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Common risk factors for psychiatric and other brain disorders 
are likely to converge on biological pathways influencing the 
development and maintenance of brain structure and function 
across life. Using structural MRI data from 45,615 individuals 
aged 3–96 years, we demonstrate distinct patterns of appar-
ent brain aging in several brain disorders and reveal genetic 
pleiotropy between apparent brain aging in healthy individu-
als and common brain disorders.

Psychiatric disorders and other brain disorders are among the 
main contributors to morbidity and disability around the world1. 
The disease mechanisms are complex, spanning a wide range of 
contributing genetic and environmental factors2. The inter-individ-
ual variability is large, but on a group level, patients with common 
brain disorders perform worse on cognitive tests, are less likely to 
excel professionally, and engage in adverse health behaviors more 
frequently than healthy individuals3. It is unclear to what extent 
these characteristics are a cause, consequence or confounder  
of disease.

Dynamic processes that influence the rate of brain maturation 
and change throughout the lifespan have a critical role, as reflected 

in the wide range of times of disease onset from early childhood to 
old age4. This suggests that the age at which individual trajectories 
diverge from the norm reflects key characteristics of the underlying 
pathophysiology. Although autism spectrum disorder (ASD) and 
attention-deficit hyperactivity disorder (ADHD) emerge in child-
hood5, schizophrenia and bipolar spectrum disorders are likely to 
develop during late childhood and adolescence, before the charac-
teristic outbreak of severe symptoms in early adulthood6. Likewise, 
multiple sclerosis most often manifests in early adulthood, but 
the disease process probably starts much earlier7. First episodes in 
major depressive disorder (MDD) can appear at any stage from ado-
lescence to old age5, whereas mild cognitive impairment (MCI) and 
dementia primarily emerge during senescence8. Beyond such differ-
ential temporal evolution across the lifespan, age-related deviations 
from the norm may also differ between disorders in terms of ana-
tomical location, direction, change rate and magnitude, all of which 
add complexity to the interpretation of observed effects.

Machine learning techniques enable robust estimation of the 
biological age of the brain using information provided by MRI9,10, 
assessing the similarity of a given brain scan with scans of a range of 
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individuals to estimate the age of the tissue from a normative lifes-
pan trajectory. Initial evidence suggested that the deviation between 
brain age and chronological age—termed the brain age gap—is a 
promising marker of brain health11, but several issues remain to be 
addressed. First, although advantageous for narrowing the com-
plexity, reducing a rich set of brain imaging features into a single 
estimate of brain age inevitably compromises spatial specificity, 
thereby neglecting disorder-specific patterns. Second, most studies 
so far have been small-scale, were performed within a limited age 
range and have focused on a single disorder, which rendered them 
unable to uncover clinical specificity and lifespan dynamics. Third, 
the genetic underpinnings of brain age gap are not understood, and 
it is unknown to what extent they overlap with the genetic archi-
tecture of major clinical traits. To address these critical knowledge 
gaps, large imaging genetics samples covering a range of prevalent 
brain disorders are necessary.

Here, we used a centralized and harmonized processing proto-
col including automated surface-based morphometry and subcor-
tical segmentation using Freesurfer on raw structural MRI data 
from 45,615 individuals aged 3–96 years that passed quality con-
trol (Supplementary Fig. 1). The sample included data from healthy 
controls (n = 39,827, aged 3–95 years) and 5,788 individuals with 
various brain disorders. We included data from individuals with 
ASD (n = 925, 5–64 years), ADHD (n = 725, 7–62 years), prodro-
mal schizophrenia or at-risk mental state (SZRISK, n = 94, 16–42 
years), schizophrenia (n = 1110, 18–66 years), a heterogeneous 
group with mixed diagnoses in the psychosis spectrum (PSYMIX, 
n = 300, 18–69 years), bipolar spectrum disorder (n = 459, 18–66 
years), multiple sclerosis (n = 254, 19–68 years), MDD (n = 208, 
18–71 years), MCI (n = 974, 38–91 years) and dementia (including 
Alzheimer’s disease, n = 739, 53–96 years). Supplementary Tables 1–3  
provide details on sample characteristics and scanning protocols.

