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Adolescence is characterized by the maturation of cortical microstructure and connectivity supporting complex cogni-
tion and behavior. Axonal myelination influences brain connectivity during development by enhancing neural signal-
ing speed and inhibiting plasticity. However, the maturational timing of cortical myelination during human
adolescence remains poorly understood. Here, we take advantage of recent advances in high-resolution cortical T1w/
T2w mapping methods, including principled correction of B11 transmit field effects, using data from the Human
Connectome Project in Development (HCP-D; N = 628, ages 8–21). We characterize microstructural changes relevant
to myelination by estimating age-related differences in T1w/T2w throughout the cerebral neocortex from childhood to
early adulthood. We apply Bayesian spline models and clustering analysis to demonstrate graded variation in age-de-
pendent cortical T1w/T2w differences that are correlated with the sensorimotor-association (S-A) axis of cortical orga-
nization reported by others. In sensorimotor areas, T1w/T2w ratio measures start at high levels at early ages, increase
at a fast pace, and decelerate at later ages (18–21). In intermediate multimodal areas along the S-A axis, T1w/T2w
starts at intermediate levels and increases linearly at an intermediate pace. In transmodal/paralimbic association
areas, T1w/T2w starts at low levels and increases linearly at the slowest pace. These data provide evidence for graded
variation of the T1w/T2w ratio along the S-A axis that may reflect cortical myelination changes during adolescence
underlying the development of complex information processing and psychological functioning. We discuss the impli-
cations of these results as well as caveats in interpreting magnetic resonance imaging (MRI)-based estimates of
myelination.
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Significance Statement

Myelin is a lipid membrane that is essential to healthy brain function. Myelin wraps axons to increase neural signaling speed,
enabling complex neuronal functioning underlying learning and cognition. Here, we characterize the developmental timing of
myelination across the cerebral cortex during adolescence using a noninvasive proxy measure, T1w/T2w mapping. Our results
provide new evidence demonstrating graded variation across the cortex in the timing of T1w/T2w changes during adoles-
cence, with rapid T1w/T2w increases in lower-order sensory areas and gradual T1w/T2w increases in higher-order association
areas. This spatial pattern of microstructural brain development closely parallels the sensorimotor-to-association axis of corti-
cal organization and plasticity during ontogeny.

Introduction
Adolescence, the transition from childhood to adulthood, is
characterized by the refinement and stabilization of neural cir-
cuits supporting the dynamic control of attention and behavior
(Larsen and Luna, 2018). Axonal myelination in the cerebral cor-
tex enhances signaling speed (McDougall et al., 2018) and regu-
lates synapse formation during development to support the
reliable instantiation of adaptive behavior (Mount and Monje,
2017). While the role of cortical myelination in regulating plas-
ticity during sensitive periods of neurodevelopment has been
demonstrated in animal models (Takesian and Hensch, 2013),
there are few in vivo studies characterizing the maturational tim-
ing of cortical myelination during sensitive periods of human
development.

The cerebral cortex follows an overarching organizational
axis that is anchored on one end by sensorimotor areas under-
lying perception and movement, and at the opposing end by
heteromodal and paralimbic association areas involved with
cognitive control and socioemotional processing (Huntenburg
et al., 2018). The archetypal sensorimotor-association (S-A)
axis of cortical organization was derived in a recent study by
computing a composite ranking of cortical maps that capture
feature variation in cortical microstructure, functional connec-
tivity, metabolism, gene expression, and evolutionary expan-
sion of the cortical mantle (Sydnor et al., 2021). Further, the
spatiotemporal pattern of cortical development may also pro-
gress along the S-A axis, such that the early maturation of sen-
sorimotor systems scaffolds the development of association
areas that integrate more complex cognitive processes. Both
myelin-sensitive imaging and postmortem histology have pro-
vided evidence for continuous remodeling of intracortical mye-
lin content into adulthood (R.A. Hill et al., 2018; Hughes et al.,
2018), but it remains unclear whether cortical areas exhibit
graded differences from childhood through early adulthood in
the developmental timing of myelination according to their
position along the S-A axis.

Advances in noninvasive magnetic resonance imaging (MRI)
methods have facilitated in vivo investigations of myelin content
and tissue changes across the human lifespan (Edwards et al.,
2018). The ratio of T1-weighted and T2-weighted MRI images
(T1w/T2w) provides an indirect estimate of cortical myelin that
correlates with histologic myelin stains and quantitative MRI
(e.g., magnetization transfer, R1, R2) indices of cortical myelin
content (Glasser and Van Essen, 2011; Glasser et al., 2014, 2021;
Shams et al., 2019). T1w/T2w mapping has been increasingly
used in recent years because it is based on widely available MRI
sequences that are routinely collected in brain imaging studies at
high resolution, at clinical field strengths, and with short acquisi-
tion times. However, prior studies evaluating age-related differ-
ences in T1w/T2w (Grydeland et al., 2019; Norbom et al., 2020)

have not accounted for residual radio frequency transmit field
(B11) biases, which impact T1w/T2w estimates (as it does
quantitative relaxometry measures) in an age-dependent man-
ner through their relationship to body size (Glasser et al.,
2021; MacLennan et al., 2022). Because studies that neglected
B11 bias field effects may be prone to spurious results, it is
critical to characterize age-related differences in T1w/T2w af-
ter mitigating these confounds.

Here, we apply high-resolution cortical T1w/T2w mapping
methods from the Human Connectome Project in Development
(HCP-D; N=628, ages 8–21) to characterize the maturational
timing of cortical myelination from childhood through early
adulthood. We test whether cortical areas exhibit graded differ-
ences in the rate of T1w/T2w development according to their
position along the S-A axis. We use a novel approach for mitigat-
ing B11 confound effects in T1w/T2w mapping that enables us
to detect unbiased age-related differences in T1w/T2w (Glasser
et al., 2021). We characterize properties of age-related differences
in T1w/T2w across the cerebral cortex, including estimates of the
variance in T1w/T2w explained by age, rate of change, age of
peak growth, and degree of nonlinearity in T1w/T2w develop-
ment from 8 to 21 years old. These data provide evidence for
graded variation in age-dependent T1w/T2w differences along
the S-A axis that may reflect variation in the rate of cortical mye-
lination during adolescence and undergird the development of
complex information processing.

Materials and Methods
Participants
Neuroimaging datasets included 628 typically developing participants
aged 8–21 years (53.5% female; Fig. 1A) who were part of the HCP-D.
The HCP-D is a large cross-sectional and longitudinal study aiming
to characterize brain connectivity development in a sample approxi-
mating the demographics of youth in the United States with respect
to race, ethnicity, and socioeconomic status (Harms et al., 2018;
Somerville et al., 2018; Elam et al., 2021). Participants in this sample
were recruited across four sites: Harvard University, University of
California-Los Angeles, University of Minnesota, and Washington
University in St. Louis. Exclusion criteria for recruitment included
(1) premature birth (,37weeks gestation); (2) serious neurologic
condition (e.g., stroke, cerebral palsy); (3) serious endocrine condi-
tion (e.g., precocious puberty, untreated growth hormone deficiency);
(4) long-term use of immunosuppressants or steroids; (5) history of
serious head injury; (6) hospitalization .2 d for certain physical or
psychiatric conditions or substance use; (7) treatment .12months
for psychiatric conditions; (8) claustrophobia; or (9) pregnancy or
other contraindications for MRI. Participants provided written
informed consent and assent, and parents of participants under
18 years provided written informed consent for their child’s participa-
tion. All procedures were approved by a central Institutional Review
Board administered at Washington University in St. Louis (IRB
#201603135).
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This study focuses on cross-sectional data drawn from the publicly
available HCP-D “Release 2.0” dataset in the National Institute of
Mental Health Data Archive (NDA; N= 652). From this dataset, we
excluded 21 participants under the age of 8 because of insufficient data
available for 5–7 year olds at the time of this study. We excluded two
additional participants because of face-masking errors during image
reconstruction, and we excluded one additional participant with poor
T1w/T2w data quality indicated by visible artifacts and substantial out-
liers in T1w/T2w maps, yielding our final sample of 628 youth.

