack of clinical effect of low-dose BPN augmentation and lack of target
engagement with this dosage and physiological probes.

https://doi.org/10.1016/j.bpsgos.2021.09.003
At least one third of patients with major depressive disorder
(MDD) do not respond to an antidepressant trial of adequate
dosage and duration (1). Augmentation pharmacotherapy is a
favored second or third step for the treatment of MDD, and a
remission rate of 44% has been reported with aripiprazole
augmentation in older patients with MDD who did not respond
to venlafaxine extended release (XR) (2). However, the clinical
effects of augmentation strategies may not be experienced for
at least 6 to 8 weeks (1). Agents of novel mechanism with an
acceptable safety and tolerability profile that lead to more rapid
clinical benefit are needed.

The opioid system is a novel antidepressant target. Both
rodent (3,4) and human (5,6) studies have characterized the
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expression of endogenous opioid system peptides and G-
protein–coupled receptors in the limbic and paralimbic re-
gions, which are centrally involved in the modulation of mood,
motivational, autonomic, stress, and neuroendocrine re-
sponses. These processes are linked with monoaminergic
circuits and dysregulated in MDD. Animal studies have also
suggested age-related changes in the opioid system, including
changes in density and binding affinity for m opioid receptors
(ORs) and kappa ORs (k-ORs) (7–9). Repurposing Food and
Drug Administration–approved opioid medications that may
have antidepressant effects is an attractive approach,
leveraging existing discoveries to rapidly advance treatment
options in a cost-effective and efficient way.
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Buprenorphine (BPN) is both a m-OR partial agonist and a k-
OR antagonist, with putative antidepressant effects in both
human and rodent studies (3,5,6,10–12). In open-label studies,
low-dose BPN led to rapid antidepressant effects (13), and a
placebo-controlled randomized controlled trial described rapid
reduction in suicidal ideation for those receiving low-dose BPN
(mean dosage of 0.45 mg/day) (14). However, BPN combined
with samidorphan, a potent m-OR antagonist, did not demon-
strate statistically significant superiority over placebo (PBO)
(15). Thus, we conducted a proof-of-concept study to inves-
tigate low-dose BPN as an augmentation to antidepressant
pharmacotherapy. We combined a randomized placebo-
controlled clinical trial with translational neuroscience
methods to better understand both the clinical and physio-
logical effects of BPN (16). This experimental therapeutics
approach can provide actionable data with both positive and
negative results and can guide future experiments by informing
dosing, physiological target selection, and clinical trial design.

A multimodal suite of target engagement strategies were
conducted across the three sites: 1) a positron emission to-
mography (PET) brain imaging study in healthy participants,
using the novel k-OR antagonist tracer [11C]LY2795050 before
and after w2 weeks of daily low-dose BPN; 2) a task-based
functional magnetic resonance imaging (fMRI) study examining
the effects of BPN on the brain reward system using the mon-
etary incentive delay (MID) task, which examined brain activa-
tion patterns during anticipatory and consummatory phases of
monetary reward processing (17); and 3) a motor cortex trans-
cranial magnetic stimulation (TMS) neurophysiology study
measuring GABAergic (gamma-aminobutyric acidergic) and
glutamatergic neurotransmission before and after BPN treat-
ment to test the engagement of other depression-related
neurotransmitter systems. In this paper, we present the results
of the clinical trial and of these novel assessments. We hy-
pothesized that BPN will have an antidepressant effect, sup-
ported by evidence of molecular target engagement on PET
(decrease in k-OR binding with k-OR antagonist tracer), func-
tional engagement on fMRI (difference in reward circuit activa-
tion after BPN administration), and engagement of GABA and
glutamate neurotransmission on TMS measures.