We used machine learning to estimate individual brain age on the 
basis of structural brain imaging features. First, we grouped all sub-
jects into different samples. For each of the ten clinical groups, we 
identified a group of healthy individuals of equal size, matched by 
age, sex and scanning site from a pool of 4,353 healthy controls. All 
remaining individuals were combined into one independent sample 
comprising only healthy individuals. This independent sample con-
stituted a training sample, used to train and tune the machine learn-
ing models for age prediction (n = 35,474, aged 3–89 years, 18,990 
female participants), whereas the ten clinical samples were used as 
independent test samples. Figure 1a illustrates the respective age 
distributions per sex and diagnosis.

The large sample size and wide age-span of the training sample 
allowed the male and female brain age to be modeled separately, 
thereby accounting for potential sexual dimorphisms in brain struc-
tural lifespan trajectories12. For each sex, we built a machine learning 
model based on gradient tree boosting to predict the age of the brain 
from a set of thickness, area and volume features extracted using a 
multimodal parcellation of the cerebral cortex as well as a set of cer-
ebellar–subcortical volume features (1,118 features in total, Fig. 1b).  
Fivefold cross-validations revealed a high degree of correlation 
between chronological age and predicted brain age (r = 0.93 for the 
female model and r = 0.94 for the male model, Supplementary Fig. 2).  
Supplementary Figs. 3–6 provide further validation of the predic-
tion approach and Supplementary Table 4 provides details on sex 
differences in the prediction models. Next, we applied the models 
to predict brain age for each individual in the ten independent test 
samples (predicting brain age using the female model in female sub-
jects and the male model in male subjects) and tested for effects of 
diagnosis on the brain age gap using linear models. We used mega-
analysis (that is, across-site analysis) as the main statistical frame-
work and provide results from a meta-analysis framework in the 
Supplementary Information. We included age, age2, sex, scanning 
site and a proxy of image quality (Euler number) in all statistical  

models testing for group differences and clinical associations. To 
further minimize confounding effects of data quality, we repeated 
the main analyses using a more stringent quality control and  
exclusion procedure.

Figure 2a illustrates that the estimated brain age gap was increased 
in several brain disorders. The strongest effects were observed in 
schizophrenia (Cohen’s d = 0.51), multiple sclerosis (d = 0.74), MCI 
(d = 0.41) and dementia (d = 1.03). PSYMIX (d = 0.21) and bipolar 
spectrum disorder (d = 0.29) showed small effects of increased brain 
age gap, whereas other groups showed negligible effects (d < 0.2). 
The meta-analysis converged on the same findings (Supplementary 
Fig. 7) and the results were replicated regardless of the quality con-
trol exclusion criterion applied (Supplementary Fig. 8). The brain 
age gap in all clinical groups was positive on average and there were 
no signs of a negative brain age gap (developmental delay) in chil-
dren with ASD or ADHD; there was also no significant group-by-
age interaction effect (Supplementary Table 5).

We assessed the specificity of the spatial brain age gap patterns 
across clinical groups. We trained age prediction models using only 
occipital, frontal, temporal, parietal, cingulate, insula, or cerebellar–
subcortical features (Fig. 1b). Cross-validation confirmed the pre-
dictive performance of all regional models (Supplementary Fig. 2), 
which were used to predict regional brain age in the ten independent 
test sets. Regional brain age gaps largely corresponded to the full brain 
level, with some notable differential spatial patterns (Fig. 2b). For 
example, increased cerebellar–subcortical age gap was most promi-
nent in dementia (d = 0.99) and multiple sclerosis (d = 0.81) but was 
not present in schizophrenia (d = 0.16). The largest effect in schizo-
phrenia was observed in the frontal lobe (d = 0.70). A brain age gap in 
the temporal lobe was observed in MDD (d = 0.24), whereas there was 
no evidence (d < 0.2) for a brain age gap in ASD, ADHD or SZRISK 
in any of the regions. To explore regional differences in brain age pat-
terns, we tested for group-by-region interactions on each pairwise 
combination of clinical groups and pairwise combination of regional 
brain age gaps (1,260 tests). Figure 2c illustrates the significant effect 
sizes, indicating that the rate at which different regions age in relation 
to each other often showed opposite patterns in disorders typically 
considered neurodevelopmental (for example, schizophrenia) and 
neurodegenerative (for example, multiple sclerosis or dementia).