Myelin measurement: caveats and assumptions
MRI signal contrasts in cortical gray matter reflect a composite of tissue
properties (Fukunaga et al., 2010; Stüber et al., 2014). Changes in the
MRI signal may reflect changes in iron, myelin, lipids, water, and local
cell density (Fukunaga et al., 2010; Stüber et al., 2014; Edwards et al.,
2018). Several noninvasive MRI methods have been developed in recent
years to estimate cortical myelin content, including quantitative T1,
quantitative T2*, quantitative magnetization transfer, T2-based myelin
water fraction methods (Carey et al., 2018; Edwards et al., 2018), and
T1w/T2w ratio image intensities. These approaches are correlated with
one another and with histologic myelin stains in the cerebral cortex
(Glasser and Van Essen, 2011; Glasser et al., 2014, 2021), but the relative
sensitivity to the various sources of MRI tissue contrast differ across
these methods. Importantly, differences in these measures over the
course of development may reflect changes in multiple tissue properties
(e.g., not just myelin) and the properties that are changing may differ
from those that primarily drive the overall image contrast (e.g., the
known and well validated differences across the cortex between heavily
myelinated and lightly myelinated cortical areas). Thus, age-dependent
differences in cortical myelin measures should be interpreted cautiously
as microstructural development likely reflecting myelination, while
acknowledging the complexity of cortical tissue changes during develop-
ment and the limitations of indirect proxy measures.

Image acquisition
High-resolution T1w MRI images were acquired on a 3T Siemens
Prisma with a 32 channel head coil using a 3D multiecho MPRAGE
sequence [Mugler and Brookeman, 1990; van der Kouwe et al., 2008;

0.8-mm isotropic voxels, TR/TI = 2500/1000ms, TE= 1.8/3.6/5.4/7.2ms,
flip angle = 8°, in-plane (iPAT) acceleration factor of 2, TA= 8:22, up to
30 reacquired TRs]. Structural T2w images were acquired at 0.8 mm iso-
tropic using the variable-flip-angle turbo-spin-echo 3D SPACE sequence
(Mugler et al., 2000; TR/TE=3200/564ms; same in-plane acceleration,
TA=6:35, up to 25 reacquired TRs).

Both “PreScan Normalized” (Siemens’ approach for removing the
receive coil intensity profile) and non-normalized reconstructions were
generated at the scanner. The former were used for image quality review
at the scanner, while the latter were used as the inputs for subsequent
processing (consistent with the use of non-normalized reconstructions
as the input for the processing of the HCP Young Adult acquisitions;
Van Essen et al., 2013). Both versions (of the T1w) image were used for
estimating the B1– receive field to correct for effects of subject motion
between the T1w and T2w images. Only the first two echoes of the T1w
image were used in processing because of artifacts in the later echoes
that affected surface reconstructions and T1w/T2w maps (Elam et al.,
2021).

Volumetric navigators (vNavs) were embedded in the T1w and T2w
sequences for prospective motion correction and for selective reacquisi-
tion of the lines in k-space that were heavily corrupted by subject motion
(Tisdall et al., 2012). Real-time motion correction can substantially
reduce bias in brain morphometry analyses, where motion might induce
measurable morphometric differences (Reuter et al., 2015; Tisdall et al.,
2016). If the T1w or T2w structural scans were nonetheless deemed to be
of poor quality at the time of acquisition, they were reacquired (typically
immediately in the same imaging session, although sometimes in a dif-
ferent session). Only the single pair of T1w and T2w scans rated the
highest in quality from a single session were used in subsequent process-
ing. For further neuroimaging protocol description, see Harms et al.
(2018). Additionally, 2-mm isotropic gradient echo (GRE) and spin echo
(SE) images were acquired and used for computing the pseudo-transmit
field described below (Glasser et al., 2021).

Image processing
The structural MRI data were analyzed using the HCP Pipelines (Glasser
et al., 2013) version 4.0.0, instantiated into the QuNex container envi-
ronment (qunex.yale.edu), and the data were released as a part of the

Figure 1. Charting T1w/T2w development during youth. A, Age/sex histogram of the current sample of 628 youth who completed structural neuroimaging as part of the HCP-D. B, T1w/
T2w maps were parcellated using the HCP multimodal atlas (Glasser et al., 2016a) and averaged across participants. T1w/T2w units are arbitrary, representing relative estimates of intracortical
myelin content that are comparable within a consistently acquired study. T1w/T2w units of 1.4 and 1.9 correspond to the second and 98th percentiles in this dataset. Data from the left primary
motor cortex (highlighted with black border) are shown in panels C, D. C, We fit Bayesian generalized additive models with thin-plate splines to estimate different properties of age-related
change in cortical T1w/T2w. Specifically, we estimated the posterior smooth function of T1w/T2w on age for each of the 360 cortical parcels (data shown for the left primary motor cortex,
highlighted in panel B). The shaded area represents the 95% credible interval of the posterior smooth function. Navy blue segments of the posterior smooth function indicate the slope is credi-
bly as steep as the maximum slope, while yellow segments of the posterior smooth function indicate the slope is credibly less steep than the maximum slope (see panel D). D, Bayesian gener-
alized additive models were fitted to estimate the posterior derivative of the smooth function of T1w/T2w on age to characterize the rate of change, with higher values indicating a steeper
slope of change per unit age and 0 representing a flat slope (i.e., no age-related change). The shaded area represents the 95% credible interval of posterior derivative estimates. The vertical
line marks the age of the maximum median derivative (steepest slope). To identify windows where the rate of age-related T1w/T2w growth credibly slows down, we computed the difference
between the posterior derivative of the smooth and the posterior derivative at the age of the maximum median derivative; regions of this 95% credible interval (data not shown) that did not
include zero were used to mark regions of the smooth that were credibly less steep than the slope at the point of greatest maturation. Data are shown for an exemplar cortical parcel to illus-
trate our analytical approach.
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Lifespan HCP Release 2.0 in the NDA (https://nda.nih.gov/). Briefly, the
T1w and T2w volumes were processed through the PreFreeSurfer pipe-
line, which included gradient nonlinearity distortion correction, initial
brain-extraction, and rigid registration into an anterior/posterior-com-
missure aligned “native” space, registration of the T2w volume to the
T1w volume using boundary-based registration (BBR; Greve and Fischl,
2009), correction for the receiver coil bias field based on the smoothed
square root of the product of the T1w and T2w images, and registration
of the structural images to MNI space. Next, the FreeSurfer pipeline
(v6.0.0; Dale et al., 1999; Fischl, 2012) optimized for use with high-spatial
resolution (.1 mm isotropic) structural images was used for computing
the “white” and “pial” surfaces, including use of the T2w volume to opti-
mize the pial surface placement. Lastly, the PostFreeSurfer pipeline pro-
duced cortical surface models in GIFTI format and surface-related data
in CIFTI format, and each subject’s cortical surface was then registered
to a common 32k_FS_LR mesh using “MSMAll” areal-feature-based
cortical surface registration, which is a multimodal registration con-
strained by cortical T1w/T2w maps and resting-state network maps
(Robinson et al., 2014, 2018; Glasser et al., 2016b).