METHODS AND MATERIALS

BPN Augmentation Clinical Trial

Study Design. This study was conducted as a part of the
IRLGRey-B (Incomplete Response in Late-Life Depression:
Getting to Remission with Buprenorphine) study, a multisite,
placebo-controlled, randomized clinical trial funded by the
National Institute of Mental Health. The methods have been
described in detail previously (18). During phase 1, all partici-
pants received open-label venlafaxine XR for 12 to 16 weeks
(target dosage: minimum 150 mg/day, maximum 300 mg/day)
to prospectively determine treatment resistance. With remis-
sion defined as a score #10 for two consecutive assessments
on the Montgomery–Åsberg Depression Rating Scale (MADRS)
at the end of phase 1, nonremitters were eligible for phase 2,
which consisted of venlafaxine XR augmented with low-dose
BPN or matching PBO for 8 weeks. This report focuses on
clinical findings and multimodal experiments during BPN
versus PBO augmentation (phase 2).
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Participants. Participants were recruited from three aca-
demic centers (Centre for Addiction and Mental Health, Tor-
onto, Ontario, Canada; University of Pittsburgh, Pittsburgh,
PA; Washington University in St. Louis, St. Louis, MO) from
July 2009 to July 2014.

Participants 50 years and older with a diagnosis of MDD
confirmed using the Structured Clinical Interview for DSM-IV
and a MADRS score $15 at baseline were eligible for the study.

Exclusion criteria included the following: dementia; lifetime
diagnosis of bipolar disorder, schizophrenia, or other psychotic
disorders; current psychotic symptoms; lifetime history of
opiate abuse or dependence; abuse or dependence on alcohol
or other substances within the past 3 months; high risk for
suicide and unable to be managed safely in the clinical trial;
contraindication to venlafaxine XR or BPN; taking psychotropic
medications that cannot be safely tapered and discontinued
prior to study initiation (with exception of benzodiazepines up
to 2 mg/day lorazepam equivalent, other sedative-hypnotics,
and gabapentin if prescribed for nonpsychiatric indication);
inability to provide consent or communicate in English;
inability/refusal to identify an emergency contact; non-
correctable clinically significant sensory impairment; unstable
physical illness; concomitant use of strong or moderate
CYP3A4 inhibitor; severe pain; significant hepatic or renal
impairment; pregnancy; and any safety concerns that would
preclude MRI/PET/TMS (site specific).

All participants provided written informed consent. The
study was approved by the institutional review boards at each
respective site. This study was registered on ClinicalTrials.gov
(NCT02176291, NCT02181231, NCT02263248).

Randomization and Blinding. Phase 1 nonremitters were
randomized 2:1 to BPN or PBO augmentation to venlafaxine
XR (at the same dose as at the completion of phase 1), using
permuted block randomization. The randomization sequence
was generated by an external consultant otherwise not
involved in the study. Participants, clinical assessors, and in-
vestigators were blinded to the randomization.

Interventions. BPN (or matching PBO pills) was started at
0.2 mg/day, administered sublingually, and increased by 0.2 mg/
day each week, based on depressive symptom severity and
tolerability, to a maximum of 1.2 mg/day. These dosages were
based on previous BPN studies for treatment-resistant depres-
sion in younger (0.15–1.8 mg/day) and older adults (0.2–1.6 mg/
day) (13,19). Study medication was dispensed in blister packs,
and participants were instructed to return all unused medication
in the blister pack at each visit. Adherence to pharmacotherapy
was assessed using self-report data and pill counts.

Assessments and Outcomes. The primary outcome
measure was MADRS, which was administered weekly by a
rater blinded to group allocation. Tolerability and safety were
monitored weekly with assessment of orthostatic vital signs
and weight, assessment of suicidality using the Scale for
Suicidal Ideation (20), and assessment of adverse effects using
the self-reported Antidepressant Side Effect Checklist (21).
Comorbid physical illness at baseline was measured with the
Cumulative Illness Rating Scale for Geriatrics (22).
www.sobp.org/GOS
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Statistical Analyses of Clinical End Points. Baseline
differences in demographic and clinical characteristics be-
tween BPN and PBO groups were tested using analysis of
variance techniques for continuous variables and logistic
regression for categorical variables. For the primary efficacy
outcome, Fisher’s exact test was used to compare proportions
of remitters (MADRS score #10) in each treatment group. We
also compared the trajectories (change of MADRS score over
time) between BPN and PBO using polynomial mixed-effects
longitudinal models. Safety outcomes were compared using
mixed-effects modeling to compare Antidepressant Side Effect
Checklist scores between the two treatment groups over time.
Statistical analyses of the clinical end points were performed
using SAS versions 9.2 and 9.3 and R version 2 or later.

