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Editorial

If you are reading this Editorial, it is likely because you are con-
templating diving into the set of articles that comprise this
Neuropsychologia Special Issue. The decision-making that is part and
parcel of such contemplation may involve the trade-off between the
benefits of reading a set of articles that are likely of high intrinsic in-
terest and motivational value to you, relative to the expenditure of
cognitive effort that it will take to read, process, and fully synthesize
them. However, these types of contemplations also seem to beg a
number of fundamental questions: Why does it feel so effortful to think
long and hard? Even when it is deemed to be valuable, why are we
often so stingy about our cognitive effort, sometimes even avoiding it
altogether? And more to the point, what are the associated behavioral
phenomena, computational mechanisms, and neurobiological processes
that accompany decision-making and engagement in cognitive effort?

These questions are not only fascinating, but also increasingly re-
levant, as modern life places ever-greater demands on cognitive control
for attention, planning, reasoning, and decision-making. Moreover,
these demands are brought into sharp relief when considering the
challenges faced by those with schizophrenia, ADHD, depression,
Parkinson’s disease, and other disorders that all clearly seem to impact
cognitive motivation. Consequently, there has been a resurgence of
interest and research attention given towards advancing our scientific
understanding of the nature of cognitive effort.

1. A Brief History of Cognitive Effort

As a psychological construct, cognitive effort has received con-
tinuing interest for decades. One of the earliest influential treatments
came from Kahneman’s landmark monograph Attention and Effort
(Kahneman, 1973), which sparked an enduring program of research on
measuring mental effort via psychophysiological indices, such as pupil
dilation and cardiovascular reactivity, e.g. (Brehm and Self, 1989;
Wright, 1996). Likewise, there has been a continuing focus on the in-
tuitive notion that mental effort requires metabolic or energetic re-
sources, e.g. (G. Hockey and Robert, 2011; Robert and Hockey, 1997).
This perspective culminated in the highly influential ‘ego depletion’
hypothesis (Baumeister et al., 1998), which spawned a prolific line of
research. These investigations were aimed at testing the specific pre-
diction that sustained cognitive demands reduce performance in sub-
sequent tasks, and that reduced performance reflected resource deple-
tion by sustained demands (Gailliot and Baumeister, 2007). Subsequent
research, however, has fostered skepticism regarding putative depletion
effects, as chronicled in meta-analyses and reports of failures to re-
plicate (Carter et al., 2015; Hagger et al., 2010). Indeed, a number of
follow-up studies have suggested that depletion effects may simply re-
flect experimenter demand characteristics and context framing rather
than resource depletion (Job et al., 2013). While the ego-depletion

literature highlights the role of volitional engagement in task perfor-
mance, inconsistent results indicate that better operational definitions
and experimental paradigms are needed. It is here that neuroscience-
based approaches have offered increased experimental traction and
promoted renewed excitement about the potential for progress.

A key problem from the outset has been the challenge of defining
‘cognitive effort’ in an operationally useful and non-circular manner. In
recent years, cognitive effort has referred alternately to the volitional,
regulatory aspects of task engagement mediating performance under
cognitive control demands (Shenhav et al., 2017), or as the subjective,
affective consequences of responding to those demands (Botvinick,
2007). These definitions have led to a shift in methodological focus
towards approaches that lend themselves to more precise quantification
of effort in terms of behavioral patterns including demand avoidance
(Kool et al., 2010) and effort discounting (Libedinsky et al., 2013;
Westbrook et al., 2013), which have been explored in decision-making
paradigms.

The complementary utilization of decision-making and regulatory
performance paradigms has proven to be a critical advance. Were
cognitive effort defined with respect to performance only, for example,
it would be unclear whether increased performance indicates increased
exertion at higher subjective costs, or decreased subjective costliness,
increasing a participants’ willingness to engage. In other words, the
primary experimental tactic has been to design paradigms in which
participants could explicitly engage with or avoid demands, thus si-
multaneously demonstrating that engagement is volitional, and quan-
tifying the subjective costliness of engagement. This basic approach has
been instrumental in a rapidly expanding “next generation” of cognitive
effort studies defining the boundaries between “hard” capacity limits,
and “soft” motivational and volitional factors. Moreover, it has in-
formed theoretical development into fundamental questions about the
nature and implications of cognitive effort. This theoretical develop-
ment has been strongly influenced by reinforcement learning and
neuroeconomics literatures (Botvinick and Braver, 2015; Shenhav et al.,
2013) as well as computational approaches that invoke concepts such
as meta-learning and meta-control (Boureau et al., 2015; Musslick
et al., 2015). Likewise, these theoretical and experimental approaches
provide a natural leverage point for cognitive neuroscience studies. In
particular, they provide more sensitive metrics with which to isolate the
neural systems that not only support performance during effortful tasks,
but also those which enable decision-making about such tasks, and are
engaged by motivational factors that can be monitored or manipulated.