Following cortical surface reconstruction, a single experienced indi-
vidual performed a “SurfaceQC” review of the white and gray matter
surface placement, informed by the T1w/T2w ratio maps (Glasser and
Van Essen, 2011; Elam et al., 2021). Participants with more than minor
(focal) issues were flagged for possible future editing and excluded from
the cohort analyzed for the current study. This “SurfaceQC” review of
the HCP-D data revealed some degradation of the accuracy of surface
placement relative to expectations established by the HCP Young Adult
project, which we subsequently traced to artifacts in the longer echoes.
Therefore, to reduce the prevalence of surface segmentation errors in
this developmental sample, we used the mean of the shortest two echoes
(i.e., excluded the longest two of four echoes) as the T1w input to the
HCP Pipelines (Elam et al., 2021).

T1w/T2w processing
T1w/T2w maps were generated as a cortical ribbon volume and a surface
map using the methods described previously (Glasser and Van Essen,
2011; Glasser et al., 2013), together with more recent improvements
(Glasser et al., 2014, 2021). Briefly, the T1w/T2w ratio in the voxels
between the white and pial surfaces is mapped to the surface mesh in a
way that emphasizes the middle layers and underemphasizes voxels near
pial and gray/white surface to reduce partial volume effects (Glasser et
al., 2013). Division of the T1w image by the T2w image mathematically
cancels the signal intensity bias related to the sensitivity profile of the ra-
dio frequency receiver coils, which is the same in both images in the ab-
sence of subject head motion. Taking the ratio will also increase the
contrast related to myelin content since both input images show myelin-
related contrast (Glasser and Van Essen, 2011), inverted in the
T2w image relative to the T1w image. Individual T1w/T2w maps
were parcellated according to the HCP-multimodal atlas (Glasser
et al., 2016a) using wb_command -cifti-parcellate in Connectome
Workbench v1.4.2 (Marcus et al., 2011). This computes the average
value of all vertices within a parcel and is thus a neuroanatomically
constrained form of smoothing. T1w/T2w units are arbitrary, rep-
resenting relative estimates of intracortical myelin content that are
comparable within a consistently acquired study. Further, since
the scaling of T1w and T2w images depends on the scanner and ac-
quisition parameters, T1w/T2w units should not be directly com-
pared across studies without appropriate harmonization.

B11 transmit field correction of T1w/T2w myelin maps
T1w/T2w maps were initially developed for neuroanatomical analyses
such as constraining the anatomic boundaries of cortical areas within
individuals (Glasser et al., 2016a) and residual biases from the B11 radio
frequency transmit field were mitigated using the MyelinMap_BC
approach (Glasser et al., 2013); however, this approach also removes
genuine low spatial frequency individual differences in the T1w/T2w ra-
tio. Given the increasing interest in using T1w/T2wmaps to perform sta-
tistical comparisons across individuals and groups with other variables
of interest, such as age (Kwon et al., 2018; Grydeland et al., 2019;

Norbom et al., 2020), a new approach to B11 transmit field bias correc-
tion was developed (Glasser et al., 2021). B11 biases are influenced by
the loading of the body coil (influenced by both the participant’s head
and body). Thus, variables such as head size, body size, and body mass
index (BMI), which are often correlated with age and other variables of
interest, can modulate B11 bias and may lead to potentially spurious
results in cross-subject statistical analyses of T1w/T2w maps.

In this study, we applied a novel, empirically validated “pseudo-
transmit field” correction to mitigate B11 bias in individual T1w/T2w
maps, thereby reducing potentially spurious age-related differences in
T1w/T2w values (Glasser et al., 2021). The B11 correction approach in
this study relies on computing a pseudo-transmit field based on the aver-
age across phase encoding directions of GRE images divided by SE
images (mimicking the GRE T1w scan divided by SE T2w scan). First, a
reference T1w/T2w map was generated at the group level by finding the
scaling between the group average pseudo-transmit field and group aver-
age T1w/T2w map that minimizes the correlated left-right differences
between the two maps (i.e., the clearly spurious left-right asymmetries).
This reference group map was used to correct the individual maps. For
the individual correction, the pseudo-transmit map was scaled to mini-
mize the correlated differences between the individual’s T1w/T2w map
and the reference T1w/T2w map and the pseudo-transmit map (which
includes all differences, not simply left-right ones, and is more robust at
the individual level). Before estimating this correction, any residual B1–
effects because of subject head motion between the T1w and T2w images
were also removed using the scanner-computed B1– receive field. The
pseudo-transmit field requires regularization by thresholding regions of
T2*-related signal loss combined with spatial smoothing (with compen-
sation for intensity changes induced by smoothing); it is then scaled to
equal 1 at the value where the GRE/SE ratio corresponds to the flip angle
prescribed by the scanner, a reference value that is determined at the
group level. For more methodological details and validation of the cor-
rection, see Glasser et al. (2021), which demonstrates that this correction
approach eliminates spurious relationships between the T1w/T2w ratio
and B11 bias modulated by body size.

Statistical analysis
Bayesian generalized additive models were fitted using the brms
(Bürkner, 2018) interface to the Stan modeling language (Stan
Development Team, 2021). Models were fitted separately to each par-
cellated cortical area to characterize different properties of age-related
changes in T1w/T2w across the cerebral cortex. This approach sam-
ples from the posterior smooth function of T1w/T2w conditional on
age and covariates, representing age-related changes in T1w/T2w,
and the posterior derivative of the smooth function on age, represent-
ing the rate of change across the age range. Importantly, Bayesian
thin-plate spline models allow us to estimate both linear and nonlin-
ear age-related changes in T1w/T2w without specifying a linear or
polynomial function a priori (Fahrmeir and Kneib, 2011; Hastie and
Tibshirani, 2017; Wood, 2017). All statistical analyses were conducted
in R version 3.5.1 (R Core Team, 2018).

We evaluated age-related change in T1w/T2w for each cortical parcel
while controlling for participant sex, scanner, and several covariates
related to the B11 transmit field correction including the scanner
transmit voltage, the mean of the pseudotransmit map, four regulariza-
tion parameters [(1) T2* dropout threshold; (2) smoothing FWHM;
(3) correction factor for smoothing’s effect on the pseudotransmit
field’s intensities; and (4) the slope parameter of the correction], and a
corrected T1w/T2w lateral ventricular CSF regressor (after excluding
partial volume voxels and CSF flow effects) that are described in detail
previously (Glasser et al., 2021). The brms syntax for the full Bayesian
model for each cortical parcel was expressed as follows:

brms(T1w/T2w ; s(Age, k = �1, bs = ‘tp’) 1 Sex 1 Scanner 1
Transmit_Voltage 1 Mean_Pseudo_Transmit_Map 1 T2_Dropout_
Threshold 1 Smoothing_FWHM_mm 1 Smoothing_Correction_
Parameter1 Correction_Slope1 Corrected_CSF_Regressor)

Thin plate regression splines were used for the smoothing basis, and
k was left at the default value of�1 which entails setting the basis dimen-
sion to 10. We retained the default priors set by brms; for regression

5684 • J. Neurosci., July 20, 2022 • 42(29):5681–5694 Baum et al. · Cortical T1w/T2w Development during Adolescence

https://nda.nih.gov/


coefficients this is a flat prior over the reals; for the intercept this is a
Student’s t distribution with df = 3, m set at the mean of the outcome,
and s = 2.5; for the SD of the splines and SD of the error term this is a
Student’s t distribution with df = 3, m = 0, and s = 2.5. We ran four
chains with 4500 total iterations (2000 warm-up) for each chain, yielding
10,000 posterior draws in total. The posterior smooth function for each
cortical parcel was used to estimate other properties of age-related
change in T1w/T2w, as described below.