fMRI to Examine Effect of BPN in the Brain Reward
System During the MID Task

Trial participants with MDD and healthy control subjects (age
.21) underwent task-based fMRI at Washington University in
St. Louis. The enrollment process and outcomes are illustrated
in Figure 1. Trial participants with MDD were recruited and
treated as described above.
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Healthy adults were recruited from the community via flyers
and word-of-mouth to complete both the fMRI and PET scans
at Washington University in St. Louis. These healthy control
subjects were 21 years of age and older, male or female,
medically stable, and not currently taking opioids. They received
0.2 mg oral BPN (open label) approximately 24 hours after the
baseline assessment and scan. Over the next week, the dosage
was titrated up to 1.2 mg/day based on tolerability. Control
participants continued receiving 1.2 mg/day over the second
week, mimicking the administration of BPN in the clinical trial.

Trial participants and control subjects had two fMRIs, first at
baseline before receiving BPN (visit 1) and then after receiving
BPN (visit 2). For control subjects, scans were repeated after
w2 weeks (mean 6 SD = 14.0 6 7.3 days; range, 7–27 days)
of BPN administration. For trial participants, scans were
repeated after receiving BPN for 8 weeks. A modified version
of the MID task (23) was used. The fMRI task analysis studied
the effects of BPN on the neural reward system. Therefore,
only participants from the clinical trial who received BPN (un-
blinded for analysis) were included in the analysis. See the
Supplement for further description of the MRI protocols.

We examined six regions of interest (ROIs) defined a priori,
which were extracted from a published meta-analysis of
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Figure 1. Enrollment and outcomes. BPN,
buprenorphine; fMRI, functional magnetic reso-
nance imaging; HC, healthy control; MDD, major
depressive disorder; PBO, placebo; PET, positron
emission tomography; TMS, transcranial magnetic
stimulation.
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reward processing (24): left caudate, left middle frontal gyrus,
right anterior cingulate, right frontal lobe, right middle frontal
gyrus, and right caudate. We used repeated-measures anal-
ysis of variance to test whether there were changes in activity
at any of these six ROIs before and after receiving BPN.

In the analysis, time (8 time points spanning 16.8 s during
the task) and visit (visit 1 or 2) were defined as within-subject
factors. We focused on examining reward cue (and not loss
cue) and win outcome only (and not in contrast to loss
outcome), and these conditions were examined separately.
These conditions were chosen based on studies examining
brain activation changes in reward anticipation and reward
outcome during monetary reward processing (25). In the case
of a significant visit-by-time interaction, we subsequently
examined whether the effect of time (signifying a response to
the task) was significant at either visit 1 or 2. We also plotted
the brain voxel’s time course to examine the shape of the
hemodynamic response. Results that indicated a significant
visit-by-time interaction, an effect of time at either visit 1 or 2,
and a time course resembling the hemodynamic response
were considered meaningful and interpretable.

PET With [11C]LY2795050 in Control Participants to
Assess the Effect of BPN on k-OR Binding

Control participants who completed the task-based fMRI at
Washington University in St. Louis also underwent PET imag-
ing with radioligand [11C]LY2795050 to determine the effect of
daily low-dose BPN administration on k-OR binding. In vivo
PET experiments in humans have shown that [11C]LY2795050
imaging is reproducible and reliable in brain ROIs with mod-
erate to high k-OR density (26,27). The PET studies were
approved by the United States Food and Drug Administration
(IND 130774 and RDRC #796L).

During a baseline [11C]LY2795050 PET and MRI session,
167 to 403 MBq of [11C]LY2795050 was given intravenously
followed by a 90-minute dynamic emission scan. Scans were
repeated after w2 weeks of BPN administration, as described
in fMRI methodology earlier. See the Supplement for further
information regarding PET/MRI acquisition.