With converging evidence demonstrating the largest brain age 
gaps in schizophrenia, multiple sclerosis, MCI and dementia, we 
explored the functional relevance of the regional brain age gaps for 
these groups by testing for associations with clinical and cognitive 
data. Clinical data available from individuals with schizophrenia 
included symptom (n = 389) and function (n = 269) scores of the 
Global Assessment of Functioning scale (GAF) as well as positive 
(n = 646) and negative (n = 626) scores of the Positive and Negative 
Syndrome Scale (PANSS). For multiple sclerosis, we assessed associ-
ations with scores from the Expanded Disability Status Scale (EDSS, 
n = 195). In the dementia spectrum, we assessed associations with 
Mini Mental State Examination scores (MMSE, n = 907 MCI, n = 686 
dementia). Figure 2d depicts association strengths accounting for 
age, age2, sex, scanning site and Euler number and Supplementary 
Fig. 11 provides corresponding scatter plots. In schizophrenia, 
larger brain age gaps were associated with lower functioning (for 
example, full brain age gap with GAF symptom (r = −0.15, P = .003) 
and insula brain age gap with GAF function (r = −0.22, P = 3 × 10−4)) 
and with more negative symptoms (for example, temporal brain age 
gap with PANSS negative (r = 0.13, P = .001)). In multiple sclero-
sis, larger full brain age gap was associated with a higher degree of 
disability (r = 0.23, P = .001). Finally, lower cognitive functioning 
was associated with larger brain age gaps in MCI or dementia, with 
strongest effects for full brain (r = −0.30, P = 7 × 10−33) and cerebel-
lar–subcortical (r = −0.29, P = 2 × 10−30) brain age gaps.

Given the substantial genetic contributions to most brain dis-
orders, our results incite the question to what degree brain age 
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Fig. 1 | Sample distributions and imaging features used for brain age prediction. a, Age distributions of the training (left) and the ten test (right) 
samples per sex and diagnosis. The gray shading behind each clinical group reflect its age-, sex- and site-matched control group. b, Cortical features 
from the Human Connectome Project (HCP) atlas as well as cerebellar–subcortical features used for brain age prediction. A, anterior; P, posterior. Colors 
were assigned randomly to each feature. All features were used in the full brain feature set (left), whereas only those from specific regions (occipital, 
frontal, temporal, parietal, cingulate, insula and cerebellar–subcortical) were included in the regional feature set (right). For illustrative purposes, the left 
hemisphere is shown.

patterns are genetically influenced and whether the implicated 
polymorphisms overlap with the polygenic architectures of the dis-
orders. We used single nucleotide polymorphism (SNP) data from 
the 20,170 adult healthy individuals with European ancestry avail-
able in the UK Biobank. We estimated full and regional brain age for 
these individuals using fivefold cross-validation in models trained 
on all healthy controls (n = 39,827 aged 3–95 years; 20,868 female 
participants, models trained per sex).

First, we performed one genome-wide association study (GWAS) 
per brain age gap using PLINK, including the first ten population 
components from multidimensional scaling, age, age², sex, scanning 
site and Euler number as covariates. Next, we assessed heritability 
using linkage disquilibrium (LD) score regression on the resulting 
summary statistics. In line with earlier results from twin studies13, 
our SNP-based analysis revealed significant heritability (Fig. 3a), 
with common SNPs explaining 24% of the variance in brain age 
gap across all individuals (full brain, h2

SNP = 0.24, s.e. = 0.03) and 
17–23% of the variance in regional brain age gaps (all s.e. < 0.03).