Measurements of age-related change in T1w/T2w
Partial R2 values for age splines in each regional model were calculated
by taking the difference between full models including an age spline and
reduced models without age. These R2 values reflect the amount of var-
iance in cortical T1w/T2w explained by age.

Annualized rate of change (AROC) in T1w/T2w
The annualized estimated rate of change in T1w/T2w was calculated for
each cortical parcel by taking the difference between posterior samples
for T1w/T2w at age 21 and age 8, and then dividing that difference by
the number of years in the age range of the sample. This yielded a poste-
rior distribution for this difference which we use to compute a point esti-
mate using the median and 95% credible interval. The estimated rate of
change in T1w/T2w was based on cross-sectional differences and does
not reflect direct longitudinal estimates.

Linearity of age-related changes in T1w/T2w
Given prior work showing variation in the linearity or shape of neurode-
velopmental changes during adolescence (Shaw et al., 2008), we used
two complementary approaches to evaluate the linearity of age-related
differences in T1w/T2w for each cortical parcel. Both approaches were
dependent on the Bayesian spline models described above, which esti-
mate both linear and nonlinear age-related differences in T1w/T2w
without specifying a linear or polynomial function a priori (Wood,
2017). Therefore, to estimate the linearity of age curves regardless of
functional form, we defined a measure of linearity as the mean absolute
posterior second derivative of the smooth function of T1w/T2w on age.

First, the mean absolute posterior second derivative of the smooth
function of T1w/T2w on age was calculated as a continuous measure
of linearity for each cortical parcel using the curvish package in R
(Flournoy, 2021). This measure reflects the rate of change in the slope of
T1w/T2w age curves (e.g., how the rate of T1w/T2w change varies from
8 to 21 years).

Second, we conducted a separate, more conservative test evaluating
whether a (nonlinear) spline model or a linear model of age-related
changes in T1w/T2w provides greater out-of-sample predictive perform-
ance based on the leave-one-out-information criterion (LOOIC; Vehtari
et al., 2017). Specifically, the smooth function from a generalized addi-
tive model was identified as nonlinear when the LOOIC difference
between a Bayesian linear and spline model was at least 2.0 times the ap-
proximate standard error of its estimate (Bürkner, 2018). This is approx-
imately analogous to a two-sided Z-test. The LOOIC indexes the out-of-
sample predictive performance of a model. Therefore, cortical parcels
for which the generalized additive model fits better are those in which
we have credible evidence that this more complex, nonlinear form has
greater out-of-sample predictive performance.

Age of peak and slowing T1w/T2w growth
The posterior age of peak growth (i.e., steepest slope) in T1w/T2w was
estimated using the curvish package in R (Flournoy, 2021). Using the
posterior of the smooth function and the method of finite differences at
100 equally spaced points, we evaluate the first derivative. Then, for each
posterior sample we find the age at which the derivative is maximized,
yielding a posterior density reflecting the probability of the slope being
maximized at any given age.

To identify windows in development where the rate of age-related
increases in T1w/T2w credibly slowed down, we computed the differ-
ence between the posterior derivative of the smooth at each evaluation
point and the posterior derivative at the age of maximummedian deriva-
tive. Regions of this 95% credible interval that did not include zero were

used to mark regions of the smooth that were credibly less steep than the
slope at the point of greatest maturation.

Identifying cortical areas with similar rate and shape of age-dependent
T1w/T2w changes using clustering analysis
Based on prior literature characterizing variation in the maturational
timing of cortical neurodevelopment across brain areas (Shaw et al.,
2008; Somerville, 2016; Sydnor et al., 2021), we aimed to identify data-
driven clusters of cortical parcels with similar T1w/T2w smooth func-
tions on age. Further, rather than clustering parcels based on a single
scalar property, we were interested in clustering cortical parcels based on
latent dimensions of age-dependent T1w/T2w changes that capture
subtle variation in the rate and shape of cortical development. To this
end, we applied a functional latent mixture model using the funHDDC
package in R (Bouveyron and Jacques, 2011), which consistently outper-
forms alternative clustering algorithms applied on spline coefficients
(Bouveyron and Jacques, 2011; Schmutz et al., 2020).

First, for Bayesian models in each cortical parcel, we subtracted the
posterior T1w/T2w estimates at age 8 from predicted T1w/T2w values at
500 age bins distributed equally between 8 and 21 years. This effectively
removed intercept differences (i.e., starting T1w/T2w level) across corti-
cal parcels, which were not of interest in this analysis. Second, we con-
verted a brain region by age matrix into a functional data object for
input into the funHDDC algorithm. Third, we ran funHDDC on the
functional T1w/T2w trajectories, allowing the optimal number of
clusters to vary freely between 2 and 7. Fourth and finally, we used
the funHDDC::slopeHeuristic function to identify the most parsimo-
nious model solution based on penalized log-likelihood (Schmutz
and Bouveyron, 2021).

Sensitivity analyses
Cortical thickness. Prior studies have shown that T1w/T2w and corti-

cal thickness measures are inversely correlated across the cerebral cortex
(Glasser and Van Essen, 2011; Glasser et al., 2014; Natu et al., 2019). To
demonstrate that our results were specific to age-related differences in
T1w/T2w and are not attributable to concurrent changes in cortical
thickness, we fit Bayesian spline models for each cortical parcel
while controlling for estimates of cortical thickness (i.e., “*_V1_MR.
thickness.32k_fs_LR.dscalar.nii”). We then calculated the spatial
correlation between parcellated cortical maps of the AROC in T1w/
T2w with and without controlling for cortical thickness.

Head motion. Head motion during structural MRI acquisition can
impact image quality, inducing spurious artifacts in image intensity and
morphometric measurements (Tisdall et al., 2016; Savalia et al., 2017).
Age-related differences in motion (younger individuals commonly move
more than older individuals) are a common concern when evaluating
age-related changes in brain imaging measures (Satterthwaite et al.,
2013; Reuter et al., 2015; Baum et al., 2018). Thus, we undertook sensi-
tivity analyses in which participants with the highest motion estimates
were excluded to test whether the primary results were evident in this
lower-motion sample. To do so, we estimated the AROC in T1w/T2w af-
ter excluding 114 participants who exceeded the number of allowed TR
reacquisitions for either the T1w (up to 30 allowed) or T2w (up to 25
allowed) acquisition, and thus had a considerable degree of ongoing
head motion that was not fully corrected. For these participants, the
number of k-space lines that still exceeded the motion threshold after
the allowed number of reacquisitions is unknown, and thus the quality
of these images is degraded relative to what could have been achieved if
there was no limit placed on the number of reacquisitions (Tisdall et al.,
2012). We then calculated the spatial correlation between parcellated
cortical maps of the AROC in T1w/T2w with and without including par-
ticipants with excess head motion.

Linking T1w/T2w development with the S-A axis of cortical organization
To evaluate whether cortical parcels exhibited differences in age-related
changes in T1w/T2w according to their position along the S-A axis, we
calculated the Spearman correlation between parcellated maps of cortical
T1w/T2w development and S-A axis rankings. We used a spatial permu-
tation test (described in detail below) to assess the significance of spatial
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correlations between each measure of age-related change in T1w/T2w
described above (partial R2, rate of change, age of peak growth, degree of
nonlinearity) and the S-A axis of cortical organization.