We used the semiquantitative standard uptake value ratios
over a 30- to 90-minute postinjection window with the cere-
bellum as a reference region to compare [11C]LY2795050
binding in various ROIs between pre-BPN administration and
post-BPN administration. In this analysis, ROIs were defined
using FreeSurfer (28) for 13 regions, averaged over left and
right hemispheres: amygdala, insula, rostral anterior cingulate
cortex, pallidum, putamen, medial temporal cortex, superior
frontal cortex, lingual gyrus, hippocampus, caudate, pre-
cuneus, thalamus, and cerebellum.

TMS Assessment of BPN or PBO Effects on Cortical
Excitability, Inhibition, and Plasticity

TMS is a noninvasive procedure that can be used to stimulate
cortical regions (29). When TMS is applied at a sufficient in-
tensity over the motor cortex, it activates descending pyra-
midal corticospinal neurons, resulting in a motor-evoked
potential that can be measured using electromyography
(30,31). Paired-pulse TMS can be used to index cortical GABA
receptor–mediated inhibitory neurotransmission and glutamate
130 Biological Psychiatry: Global Open Science April 2022; 2:127–135
receptor–mediated excitatory neurotransmission (32,33). In
addition, TMS combined with peripheral nerve stimulation can
also be used to assess cortical plasticity, akin to long-term
potentiation (34,35).

Trial participants (age $50 with a diagnosis of MDD) at the
Centre for Addiction and Mental Health (Toronto, Ontario, Can-
ada) underwent TMS at three time points: 1) baseline (before
exposure to BPN or PBO), 2) within 7 days of exposure to BPN or
PBO augmentation, and 3) after 8 weeks of BPN or PBO
augmentation. Cortical inhibition was indexed with cortical silent
period and paired-pulse short-interval intracortical inhibition.
Cortical facilitation was measured using paired-pulse intra-
cortical facilitation. Long-term potentiation–like cortical plasticity
was measured using paired associative stimulation. See the
Supplement for additional details on these four TMS measures.

TMS analyses were completed using SPSS Statistics 26.0
(IBM Corp.) according to the intention-to-treat principle.
Measures that did not satisfy normality assumption based on
the Shapiro-Wilk test were log-transformed. Groups (BPN vs.
PBO) were compared using a mixed analysis of variance, with
treatment group as a between-subjects factor and time
(baseline, week 1, final) as a within-subjects factor.

RESULTS

Randomized Clinical Trial

Of the 128 participants who started open-label treatment with
venlafaxine XR, 18 discontinued the study and 25 remitted. A
total of 85 did not remit, and 55 were randomized to BPN and
30 to PBO (Figure 1). Baseline demographic and clinical
characteristics of randomized participants are summarized in
Table 1.

The average daily dose 6 standard deviation of BPN was
0.59 6 0.33 mg. Seven of the 55 (12.7%) participants ran-
domized to BPN and 6 of the 30 (20%) randomized to PBO
were remitters at the end of the randomized trial. These two
proportions did not differ significantly (odds ratio 0.59, 95%
confidence interval 0.17–2.0, p = .41).

A plot of mean MADRS scores over time is shown in
Figure S1. Based on the significance of the fixed effect poly-
nomial coefficients, a cubic model best fit the trajectory of
MADRS scores during the trial. The model indicates improve-
ment in both treatment arms over time (F3,443 = 12.32, p , .01).
However, there were no significant differences between the
treatment groups in the MADRS trajectories over time (F3,443 =
0.26, p = .85).

Similarly, there was not a significant overall effect of time or
a difference in the effect of time between the two treatment
groups for adverse effects as measured with the Antidepres-
sant Side Effect Checklist.

fMRI to Examine Effects of BPN in the Brain Reward
System

Ten participants (4 midlife to older adults with MDD and 6
healthy control subjects) underwent scans before and after
BPN administration and were included in the analysis. In the
analysis of six ROIs defined a priori (24) to examine the effect
of BPN on brain activation patterns in the gain cue and win
outcome conditions (Table S2), the only significant effect was
in one region in the win outcome condition, with the right
www.sobp.org/GOS
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Table 1. Demographic and Baseline Clinical Characteristics
of Participants in the Clinical Trial