Next, we assessed the overlap between the genetic underpinnings 
of brain age gap and common brain disorders. We gathered GWAS 
summary statistics for ASD, ADHD, schizophrenia, bipolar spec-
trum disorder, multiple sclerosis, MDD and Alzheimer’s disease (see 
Methods). First, using LD score regression, we assessed the genetic 
correlation between these summary statistics and those from brain 
age gaps. Correlations were overall weak (Supplementary Fig. 12), 
with only one surviving false-discovery rate (FDR) correction for 
the number of tests (cingulate brain age gap with ADHD). Lack of 
genetic correlation does not preclude genetic dependence because 
traits may have mixed effect directions across shared genetic vari-
ants14. Therefore, we next used conjunctional FDR analyses to 

identify SNPs that are significantly associated with both brain age 
gap and disorders. We found significant independent loci show-
ing pleiotropy between brain age gaps and all included disorders  
(Fig. 3b). Most loci were identified for schizophrenia (two occipital, 
four frontal, three temporal, six parietal, five cingulate, five insula 
and two cerebellar–subcortical; 161 SNPs in total). Further, five inde-
pendent loci for ASD (76 SNPs), six for ADHD (80 SNPs), ten for 
bipolar spectrum disorder (94 SNPs), five for multiple sclerosis (22 
SNPs), one for MDD (14 SNPs) and six for Alzheimer’s disease (15 
SNPs) (Fig. 3c). Supplementary Table 6 provides details. An intronic 
variant in protein coding gene SATB2 at chromosome 2q33.1 was 
most frequently associated with brain age gaps and schizophrenia. 
A missense variant in protein coding gene SLC39A8 was associated 
with cerebellar–subcortical brain age gap and schizophrenia and 
showed the strongest effect in all tested associations (P = 9 × 10−8).

Taken together, our results provide strong evidence that several 
common brain disorders are associated with an apparent aging of 
the brain, with effects observed at the full brain or regional level 
in schizophrenia, PSYMIX, bipolar spectrum disorder, multiple 
sclerosis, MDD, MCI and dementia; but not in ASD, ADHD or 
SZRISK. Importantly, our approach revealed differential neuroana-
tomical distribution of brain age gaps between several disorders. 
Associations with clinical and cognitive patient data supported the 
functional relevance of the brain age gaps and genetic analyses in 
healthy individuals provided evidence that the brain age gaps are 
heritable, with overlapping genes between brain age gaps in healthy 
adults and common brain disorders.

Our approach of estimating regional brain age was useful to 
reveal differential spatial patterns between disorders. Although the 
implicated regions in the spatial brain age profiles of the disorders 
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Fig. 2 | Apparent brain aging is common in several brain disorders and is sensitive to clinical and cognitive measures. a, The gap between chronological 
age and brain age was increased in several disorders. The gray shading behind each clinical group reflect its age-, sex- and site-matched controls. The 
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largely corresponded with previously reported structural abnor-
malities (for example, frontal in schizophrenia15 and substantial 
subcortical volume loss in Alzheimer’s disease16), our regional brain 

age approach preserved the well-established benefit of down-sam-
pling a large number of brain imaging features into a condensed 
and interpretable score without a total loss of spatial sensitivity. As 
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Fig. 3 | The brain age gaps are heritable, and the genetic underpinnings overlap with those observed for several disorders. Genetic analyses were 
performed using data from 20,170 healthy adult individuals with European ancestry. a, Heritability (h2) estimated using LD score regression. Error bars, s.e. 
b, Significantly (P < FDR) overlapping loci between brain age gaps and disorders, identified using conjunctional FDR. c, Corresponding to b, the overlapping 
genes across all disorders, with color indicating significance and size indicating frequency of detection.