The intent of this Neuropsychologia Special Issue is to shine a spot-
light on this newly burgeoning research addressing cognitive effort
from a neuroscientific perspective, and moreover, to highlight key
outstanding questions for future research. Indeed, we were gratified
that the articles submitted in response to our call for manuscripts
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illustrate nicely the depth and breadth of this growing field. Several
core themes emerged including: 1) the nature of cognitive effort costs,
2) the mechanisms of cost monitoring and decision-making, 3) phy-
siological signatures of cognitive effort expenditure, 4) implications for
effort and reward processing in health and disease. We next provide an
overview to these themes, along with pointers to the relevant Special
Issue contributions.

2. The Cost of Cognitive Effort

One fundamental outstanding question regarding the nature of
cognitive effort costs is: why is cognitive control effortful at all?
Especially if, as highlighted in submissions by Zénon et al. and Manohar
et al., cognitive control does not increase global brain metabolism in the
same way that the metabolic costs of lifting a weight might justify the
subjective costliness of physical exertion. One idea, investigated by Otto
and Daw, is that cognitive control is costly because it requires precious
resources which may be useful for pursuing alternative opportunities.
As such, cognitive control necessarily incurs opportunity costs, cf.
(Boureau et al., 2015; Kurzban et al., 2013), and should be treated as
costly when average reward rates are high. Opportunity cost hy-
potheses dovetail nicely with another recent proposal that the sub-
jective costliness of cognitive control serves the purpose of moderating
a stability-flexibility tradeoff. Namely, subjective costs bias against
deep, stable engagement in a single task so that neural states im-
plementing control processes can be flexibly reconfigured for alter-
native opportunities (Musslick et al., 2018). Another idea from Zénon
et al. builds on information theoretic models of cognitive control
(Koechlin and Summerfield, 2007) to argue that cognitive control de-
mands, whether stemming from novelty, task switching, or the need to
overcome prepotent responses, require relatively large information
gain. This information gain corresponds with high representational
complexity, which is treated as costly in brain systems biasing efficient
coding. Thus our brain is biased against control itself, perhaps for
reasons of metabolic costliness (increased complexity increases demand
for metabolic inputs locally, thus reducing supply in other regions),
opportunity costliness (complexity reduces bandwidth for other re-
presentations), or other to-be-articulated mechanisms biasing coding
efficiency.

3. Effort Monitoring

If we treat control as costly, we must have the capacity to track
effort costs. But what kinds of information would we track? On a cog-
nitive level, one proposal is that subjective effort tracks demands for
cognitive control. According to an influential account (Botvinick,
2007), the anterior cingulate cortex (ACC) monitors for response con-
flict and, when it is detected, the ACC both recruits cognitive control to
resolve the conflict and also triggers an aversive learning signal to bias
avoidance of contexts giving rise to conflict in the first place. Con-
sequences of this learning signal would be subjective costliness and
demand aversion. The potential upside of avoidance, however, is that
we allocate more of our time to pursuits that are associated with more
certain reward and higher expected value. One compelling theory is
that the ACC may regulate cognitive control not just reflexively when
conflict is detected, but according to the expected value of control,
taking into account both potential reward benefits and effort costs
(Shenhav et al., 2013). Another proposal, complementing the hypoth-
esis that we track conflict to maximize expected reward, is that we
might also track errors for the same purpose. Benoit et al. provide new
evidence that participants increasingly avoid demands as their perfor-
mance falls. Their results support the hypothesis that we monitor per-
formance to strategically avoid high demands and falling short in the
future when negative outcomes accumulate. Interestingly, whether we
are consciously aware of differences in demand may also influence the
subjective costliness of a task. Dunn et al., provide evidence that cues