BPN (n = 55) PBO (n = 30) p Value

Demographic Characteristics

Age at Baseline, Years, Mean (SD) 64.6 (8.6) 66.5 (7.9) .91

Education, Years, Mean (SD) 15.3 (2.7) 15.2 (2.9) .91

Femalea, n (%) 31 (56.4%) 21 (70.0%) .22

Race, n (%) .71
Asian 1 (1.8%) 0 (0%)

Black 4 (7.3%) 1 (3.3%)

Other or multiple 1 (1.8%) 1 (3.3%)

White 49 (87.8%) 28 (93.3%)

Clinical Characteristics

BMIa, Mean (SD) 29.2 (6.0) 29.9 (5.4) .64

MADRSa, Mean (SD) 22.7 (6.5) 20.4 (6.3) .13

CIRS-Ga, Mean (SD) 5.0 (2.6) 6.2 (1.9) .01

SSI, Median [Min, Max] 0 [0, 20] 0 [0, 12] .66

BMI, body mass index; BPN, buprenorphine; CIRS-G, Cumulative
Illness Rating Scale for Geriatrics; MADRS, Montgomery–Åsberg
Depression Rating Scale; Max, maximum; Min, minimum; PBO,
placebo; SSI, Scale for Suicidal Ideation.

aIndicates variables that had statistically significant (p , .05) site
differences. Baseline demographic and clinical characteristics by site
can be found in the Supplement (Table S1).
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middle frontal gyrus showing a visit-by-time interaction (Z =
3.20, p , .01) with a significant time effect during at least 1
visit. There was a main time effect both at visit 1 (p , .05, Z =
2.07) and at visit 2 (p , .01, Z = 3.32) in the win outcome
condition (Figure 2). The pattern of activation in this region
suggested sustained activation at baseline (visit 1) but an initial
increase followed by a rapid decrease in the bold signal after
BPN (visit 2).

PET With [11C]LY2795050 to Assess the Effect of
BPN on k-OR Binding

Six control participants (5 men and 1 woman) ages 23–41
(mean 6 SD: 30.3 6 7.8 years) completed both baseline and
post-BPN MRI/PET scans. All 6 participants were taking 1.2
Figure 2. Time courses in the right middle frontal gyrus showed a sig-
nificant visit by time interaction (p , .01), with significant effects of time at
visit 1 (p , .05) and visit 2 (p , .01) in the win outcome condition. BOLD,
blood oxygen level–dependent.

Biological Psychiatry: Glob
mg/day of BPN at the time of the post-BPN scan. Mean
injected dose 6 SD of [11C]LY2795050 was 266 6 67 MBq at
baseline and 355 6 52 MBq after BPN administration.
Because of the small sample size and lack of evident differ-
ences, we do not report inferential statistics on pre-post dif-
ferences. Therefore, engagement of k-OR after about 2 weeks
(range, 7–27 days) of BPN administration was not detected by
PET with [11C]LY2795050. Figure 3 shows [11C]LY2795050
standard uptake value ratios before and after BPN in the 6
participants studied.

TMS Protocols to Assess the Effect of BPN or PBO
on Cortical Transmission

A total of 30 participants (20 randomized to BPN and 10 to
PBO) completed TMS measurements, and 28 (18 BPN, 10
PBO) were included in the analysis owing to missing data. The
four TMS measures over time in each treatment group are
shown in Figure 4.

There were no significant changes in any of the four TMS
measures over time (short-interval intracortical inhibition:
F2,24 = 0.37, p = .70; intracortical facilitation: F2,24 = 0.61, p =
.55; cortical silent period: F2,24 = 1.11, p = .32; maximum paired
associative stimulation: F2,24 = 0.06, p = .94). Similarly, there
were no significant interactions between group and time
(short-interval intracortical inhibition: F2,24 = 0.18, p = .83;
intracortical facilitation: F2,24 = 0.16, p = .85; cortical silent
period: F2,24 = 0.14, p = .79; maximum paired associative
stimulation: F2,24 = 1.11, p = .34).