Briefly, S-A rankings were derived from cortical maps of ten funda-
mental brain features exhibiting systematic variation between lower-
order sensorimotor areas and higher-order association areas (Sydnor et
al., 2021). These cortical maps measured the anatomic hierarchy from
T1w/T2w mapping (Glasser and Van Essen, 2011), the functional hierar-
chy quantified by the principal gradient of functional connectivity
(Margulies et al., 2016), the evolutionary hierarchy quantified by maca-
que-to-human cortical expansion (J. Hill et al., 2010), allometric scaling
quantified as the relative extent of areal scaling with overall brain size
(Reardon et al., 2018), aerobic glycolysis quantified from positron emis-
sion tomography measures of oxygen consumption and glucose use
(Vaishnavi et al., 2010), cerebral blood flow quantified by arterial spin
labeling (Satterthwaite et al., 2014), gene expression quantified by the
first principal component of brain-expressed genes (Burt et al., 2018),
the first principal component of NeuroSynth meta-analytic decodings
(Yarkoni et al., 2011), externopyramidization quantified as the ratio of
supragranular pyramidal neuron soma size to infragranular pyramidal
neuron soma size (Paquola et al., 2020b), and cortical thickness quanti-
fied from structural MRI (Human Connectome Project S1200 data). See
Sydnor et al. (2021) for further details.

Spatial permutation test
The statistical significance of spatial correlations (Pspin) between parcel-
lated cortical maps of age-related change in T1w/T2w and the archetypal
S-A axis were assessed using a conservative parcel-based spatial permu-
tation test that preserves the spatial covariance structure of cortical maps
(Alexander-Bloch et al., 2018), as implemented by Váša et al. (2018).
This permutation procedure generates a distribution of 10,000 spatial
null maps randomly rotated on the spherical cortical surface to retain
spatial contiguity and hemispheric symmetry of the original cortical
maps. For each parcellated map showing age-related change in T1w/
T2w (i.e., R2, rate of change, age of peak growth, nonlinearity, latent sub-
groups), we generated 10,000 randomly rotated “null” maps on the cortical
surface. We then estimated the null distribution of Spearman correlation
coefficients between the archetypal S-A axis map and the randomly rotated
maps of T1w/T2w development. Permutation-based p-values (Pspin) were
calculated based on the number of times the empirical correlation coeffi-
cient was higher than the permuted correlation coefficient.

False-positive error rate correction
When evaluating statistical significance of spatial correlations between
cortical maps of age-related change in T1w/T2w and the archetypal S-A
axis, the spatial permutation (“spin”) test provides family-wise control of
multiple comparisons (Type I error) by accounting for the spatial and
contralateral dependence of areal measurements in cortical maps
(Alexander-Bloch et al., 2018). Further, we used the Holm correction
(Holm, 1979), which is more powerful than Bonferroni and valid under
arbitrary assumptions, to adjust the p-values across the 5 tests that are
used to test the hypothesis that T1w/T2w development is linked with the
S-A axis of cortical organization. The same correction was applied across
all 15 spatial correlation tests between pairs of parcellated maps showing
different properties of T1w/T2w development and the S-A axis (a =
0.05; Table 1). For descriptive purposes, we dichotomize parcels into

those with or without a more complex functional form, and those with
or without evident windows where the rate of age-related T1w/T2w
growth credibly slows down, comprising 360 tests for each set. We do
not attempt to control the family-wise false positive rate for the linearity
decisions, or probability of making a sign error (Gelman and Carlin,
2014) when identifying windows where the rate of age-related T1w/T2w
growth credibly slows down, as we report these as hypothesis-generating
descriptions for which a higher Type I error rate (and lower Type II
error rate) is preferable.

Data access and availability
Minimally preprocessed structural neuroimaging data from the HCP-D
is available for download through the NIMH Data Archive (https://nda.
nih.gov/). Parcellated cortical maps presented in this study are available
for download through the BALSA database (https://balsa.wustl.edu/
study/P2DmK).

Results
We analyzed high-resolution cortical T1w/T2w maps from 628
participants (ages 8–21 years old; Fig. 1A,B) to characterize the
development of cortical T1w/T2w during youth after correcting
for transmit field biases (Glasser et al., 2021). The posterior
smooth function of T1w/T2w on age and the posterior derivative
of the age function were estimated by fitting Bayesian thin-plate
spline models across 180 cortical parcels in each hemisphere,
thereby obtaining measures of the overall effect size, rate, and
nonlinearity of age-related change in T1w/T2w across the neo-
cortical sheet. For example, we illustrate age-related differences
in T1w/T2w estimated for the left primary motor cortex using
the posterior smooth function (Fig. 1C) and the posterior deriva-
tive (Fig. 1D) of T1w/T2w on age.

For a descriptive visualization of cortical T1w/T2w develop-
ment, we averaged data into three age groups (8–10 years
approximating childhood, 14–16 years approximating mid-ado-
lescence, and 19–21 years approximating emerging adulthood)
to illustrate the spatial patterning of age-related differences in
T1w/T2w from childhood to adulthood. The pattern of cortical
T1w/T2w differences during adolescent development reflects the
S-A axis reported by Sydnor et al. (2021; Fig. 2, inset right). The
S-A hierarchy was evident in 8–10 year olds (n=145; Fig. 2, left),
with high T1w/T2w in sensory cortex and low T1w/T2w in asso-
ciation cortex. This hierarchy was present across all age groups,
suggesting that the S-A hierarchy in cortical T1w/T2w is rein-
forced from childhood through adulthood. Relative to younger
participants, 14–16 year olds (n= 154; Fig. 2, middle) had higher
T1w/T2w across sensorimotor and intermediate association
areas of the cerebral cortex. In 19–21 years olds, we observed a
spatial pattern of cortical T1w/T2w extending from primary sen-
sory to multimodal association cortex (n=120; Fig. 2, right).

Next, we evaluated the topography of the effect size and rate of
age-related change in T1w/T2w from childhood through adult-
hood. In a multiple linear regression, all cortical parcels showed

Table 1. Correlated properties of T1w/T2w development and cortical S-A organization

S-A rank Age R2 Rate of change Age of peak growth Nonlinearity Functional cluster

S-A rank ,0.001 ,0.001 ,0.001 ,0.001 ,0.001
Age R2 �0.64 0.001 0.015 ,0.001 ,0.001
Rate of change �0.74 0.86 0.002 ,0.001 ,0.001
Age of peak growth 0.60 �0.65 �0.63 ,0.001 ,0.001
Nonlinearity �0.45 0.47 0.57 �0.47 ,0.001
Functional cluster 0.69 �0.84 �0.92 0.69 �0.58

Spatial correlations between parcellated cortical maps highlighting common and dissociable properties of T1w/T2w development and S-A ranking. The lower triangle of the table shows Spearman correlation coefficients and
the upper triangle shows uncorrected permutation-based p-values (Pspin) calculated from a conservative spatial permutation (“spin”) test. Pspin values from all 15 spatial permutation tests survived family-wise error correction
using the Holm method (a = 0.05; Holm, 1979).
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significant age-related differences in T1w/T2w after family-wise
error correction (p, 0.05) with the exception of the bilateral sub-
genual cingulate (Brodmann area 25), which suffers from low
SNR because of proximity of the ventricles and medial wall.
Moreover, we found systematic variation in the amount of var-
iance in T1w/T2w explained by age. Specifically, age explained a
greater proportion of variance in T1w/T2w in sensorimotor areas
such as right area V2 (R2 = 0.25; Fig. 3B) compared with associa-
tion zones where age explained little variance in T1w/T2w, such as
the left anterior cingulate cortex (area p32; R2 = 0.028; Fig. 3C).
Figure 3D shows the spatial correlation between the variance in
T1w/T2w explained by age (R2) and the cortical parcel’s position
along the archetypal S-A axis of cortical organization (r = �0.65,
Pspin, 0.001).