such, the analysis revealed substantial differences in spatial aging 
profiles between disorders typically regarded as neurodegenerative 
(multiple sclerosis, MCI and dementia) and neurodevelopmental 
(in particular, schizophrenia and PSYMIX). For example, although 
these disorders were all associated with an increased brain age 
gap on the full brain level, regional analysis revealed interactions 
between the frontal brain age patterns observed in schizophrenia 
and the cerebellar–subcortical patterns observed in multiple scle-
rosis and dementia, supporting spatial differences in apparent brain 
age. Moreover, significant associations with clinical and cognitive 
data, in particular with scores of the GAF and PANSS in schizo-
phrenia, with the EDSS in multiple sclerosis and with MMSE in the 
dementia spectrum, demonstrated the functional relevance of the 
brain age gap beyond group differences. By gauging the dynamic 
associations between changes in brain age and clinical and cogni-
tive function, future longitudinal studies may prove instrumental 
to dissect the large individual differences among patients with brain 
disorders, even within the same diagnostic category17. Furthermore, 
incorporating additional imaging modalities, voxel-level data or 
different segmentations at various levels of resolution will allow 
for estimation of tissue-specific brain age gaps or different regional 
gaps in future studies. Such approaches will also be useful to further 
investigate the apparent lack of brain age gap differences in ASD and 
ADHD. In contrast to research from other imaging phenotypes18,19, 
we did not observe case-control differences in brain age gaps for 
ASD or ADHD, nor group-by-age interactions (developmental 
delays might be reflected in a negative brain age gap in children). 
Brain age gaps based on different imaging modalities may capture 
different aspects of pathophysiology and will therefore make an 
important contribution in future research.

Conceptually, brain age gaps reflect a prediction error from a 
machine learning model and can therefore be attributed to both 
noise (lack of model accuracy, insufficient data quality) and 
physiology (deviations from normal aging trajectories). The large 
training sample and accurate model performance, replication of 
results using different data quality criteria, as well as our approach 
of comparing brain age gaps of cases to a group of age-, sex- and 
scanner-matched controls allowed us to reduce the impact of noise 
and to attribute variation in brain age gaps as probably related 

to biologically relevant differences. The physiological underpin-
nings of the brain age gaps are likely to be diverse, much like the 
polygenic nature of brain disorders and their profoundly hetero-
geneous symptomatology. They may reflect differences in dis-
ease severity, or effects of comorbid disorders, substance use or 
other adverse lifestyle factors. Genetic analysis offers one way of 
exploring factors that influence phenotypic variation towards an 
improved understanding of the multi-faceted sources of lifespan 
trajectories in the brain. Here, we have provided evidence that full 
and regional brain age gaps represent genetically influenced traits, 
and have illustrated that the genetic variants associated with brain 
age gaps in healthy individuals partly overlap with those observed 
in ASD, ADHD, schizophrenia, bipolar spectrum disorder, mul-
tiple sclerosis, MDD and Alzheimer’s disease. In line with accumu-
lating evidence that common brain disorders are highly polygenic 
and partly overlapping20, these results suggest shared molecular 
genetic mechanisms between brain age gaps and brain disorders. 
Statistical associations do not necessarily signify causation, and 
functional interpretations of the identified genes should be made 
with caution. Larger imaging genetics samples, in particular those 
including individuals with common brain disorders, may in the 
future allow investigation of the specificity of the implicated genes, 
and integrating a wider span of imaging modalities may increase 
both sensitivity and specificity.

In conclusion, we have established that the brain age gap is 
increased in several common brain disorders, is sensitive to clini-
cal and cognitive phenotypes and is genetically influenced. Our 
results emphasize the potential of advanced lifespan modeling 
in the clinical neurosciences, highlighting the benefit of big data 
resources that cover a wide age-span and conditions. Delineating 
dynamic lifespan trajectories within and across individuals will 
be essential to disentangle the pathophysiological complexity of  
brain disorders.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41593-019-0471-7.
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assessed the impact of sample size on model performance by creating random 
subsets of data with sample sizes of 100, 500, 1,000, 2,000, 5,000, 10,000 and 20,000 
individuals (40 random subsets per sample size). For each subset and sample size 
we assessed model performance using cross-validation (Supplementary Fig. 5).