DISCUSSION

We conducted an 8-week multisite, randomized, PBO-
controlled trial of low-dose BPN augmentation pharmaco-
therapy in adults age 50 and older with treatment-resistant
depression, and we used a multimodal approach to examine
target engagement. The key results were 1) the effects of low-
dose BPN and PBO on depression were small and did not
differ, 2) low-dose BPN was well tolerated with no significant
differences in adverse effects between BPN and PBO, 3) BPN
had minimal effects on fMRI bold responses in regions
involved in reward anticipation and response during the MID
task, 4) PET imaging in healthy control subjects did not show
significant displacement of the k-OR radioligand by low-dose
BPN, and 5) low-dose BPN did not significantly affect TMS
measures of plasticity or inhibitory and excitatory cortical
transmission in depressed midlife and older participants.

This study did not show clinical effects of low-dose (mean =
0.59 6 0.33 mg/day) BPN after 8 weeks; there were no signifi-
cant differences between the treatment groups in the pro-
portions of remitters or in the MADRS trajectories over time. It is
possible that the dosage of BPN was too low. A previous ran-
domized, placebo-controlled trial of low-dose BPN/samidorphan
showed no difference in MADRS score changes in the group that
received BPN/samidorphan 0.5 mg/0.5 mg compared with PBO
and numerically greater but not statistically significant improve-
ment in those who received 1 mg/1 mg (15). The low dosage of
BPN may also explain the lack of target engagement. The spe-
cific clinical characteristics of our sample may also explain the
lack of clinical effect observed. For one, we excluded patients
with moderate to severe chronic pain to minimize an analgesic
al Open Science April 2022; 2:127–135 www.sobp.org/GOS 131
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Figure 3. [11C]LY2795050 standard uptake value
ratios (SUVRs) in brains (similar axial slices shown) of
6 healthy participants who received buprenorphine
over 2 weeks. Baseline positron emission tomogra-
phy scans took place approximately 24 hours before
first buprenorphine dose. Follow-up positron emis-
sion tomography scans took place approximately 2
weeks after baseline. SUVR images as shown were
calculated using cerebellum gray matter as the
reference region and over a 30- to 90-minute post-
injection window. It is used as a semiquantitative
assessment of tracer binding to kappa opioid re-
ceptors in the brain. Warmer color and higher SUVR
values reflect more tracer uptake and suggest a
higher relative concentration of unoccupied kappa

opioid receptors compared with the reference region. Because of the small sample size and lack of evident differences, we did not conduct inferential statistics
on pre-post differences. The lack of differences in [11C]LY2795050 SUVR between baseline and follow-up scans in any regions of interest suggests no changes
in unoccupied kappa opioid receptor concentration in the brain after buprenorphine treatment.
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effect that could have confounded an antidepressant effect. We
also excluded patients with a history of opioid misuse or current
misuse of other substances to minimize the risk of triggering
BPN misuse. Patients living with comorbid pain and MDD or
those with MDD and substance misuse may be more likely to
experience an antidepressant effect from BPN given the dysre-
gulation of the opioid systems in these populations (36).
132 Biological Psychiatry: Global Open Science April 2022; 2:127–135
The fMRI experiment using an MID task showed minimal to
no effects of BPN administration on the activation of regions
associated with reward anticipation and response to either
reward cues or reward outcomes. In the reward outcome, the
right middle frontal gyrus (x, y, z of 36, 24, 40) showed a
pattern of initial rise but rapid fall in the bold signal in the post-
BPN condition, potentially suggesting a blunted response.
Figure 4. Transcranial magnetic stimulation mea-
sures (mean 6 SEM) over time by treatment group.
Short-interval intracortical inhibition and intracortical
facilitation are expressed as the ratio of the mean
conditioned motor-evoked potential (MEP) amplitude
to the mean unconditioned MEP amplitude. Cortical
silent period duration is in seconds. Maximum paired
associative stimulation (PAS) is expressed as the
ratio of the maximum mean MEP amplitude at any
post-PAS time point to the mean pre-PAS MEP
amplitude. There was no significant change in any
transcranial magnetic stimulation measures over
time and no significant interaction between group
and time.
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Overall, BPN had very limited effects on brain activation pat-
terns in the regions studied, contrary to our hypotheses that
BPN would activate regions with established involvement in
reward processing. These results are consistent with our pre-
vious study (18) that examined the neural effects of BPN using
a gambling task (probing striatal and reward-related regions)
and also showed no changes in reward circuitry elicited by the
reward responsivity task.