We also observed spatial variation in the AROC in T1w/T2w
estimated for each cortical parcel (Fig. 4A). Sensorimotor areas
had relatively high AROC in T1w/T2w. Figure 4B shows the pos-
terior smooth for the right motor cortex (area 4), an exemplar
sensorimotor area with relatively high AROC in T1w/T2w
(AROC=0.025). Figure 4C shows the posterior smooth for the
left anterior cingulate cortex (area p32), an exemplar association
area with relatively low AROC in T1w/T2w (AROC=0.005).
From childhood through early adulthood, spatial variation in the
AROC in T1w/T2w reflected S-A hierarchy (r = �0.65, Pspin ,
0.001; Fig. 4D), with heavily myelinated sensorimotor areas
showing rapid T1w/T2w increase relative to heteromodal
and paralimbic association areas, which had slower age-
related increases in T1w/T2w.

Sensitivity analyses revealed high correspondence between
the original parcellated cortical map of AROC in T1w/T2w
and the parcellated map when controlling for cortical thick-
ness in each cortical area (r = 0.96, Pspin , 0.001). We also
observed a highly consistent spatial pattern of T1w/T2w de-
velopment when excluding participants with excess head
motion (n = 451; r = 0.97, Pspin , 0.001).

Next, we evaluated whether cortical parcels varied systemati-
cally in the linearity of age-related increases in T1w/T2w, as non-
linear T1w/T2w smooth functions might reflect diminishing age-
related changes or a developmental inflection point. Figure 5A
shows the linearity of age-related differences in T1w/T2w
using the mean absolute posterior second derivative, which
captures change in the slope over time. Figure 5B shows the
posterior smooth function of T1w/T2w on age for the left

V2, an exemplar sensorimotor area with relatively nonlin-
ear age-related increases in T1w/T2w (mean absolute sec-
ond derivative = 0.004). Figure 5C shows the posterior
smooth function of T1w/T2w on age for the right anterior
ventral insula, an exemplar association area with relatively
linear age-related increases in T1w/T2w (mean absolute
second derivative = 0.002). Spatial variation in the linearity
of age-related increases in T1w/T2w was significantly corre-
lated with the cortical parcel’s position along the S-A axis
(r = �0.45, Pspin , 0.001; Fig. 5D), with sensorimotor areas
showing relatively nonlinear T1w/T2w increase relative to
heteromodal and paralimbic association areas, which had
relatively linear T1w/T2w increase with age. The LOOIC
difference between linear and nonlinear spline models indi-
cated that 63 of 360 cortical parcels (17.5%) had better out-
of-sample predictive performance when including the
spline. We found that 116 of 360 (32.2%) cortical parcels
had segments of the age curve that were credibly less steep
than the maximum slope, indicating a credible decrease in
the slope of T1w/T2w maturation over time. This decelera-
tion of age-related increases in T1w/T2w occurred primar-
ily between 18 and 21 years old.

We further characterized cortical variation in the matura-
tional timing of peak age-related increases in T1w/T2w based on
the median posterior age where the first derivative was maxi-
mized (i.e., age of steepest slope; Fig. 6A). Figure 6B shows the
shape and posterior age of peak T1w/T2w growth for the left V1,
an exemplar sensorimotor area with a relatively early age of peak
growth in T1w/T2w (median age = 9.6 years). Figure 6C shows
the shape and posterior age of peak T1w/T2w growth for the
right prefrontal area 8c, an exemplar association parcel with a
relatively late age of peak growth in T1w/T2w (median age =
15.0 years). Spatial variation in the age of peak T1w/T2w growth
from 8 to 21 years old closely followed the S-A axis of cortical or-
ganization (r= 0.60, Pspin , 0.001; Fig. 6D), with sensorimotor
areas showing relatively early peak growth in T1w/T2w com-
pared with heteromodal and paralimbic association areas, which
had relatively late peak T1w/T2w growth. In general, areas with
more linear T1w/T2w growth had greater uncertainty in the age
of maximum slope, as illustrated by the width of the posterior
distribution (Fig. 6B,C, upper inset). This may account for why
the scatter (deviation from the best-fitting line) increases with S-
A ranking in Figure 6D.

Figure 2. Waves of cortical T1w/T2w maturation from childhood through early adulthood. Parcellated T1w/T2w maps were averaged across participants within three age groups to illustrate
the spatial patterning of age-related increases in T1w/T2w during youth. T1w/T2w units of 1.4 and 1.9 correspond to the second and 98th percentiles in this dataset. Age groups include 8–
10 year olds (left; n= 145), 14–16 year olds (middle; n= 154), and 19–21 year olds (right; n= 120). Age-related increases in cortical T1w/T2w were observed across the cortical sheet, reinforc-
ing a S-A hierarchy in cortical microstructure. The archetypal S-A axis (inset right) was adapted with permission from Sydnor et al. (2021).
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We assessed whether groups of cortical parcels demonstrated
similar temporal aspects of age-related change in T1w/T2w, as
such groups of cortical parcels might reflect the development of
coordinated patterns of brain connectivity. A functional latent
mixture model was used to identify groups of cortical parcels
exhibiting similar age-related patterns of T1w/T2w growth
during youth. The most parsimonious model identified three
latent clusters or groups of cortical parcels with graded differ-
ences in the rate of age-related changes in T1w/T2w (Fig. 7A).
The spatial patterning of the functional latent clusters closely
recapitulated the S-A axis (Sydnor et al., 2021; F = 166.6,
p, 1.0� 10�10): sensorimotor areas at one end of the S-A
axis were grouped in latent cluster 1, intermediate association
areas were grouped in latent cluster 2, and heteromodal/para-
limbic association areas at the opposite end of the S-A axis
were grouped in latent cluster three based on variation in the
developmental timing of T1w/T2w changes (Fig. 7B). Cluster
1 (Fig. 7C, magenta) primarily included sensorimotor parcels,
which had the highest rate of cortical T1w/T2w growth.
Cluster 2 (Fig. 7C, orange) included heteromodal association
parcels showing an intermediate rate of cortical T1w/T2w
growth. Cluster 3 (Fig. 7C, yellow) included paralimbic associ-
ation parcels in medial prefrontal and insular cortex, which
had the lowest rate of cortical T1w/T2w growth.

We observed similar spatial patterning across each measure-
ment of age-related changes in T1w/T2w. Table 1 shows the
Spearman correlation coefficients and permutation-based p-val-
ues (Pspin) for each pairwise correlation among measurements.
The high correspondence between these measures suggests that
different temporal properties of T1w/T2w changes are yoked

during adolescence and depend on the cortical parcel’s position
along the S-A axis.

Discussion
Here, we characterize the developmental timing of microstruc-
tural changes across the cerebral cortex during adolescence using
recent advances in high-resolution T1w/T2w mapping applied to
data from the HCP-D. This study is the first to evaluate the
maturational timing of estimated cortical myelination in youth
using B11 transmit field-corrected T1w/T2w myelin maps, pro-
viding unbiased estimates of age-related differences in cortical
microstructure. We demonstrate graded variation across the cor-
tex in the timing of T1w/T2w changes during youth, with rapid
age-related increases in sensorimotor cortex, and more gradual
age-related increases in association cortex. This spatial pattern of
microstructural brain development recapitulates the sensorimo-
tor-to-association axis of cortical organization and plasticity dur-
ing ontogeny. Moreover, our findings provide new evidence for
protracted T1w/T2w changes in distributed association zones
during youth, which could reflect ongoing cortical myelination
underlying complex information processing and psychological
functioning.