promoting explicit awareness of differences in task demands also pro-
mote demand avoidance. This result is useful, in part, because it helps
resolve an open question about cognitive effort and schizophrenia.
Namely, recent literature has shown conflicting evidence that patients
with schizophrenia find cognitive demands more costly (Culbreth et al.,
2016), and yet avoid cognitive demands less than healthy controls (J.
M. Gold et al., 2014). One possible resolution of these seemingly dis-
crepant results is that schizophrenia patients may not avoid control in
some tasks because they lack conscious awareness of subtle differences
in demands. Future work is needed to understand why individuals with
schizophrenia might be relatively unable to track cognitive demands
and, more broadly, what kinds of information might engender sub-
jective effort and demand avoidance in healthy and disordered popu-
lations.

4. The Neurobiology of Cognitive Effort

Another fundamental question relates to how cognitive effort is
registered at the neural level. As noted, one hypothesis is that when the
ACC detects response conflict, it transmits an aversive learning signal
which might effect effort cost learning via phasic dopamine dips
(Botvinick, 2007; Cavanagh et al., 2014). Supporting this hypothesis,
Albrecht et al. provide data suggesting that the difference between
healthy controls’ and schizophrenia patients’ ability to track effort de-
mands may stem, in part, from attenuated mid-frontal theta (MFT)
signals, originating in the ACC, in schizophrenia. Individuals may track
MFT power as an index of subjective effort costs, or rely on accruing
reward and punishment statistics encoded in synaptic weights at
downstream dopaminergic targets. Relatedly, Umemoto et al. also em-
ployed EEG to reveal interesting interactions between incentives, con-
trol demands, and MFT power on task performance over many trials.
Their findings suggest that MFT power might be an indicator of in-
creasing control intensity, or increasing fatigue. While the specific as-
signation remains unresolved, these reports strongly motivate MFT
power as a candidate index of cognitive demands and effort cost
learning, across motivational states. They also, in conjunction with
other work on dopamine and effort, suggest that downstream dopamine
targets like the striatum may cache effort costs for effort-based decision-
making across task contexts (Froböse and Cools, 2018; Westbrook and
Braver, 2016). This conclusion aligns well with a cross-sectional, de-
velopmental study by Niebaum et al. implicating the prefrontal cortex
and its connectivity to the striatum as being critical to demand
awareness and avoidance. Specifically, they show that while cognitive
demand avoidance was present in adult and 11-12 year olds, it was
absent in 6-7 year olds. They interpret their result, in light of other
recent developmental studies, as indicating that immature prefrontal-
striatal connectivity in 6-7 year olds explains their inability to bias
behavior away from cognitive effort. Collectively, these studies high-
light an emerging set of hypotheses about what neural dynamics signal
effort, where such experiences of effort are cached, and how they are
retrieved during effort-based decision-making.

Several submissions focused on the physiological signatures that
accompany effort exertion. This theme has both practical significance
(if one wanted to probe the brain to measure exertion, what should they
measure?), and theoretical implications (if the brain were monitoring
exertion, what would it monitor?). One possibility is neurotransmitter
release. As highlighted by Müller and Apps, for example, acetylcholine
or norepinephrine might be critical for supporting sustained attention,
particularly under fatigue when attention is likely to lapse. Manohar
et al. also implicate neurotransmitter function by highlighting that ef-
fort might be closely related to neuronal gain adjustments to drive
negative feedback required to maintain control states. Specifically, they
adapt optimal motor control models to incentivized saccade data to
argue that behavioral control is instantiated by stable neural activity
patterns (e.g. rule representations), and that persistent negative feed-
back is needed to maintain stability. Although their modeling does not
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address which neural systems implement negative feedback, their re-
sults support the hypothesis that feedback gain is a central result of
motivated control. Thus, taken together with evidence that that neu-
ronal gain may be regulated, in part, by catecholamine function (Aston-
Jones and Cohen, 2005; Cools and D’Esposito, 2011), neurotransmitter
function becomes a strong candidate channel of cognitive effort exer-
tion.