PET imaging of healthy adults did not show a decrease in k-
OR binding after 7 to 27 days of BPN compared with before
BPN, which would be expected if k-OR was occupied by BPN.
This negative result suggests that BPN at a dosage of up to 1.2
mg/day does not meaningfully engage k-OR. However, this
negative result could also be due to the semiquantitative stan-
dard uptake value ratio method we used not being sensitive
enough to detect subtle differences in binding. While full kinetic
analysis would be ideal to quantitatively assess the true k-OR
binding and occupancy, we were unable to obtain adequate
data to characterize the arterial radiotracer concentration. In
addition, k-OR is ubiquitous in the brain, and an ideal reference
region does not exist. However, given its lowest receptor den-
sity and smallest response to blockers, we used the cerebellum
as the pseudo reference in this study (27). In a reference-free
standard uptake value analysis, we also did not detect any
regional changes before and after BPN in these subjects. In
addition, we evaluated k-OR binding after subchronic daily
dosing of BPN to simulate the effect of clinical treatment;
however, it is possible that adaptive changes (i.e., upregulation
of k-OR with subchronic BPN) obscured the effect of BPN on k-
OR (37). Examining PET changes after a single dose of BPN
may be more sensitive to demonstrate target engagement.

Previous TMS evidence suggests that mechanisms in the
motor cortex that are mediated by GABA and glutamate re-
ceptors are impaired in depression (38,39). Despite prior evi-
dence of interactions between opioid, GABA, and glutamate
systems (40), we did not observe any significant changes in
TMS measures of cortical inhibition, facilitation, or plasticity
after either BPN or PBO augmentation. Similarly, our previous
study of open-label venlafaxine in older adults with MDD did
not show an effect of venlafaxine on these cortical measures
(41). Our findings suggest that low-dose augmentation of
venlafaxine with BPN does not further engage GABAergic and
glutamatergic mechanisms in the cortex. These findings are
specific to the motor cortex and could differ in other cortical
regions more closely linked with the neurobiology of
depression.

Limitations of this study include relatively small sample
sizes, particularly for the linked experiments (i.e., fMRI, PET,
and TMS), and the heterogeneity of the participants (e.g., dif-
ferences in the age cutoff) and duration of BPN treatment for
these three target engagement substudies. As stated earlier,
some of the exclusion criteria (including moderate or severe
pain or substance misuse) may also limit the interpretation of
our results. Finally, we did not use a dose-finding lead-in phase
to determine the BPN dosage needed to achieve a physio-
logical effect, using measures such as cold-pressor threshold
or pupil dilation (42), and we do not have plasma levels of BPN
and its metabolites.

Our findings of a lack of clinical effect and target
engagement support the National Institute of Mental Health
Biological Psychiatry: Glob
recommendation (43) to start development of pharmacolog-
ical interventions by adequately testing mechanisms of action
and demonstrating dose-dependent neurophysiological ef-
fects before proceeding with large clinical trials. This experi-
mental medicine and target engagement approach aims to
integrate clinical and physiological biomarkers to inform next
steps in discovery. For example, if we had observed the ex-
pected findings across all dimensions (clinical measures,
functional engagement using fMRI, molecular target
engagement by PET, and neurophysiological evidence of the
engagement of GABA and glutamate neurotransmission), it
would be a clear “go” signal for further studies of BPN in
midlife and older patients with MDD. In contrast, the results of
this study would suggest “no go” with this dosage and
physiological probes. However, given the well-supported
connection between the opioid system and depression, the
growing literature on the use of k-OR antagonists and
improved mood, and the current mental health and substance
use crises, there is still a need to study novel agents modu-
lating the opioid system. Future studies using larger doses of
BPN, other probes of target engagement, and samples with
different characteristics may be warranted.
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