The genetic analysis was performed using UK Biobank data, which was part 
of the training set in the main analysis. We thus trained different brain age models 
for the genetic analysis. We selected all healthy controls and estimated their brain 
age using a fivefold cross-validation approach, similar to the one performed when 
validating the performance of the training set. The resulting unbiased estimates of 
brain age gaps for all UK Biobank individuals with genetic data available went into 
the genome-wide association analysis, LD score regression and conjunctional FDR.

Main statistical analysis framework. We performed both mega- (across cohorts) 
and meta- (within cohort) analyses. To estimate group effects on a given measure 
in a mega-analysis framework, we computed the effect of diagnosis in relation to 
the healthy controls for each of the ten test samples in a linear model accounting 
for age, age², sex, scanning site and Euler number. Cohen’s d effect sizes were 
estimated based on contrast t-statistics31 following equation (1):

d ¼ t n1 þ n2ð Þ
ffiffiffiffiffiffiffiffiffi
n1n2

p ffiffiffiffiffi
df

p ð1Þ

v ¼ n1 þ n2
n1n2

þ d2

2 n1 þ n2 � 2ð Þ

� �
n1 þ n2

n1 þ n2 � 2

� �
ð2Þ

For the meta-analysis, similar models were computed within cohorts. In 
addition to estimating Cohen’s d using equation (1), we estimated the variance  
of d following equation (2).

Cumulative effects across cohorts were then estimated using a variance-
weighted random-effects model as implemented in the metafor package in R32.

Data distributions were assumed to be normal, but this was not formally tested. 
Data collection and analysis were not performed blind to the conditions of the 
experiments.

Assessment of regional specificity. In Supplementary Fig. 9, we performed 
clustering of effect sizes from Fig. 2b using heatmap.2 from the gplots package33 in 
R. A Spearman correlation matrix was computed based on the case-control effect 
sizes obtained from each test sample and region and hierarchical clustering was 
performed using the default settings. To further explore regional specificity, we 
performed an analysis that involved only the clinical groups. We regressed age, 
age², sex, scanning site and Euler number from the brain age gaps in each test 
sample. Next, we joined data from each pair of clinical groups and each pair of 
regions for repeated measures ANOVA and estimated the effect sizes of region-
by-group interactions (1,260 ANOVAs in total). The significant interaction effects 
were visualized in Fig. 2c using the circlize package34 in R 3.6.

Genetic analyses. We restricted all genetic analyses to individuals from the UK 
Biobank with European ancestry, as determined by the UK Biobank study team35. 
We applied standard quality control procedures to the UK Biobank v3 imputed 
genetic data. In brief, we removed SNPs with an imputation quality score below 
0.5, with a minor allele frequency less than 0.05, missing in more than 5% of 
individuals, and failing the Hardy Weinberg equilibrium tests at P < 1 × 10−6, 
yielding SNP data from 20,170 adult healthy individuals. We performed a 
genome-wide association analysis using PLINK v1.9 (ref. 36), accounting the 
analysis for ten genetic principal components, age, age², sex, scanning site 
and Euler number. We used LD score regression37 to estimate narrow sense 
heritability.

Furthermore, we used cross-trait LD score regression37,38 to calculate genetic 
correlations, and conjunctional FDR analyses39,40 to assess genetic overlap between 
two complex traits. We gathered genome-wide association analysis summary 
statistics for ASD41, ADHD42, schizophrenia43, bipolar spectrum disorder44, multiple 
sclerosis45, major depression46, and Alzheimer’s disease47 and assessed genetic 
overlap with brain age gap genetics. The major histocompatibility complex (MHC) 
region was excluded from all analyses. Conjunctional FDR was run for each pair of 
full brain or regional brain age gap and group, using a conjunctional FDR threshold 
of 0.05. SNPs were annotated using the Ensembl Variant Effect Predictor48.