While tracking neurotransmitter release itself is difficult in humans,
a number of studies in this Issue have examined pupil dilation – thought
to index both catecholamine and ACC function (Aston-Jones and
Cohen, 2005; Joshi et al., 2016; Nieuwenhuis et al., 2005) – in response
to incentives and cognitive demands. Kostandyan et al., for example,
show that pupil dilation patterns track both sustained incentive context
and trial-by-trial incentive cues, suggesting that pupil dilation offers
fine-grained information about incentive motivation. Relatedly, Massar
et al. find systematic pupil dilation patterns that predict performance as
a function of sleep deprivation, control demands, and incentives. In-
terestingly, in addition to replicating a prior result that sleep depriva-
tion increases subjective effort costs, the researchers also demonstrated
that pupil dilation tracks performance as a function of its value. This
finding is consistent with the hypothesis that control is not a reflexive
response to demands, but rather is regulated based on both the costs
and benefits of control allocation.

Brain imaging studies are playing a central role in elucidating the
neural systems underlying effort exertion. A primary hypothesis –
stemming from the observation that cognitive control is treated as
costly, is that increasing activity in frontoparietal control networks
(FPN) constitutes exertion of cognitive effort. In support of this pre-
diction, Vassena et al. have used fNIRS to show that anticipation of
cognitive demands was associated with increased activity in the dor-
solateral prefrontal cortex, and moreover, that the degree of activity
increase predicted task performance and liking. These findings support
the hypothesis that the engagement of preparatory control processes is
determined by the expected value of control. Sayali and Badre pursued a
related question, using fMRI to investigate the degree to which large-
scale brain networks track subjective effort expenditure, and predict
demand avoidance. After selecting participants with reliable demand
avoidance, they utilized principal components analysis to identify brain
networks that exhibited a high degree of internal coherence in their
response to increasing cognitive demands. The key finding was that
FPN showed a parametric increase, while the default mode network
(DMN) parametrically decreased with cognitive demands; however,
only DMN suppression predicted the degree of demand avoidance.
Thus, paradoxically, it may be that DMN suppression is the best neural
index of subjective effort. Perhaps, task-negative DMN suppression
could be a more reliable index of effort exertion because it encodes a
single, undifferentiated channel of engagement in contrast with varying
degrees of activation across multiple task-positive networks.

5. Reward Benefits and Effort Costs in Health and Disease

The implications of cognitive effort, including effort discounting
and demand avoidance are widespread, with implications for both
healthy and diseased populations. In addition to implications for schi-
zophrenia addressed by Albrecht et al., there is reason to think ex-
aggerated effort costs or deficient effort expenditure may account for
cognitive deficits in disorders ranging from ADHD to Parkinson’s dis-
ease to depression. For example, as described by Müller and Apps,
subjective effort costs may be exaggerated as a result of clinical fatigue,
as observed in stroke patients, or following problem inflammation
which has elsewhere been shown to impact effort sensitivity in humans
(Draper et al., 2017). Beyond effort costs, cognitive effort may also
impact how we process rewards themselves. Milyavskaya et al. for ex-
ample, describe EEG results highlighting how the experience of rewards
may differ based on whether these were received in relationship to the
expenditure of cognitive effort, or instead when sustaining attention

throughout a boring task. Finally, Sullivan-Toole et al. point out that
there are interesting interactions to explore in the domain of social
reward processing, since effort may impact the receipt of rewards dif-
ferentially depending on whether we work to win rewards for ourselves,
or on behalf of others. Moreover, they raise numerous questions for
future research in disorders that have a clear social component (e.g.,
autism, psychopathy, social anxiety disorder), since effort and reward
sensitivity may influence willingness to expend cognitive effort on
others’ behalf, empathize with others’ mental states, and account for
others’ cognitive effort costs. Finally, the implications of these cognitive
effort investigations extend widely beyond the clinic as well, given that
cognitive effort impacts everything from student performance in aca-
demic settings to careers involving sustained attention, reasoning,
planning, and decision-making.

As demonstrated by our brief summary of this Special Issue, research
on cognitive effort is rapidly diversifying, addressing an ever-growing
array of questions with broad implications for normal and disordered
functioning. We hope that the Special Issue will stimulate future re-
search endeavors and help to coordinate new investigations that bridge
theoretical perspectives, methodologies, and cut across health and
disease, in addressing core, outstanding questions about cognitive ef-
fort.
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