Graded variation in cortical T1w/T2w development during
youth reflects the S-A axis of cortical organization
We observed graded variation in the rate and timing of age-
related increases in cortical T1w/T2w from 8 to 21 years old. For
each cortical parcel, Bayesian spline models provided posterior
estimates of the AROC, the age of peak T1w/T2w growth, and

Figure 3. Effect size estimates for regional Bayesian models of T1w/T2w development. A, Partial R2 values for age splines were estimated for each cortical parcel, representing the proportion
of variance in T1w/T2w differences explained by age. B, Age-related increases in T1w/T2w were relatively strong in sensorimotor areas such as the right V2 (outlined and labeled in panel A),
where age explained 25% of variance in T1w/T2w. C, By contrast, age-related increases in T1w/T2w were relatively weak in heteromodal and paralimbic association areas such as the left ante-
rior cingulate cortex (area p32; outlined and labeled in panel A), where age explained 2.8% of variance in T1w/T2w. D, The variance in T1w/T2w explained by age (R2) was correlated with the
cortical area’s position along the archetypal S-A axis of cortical organization. In panel D, the blue data point corresponds to the exemplar sensorimotor parcel (V2) and the yellow data point
corresponds to the exemplar association parcel (ACC) highlighted in panels A–C. ACC = anterior cingulate cortex; S-A = sensorimotor-association. Pspin is the permutation-based p-value calcu-
lated from a conservative parcel-based spatial permutation (“spin”) test. Data are shown for exemplar sensorimotor and association parcels to illustrate differences in T1w/T2w development.
Models were estimated independently for all 180 cortical parcels in each hemisphere (360 in total).
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the degree of nonlinearity in age-related changes. Each of these
temporal properties of T1/T2w development followed a cortical
topography reflecting S-A organization (Sydnor et al., 2021).
Sensorimotor areas at one end of the S-A axis had a high rate of
T1w/T2w growth, with early peak growth and relatively nonlin-
ear age-related increases in T1w/T2w. Heteromodal and paralim-
bic association areas at the opposing end of the S-A axis had a
slower rate of T1w/T2w changes, with late peak growth and rela-
tively linear age-related increases in T1w/T2w. This coupling
between measurements of age-related change in T1w/T2w sug-
gest that the microstructural differentiation of cortical areas fol-
lows distinct developmental programs depending on the area’s
position along the S-A axis of cortical organization.

A functional latent mixture modeling procedure provided
data-driven validation of the systematic variation we observed in
T1w/T2w development. The most parsimonious clustering solu-
tion identified three clusters of cortical parcels based on the rate
of age-dependent differences in T1w/T2w. This approach con-
firmed that the rate of cortical T1w/T2w growth during youth
parallels the areal position along the S-A axis.

Our results provide new in vivo evidence aligned with histo-
logic studies demonstrating topographic variation in the rate of
cortical gray matter myelination during childhood and adult-
hood (Flechsig, 1901; Yakovlev and Lecours, 1967), underscoring
a neurodevelopmental S-A axis. Graded variation in the rate of
cortical myelination could reflect cascading sensitive windows
for refining increasingly complex cognitive functions (Takesian

and Hensch, 2013). Our findings are also consistent with com-
parative postmortem studies demonstrating prolonged myeli-
nation in human association cortex relative to chimpanzees
(Miller et al., 2012), which could reflect an uniquely extended
window of ongoing plasticity in cortical circuits underlying
complex socioemotional and cognitive processing (Larsen and
Luna, 2018).

Our main findings also converge with prior neuroimaging
studies evaluating age-related differences in cortical myelin con-
tent using quantitative MRI methods such as magnetization
transfer (MT) imaging, which demonstrate relatively late myeli-
nation in association cortices during adolescence into the third
decade of life (Whitaker et al., 2016; Ziegler et al., 2019; Paquola
et al., 2020a). Our findings are also consistent with a recent study
evaluating age-related changes in T1w/T2w from 3–21 years old,
which identified global increases in T1w/T2w across the neocor-
tex (Norbom et al., 2020). Further, a lifespan study of 8–85 year
olds characterized an early age of peak T1w/T2w growth in
sensorimotor areas, and a later age of peak T1w/T2w growth
in association areas (Grydeland et al., 2019). Despite their
strengths, these studies did not control for B11 transmit field
bias, which impacts T1w/T2w estimates in a manner that is
systematically related to age, sex, and body size (Glasser et al.,
2021; MacLennan et al., 2022). Our study extends prior work
by rigorously characterizing the pace and timing of cortical
microstructural development in youth, using submillimeter
resolution, B11 bias-corrected T1w/T2w mapping, and mapping

Figure 4. Annualized rate of change in T1w/T2w during youth. A, Annualized rate of change (AROC) in T1w/T2w was estimated for each cortical parcel. B, The AROC was relatively high in
sensorimotor areas such as the right primary motor cortex (area 4; highlighted in panel A, right). C, In contrast, the AROC in T1w/T2w was relatively low in prefrontal and paralimbic association
areas such as the left medial prefrontal cortex (area 9m; highlighted in panel A, left). D, The AROC in T1w/T2w was correlated with the cortical parcel’s position along the archetypal S-A axis
of cortical organization. The blue data point corresponds to the exemplar sensorimotor parcel (primary motor cortex) and the yellow data point corresponds to the exemplar association parcel
(medial PFC) highlighted in panels A–C. Shaded areas in the plots of panels B, C represent the 95% credible interval of the posterior smooth function on age. Segments of the age curve where
the slope is credibly less steep than the maximum slope (indicating a credibly reduced rate of change) are highlighted in yellow. PFC = prefrontal cortex; S-A = sensorimotor-association. Pspin
is the permutation-based p-value calculated from a conservative parcel-based spatial permutation (“spin”) test. Data are shown for exemplar sensorimotor and association parcels to illustrate
differences in T1w/T2w development. Models were estimated independently for all 180 cortical parcels in each hemisphere (360 in total).
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data to a multimodal cortical parcellation in a large, demographi-
cally diverse sample.

Spatial pattern of age-related increases in T1w/T2w remain
consistent while controlling for cortical thickness
Cortical thickness and myelin content are systematically related,
where thinner areas in sensorimotor cortex have higher myelin
content, and thicker areas in paralimbic cortex have lower mye-
lin content (but with exceptions such as the thick, heavily my-
elinated primary motor cortex; Glasser et al., 2014). Previous
studies have observed variable rates of cortical thinning across
the cortex during early childhood and adolescence (Shaw et al.,
2008; Vandekar et al., 2015). Further, age-related changes in
cortical thickness have been difficult to distinguish from changes
in cortical myelin content under certain circumstances (Natu et
al., 2019). In our study, age-related differences in T1w/T2w were
not driven by cortical thinning, as we found highly consistent to-
pography of age-related differences in T1w/T2w after controlling
for cortical thickness in each parcel. This indicates that cortical
thinning and T1w/T2w differences during youth are dissociable
developmental processes.

Neurobiological mechanisms: the role of cortical myelin in
regulating plasticity
While both myelin-sensitive imaging and postmortem histology
have provided evidence for continuous increases in intracortical
myelin content into adulthood (R.A. Hill et al., 2018; Hughes

et al., 2018; Grydeland et al., 2019), the neurobiological mecha-
nisms promoting cortical myelination throughout the lifespan
remain largely unclear. Studies in animal models suggest that
cortical myelination provides a mechanism to continuously tune
the firing properties of neural circuits to support adaptive behav-
ior within an individual’s environment (Makinodan et al., 2012;
Mount and Monje, 2017). Axonal myelination enhances neural
signaling speed (McDougall et al., 2018) and plays an important
role in regulating the timing of sensitive periods in neurocogni-
tive development by providing structural constraints that limit
local plasticity (Takesian and Hensch, 2013). Research using
animal models has provided strong evidence for the role of mye-
lin-related proteins such as Nogo-A in reducing plasticity by in-
hibiting neurite outgrowth and dendritic arborization in cortical
circuits (Chen et al., 2000; McGee et al., 2005).

A role for cortical myelination in regulating plasticity during
early sensitive periods for sensory cortex development has been
demonstrated in animal models (Takesian and Hensch, 2013;
Toyoizumi et al., 2013). However, the role of cortical myelination
in regulating higher-order cognitive development in humans
remains poorly understood. Recent work suggests that a large
proportion of neocortical myelin ensheathes axons of parvalbu-
min-positive (PV1) fast-spiking inhibitory neurons (Micheva
et al., 2016). Further, the myelination of PV1 interneurons is
critical for maintaining excitation-inhibition (E/I) balance in
maturing cortical sensory circuits (Benamer et al., 2020). The
maturation of PV1 interneurons and E/I balance in neural

Figure 5. Nonlinearity of age-related changes in T1w/T2w during youth. A, The nonlinearity of age-related changes in T1w/T2w was estimated for each cortical parcel using the mean abso-
lute posterior second derivative, where higher values indicate more nonlinear growth. B, Sensorimotor areas such as the left V2 (highlighted in panel A, left) had relatively nonlinear T1w/T2w
growth, with the rate of change decreasing credibly by 17.5 years old (indicated by yellow segment). C, Cortical parcels in heteromodal and paralimbic association areas such as the right ante-
rior ventral insula (highlighted in panel A, right) had relatively linear growth in T1w/T2w (constant slope). D, The nonlinearity of age-related changes in T1w/T2w was correlated with the cort-
ical parcel’s position along the archetypal S-A axis of cortical organization (Sydnor et al., 2021). Sensorimotor areas exhibited significantly higher nonlinearity in age-related increases in T1w/
T2w compared with areas of association cortex. In panel D, the blue data point corresponds to the exemplar sensorimotor parcel (V2) and the yellow data point corresponds to the exemplar
association parcel (anterior insula) highlighted in panels A–C. Shaded areas in the plots of panels B, C represent the 95% credible interval of the posterior smooth. Segments of the posterior
smooth where the slope is credibly less steep than the maximum slope (indicating a credibly reduced rate of change) are highlighted in yellow. Pspin is the permutation-based p-value calculated
from a conservative parcel-based spatial permutation (“spin”) test. Data are shown for exemplar sensorimotor and association parcels to illustrate differences in T1w/T2w development. Models
were estimated independently for all 180 cortical parcels in each hemisphere (360 in total).
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Figure 6. Age of peak T1w/T2w growth during youth. A, The age of peak growth (i.e., steepest slope) in T1w/T2w myelin was estimated for each cortical parcel as the median posterior
age where the slope is at its maximum. B, Sensorimotor areas such as left V1 (highlighted in panel A) had relatively early age of peak T1w/T2w myelin growth (median age = 9.6 years). C,
Association areas such as the right prefrontal cortex (area 8c; highlighted in panel A) had relatively later age of peak T1w/T2w myelin growth (median age = 15.0 years). D, The age of peak
T1w/T2w myelin growth was correlated with the cortical parcel’s position along the archetypal S-A axis of cortical organization. Sensorimotor areas exhibited a significantly earlier age of peak
growth compared with areas of association cortex. In panel D, the blue data point corresponds to the exemplar sensorimotor parcel (V1) and the yellow data point corresponds to the exemplar
association parcel (PFC) highlighted in panels A–C. Segments of the age curve where the slope is credibly less steep than the maximum slope (indicating a credibly reduced rate of change) are
highlighted in yellow. Insets at the top of panels B, C show the posterior density distribution of the age of maximum slope for exemplar areas. The shaded blue area represents the 95% credi-
ble interval of the posterior distribution; black vertical lines mark the median of the posterior distribution (values projected on the cortical surface in panel A). PFC = prefrontal cortex. Pspin is
the permutation-based p-value calculated from a conservative parcel-based spatial permutation (“spin”) test. Data are shown for exemplar cortical parcels to illustrate differences in T1w/T2w
development. Models were estimated independently for all 180 cortical parcels in each hemisphere (360 in total).

Figure 7. Graded variation across data-driven clusters of cortical T1w/T2w development. A functional latent mixture model was used to identify groups of cortical parcels exhibiting similar
age-related patterns of T1w/T2w growth during youth. A, The most parsimonious model identified three latent clusters or groups of cortical parcels with graded differences in the rate of age-
related changes in T1w/T2w. The inset shows the penalized log-likelihood for each model solution from k = 2 to k = 7 clusters. The best fitting three-cluster solution is highlighted in red. B,
Functional latent clusters closely aligned with the S-A axis of cortical organization. Sensorimotor areas, primarily in cluster 1 (magenta), had the highest rate of cortical T1w/T2w growth. We
observed graded decreases in the rate of cortical T1w/T2w growth in cluster 2 (orange), which included heteromodal association parcels in frontoparietal and temporal cortex, and further in
cluster 3 (yellow), which included paralimbic association parcels in the medial prefrontal and insular cortices. C, Regional cluster assignments based on T1w/T2w development reflect the S-A
axis. L-L = log-likelihood.
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circuits is a crucial factor regulating the opening and closure of
sensitive periods in neurodevelopment (Takesian and Hensch,
2013; Toyoizumi et al., 2013; Takesian et al., 2018). Moreover,
we speculate that cortical myelin development could be linked
to organizational gradients of PV gene expression and the mod-
ulation of inhibitory circuitry throughout the cerebral cortex
(Burt et al., 2018).

Limitations
Cortical MR signals are sensitive to many tissue properties
including iron, myelin, cell density, and water content, and
contrast images such as T1w/T2w generally represent a mix
of these properties that can vary nonlinearly across laminar
architecture (Carey et al., 2018; Glasser et al., 2022).
Further, age-related differences in T1w/T2w could reflect a
combination of these cortical tissue changes. For example,
in addition to increased intracortical myelin content, age-
related increases in T1w/T2w could also reflect an increase
in tissue iron concentration (Larsen et al., 2020), the reduc-
tion in unmyelinated tissue processes such as dendrites,
which could result in higher apparent myelin concentration
per unit volume (expected to be associated with cortical
thinning), or the dehydration of tissues (as occurs in early
development).

Future directions
While this study characterized age-related changes in cortical
T1w/T2w during youth aged 8–21 years, the cross-sectional
design precluded inferences on intraindividual changes in corti-
cal T1w/T2w. Although the HCP-D study contains a longitudi-
nal component (Somerville et al., 2018), it was not feasible to
incorporate the longitudinal measurements in this investigation
because of ongoing data collection and processing. A more com-
prehensive lifespan approach could help identify milestones of
cortical myelin development and senescence, expanding on pre-
vious work (Grydeland et al., 2019). The current study provides
an important reference dataset characterizing adolescent cortical
microstructural development that can serve as a benchmark for
replication using the longitudinal subset of the HCP-D sample
or other developmental longitudinal datasets such as ABCD
(Casey et al., 2018). Such efforts would extend our understanding
of cortical myelin development to allow us to evaluate the tem-
poral relationships between cortical myelination and improving
cognitive abilities. Future work could also investigate how socio-
economic factors, exposure to early life adversity, or other envi-
ronmental contexts impact the rate of cortical myelination
during youth, as well as the multifaceted relationships between
developing cortical microstructure, connectivity, and psychologi-
cal maturation.
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