Cognitive and clinical associations. Cognitive and clinical associations were 
tested in subsets based on data availability and were performed in clinical groups 
only (excluding controls), as described in the main text. Using linear models 
accounting for age, age², sex, scanning site and Euler number we associated brain 
age gaps with scores of the GAF scale49, the PANSS50, the EDSS51 and the MMSE 
scores52. The t-statistics of the linear models were transformed to r; therefore, the 
correlation coefficients depicted in Fig. 2d essentially reflect a partial correlation 
between full brain or regional brain age gaps and clinical or cognitive scores, 
controlling for confounding effects of age, sex, site and image quality.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Methods
Samples. We have included data collected through collaborations, data sharing 
platforms and consortia, as well as available in-house cohorts. No statistical 
methods were used to pre-determine sample sizes. We included as much data 
as we could gather (brain scans from 45,615 individuals) and the sample size of 
individual clinical groups is therefore based on data availability. Supplementary 
Tables 1–3 provide detailed information on the individual cohorts. All included 
cohorts have been reported on previously, and we refer to a list of publications 
that can be consulted for a more detailed overview of cohort characteristics. Data 
collection in each cohort was performed with participants’ written informed 
consent and with approval by the respective local Institutional Review Boards.

Image pre-processing and quality control. Raw T1 data for all study participants 
were stored and analysed locally at the University of Oslo (Norway), following a 
harmonized analysis protocol applied to individual subject data (Supplementary 
Fig. 1). We performed automated surface-based morphometry and subcortical 
segmentation using Freesurfer 5.3 (ref. 21). We deployed an automated quality 
control protocol executed within each of the contributing cohorts that excluded 
potential outliers based on the Euler number22 of the respective Freesurfer 
segmentations. The Euler number captures the topological complexity of the 
uncorrected Freesurfer surfaces and is thus a proxy of data quality22. In brief, 
for each scanning site we regressed age, age² and sex from the Euler number of 
the left and right hemispheres and identified scans that deceeded 3 standard 
deviations on either of the residualized Euler numbers. Supplementary Fig. 13 
provides a validation of the approach against manual quality control. Data from a 
total of 977 individuals was excluded in this step, yielding 45,615 individuals for 
the main analysis. To further minimize the confounding effects of data quality23, 
we performed supplementary analyses using a subset of data, for which a more 
stringent threshold was used for exclusion (1 s.d. on Euler numbers). Thus, 
supplemental analysis provides a confirmation with those individuals excluded 
(n = 40,301 remaining).

Brain age prediction. We used a recent multimodal cortical parcellation scheme24 
to extract cortical thickness, area and volume for 180 regions of interest (ROIs) 
per hemisphere. In addition, we extracted the classic set of cerebellar–subcortical 
and cortical summary statistics21. This yielded a total set of 1,118 structural brain 
imaging features (360 cortical thickness, 360 cortical area, 360 cortical volume and 
38 cerebellar–subcortical and cortical summary statistics).

We used machine learning on this feature set to predict the age of each 
individual’s brain. First, we split the available data into a training sample and 
ten independent test samples (Fig. 1a). The test samples in total comprised 
5,788 individuals with brain disorders and 4,353 healthy controls. For each of 
the ten clinical groups, we selected a set of healthy controls from the pool of 
4,353 individuals, matched for age, sex and scanning site using propensity score 
matching25. Thus, data from some healthy individuals acted as control data in 
several test samples, yet each test sample had the same number of patients and 
controls and all subjects in the test samples were independent of the subjects in 
the training sample. The remaining datasets (45,615 − (5,788 + 4,353) = 35,474) 
went into the training set. For each sex, we trained machine learning models 
based on gradient tree boosting26 using the xgboost package in R27, which was 
chosen owing to its resource efficiency and demonstrated superior performance 
in previous machine learning competitions26, to predict the age of the brain using 
data available in the training set. First, model parameters were tuned using a 
fivefold cross-validation of the training data. This step identified the optimal 
number of model training iterations by assessing the prediction error for 1,500 
rounds and implementing early stopping if the performance did not improve for 
20 rounds. Based on previous experience, the learning rate was pre-set to η = 0.01 
and all other parameters were set to default27 for linear xgboost tree models. After 
determining the optimal number of training iterations, the full set of training data 
was used to train the final models with the adjusted nrounds parameter. These 
models were used to predict brain age in the test samples, and the brain age gap 
(deviation between brain and chronological age) was computed. In line with a 
recent recommendation28, all statistical analyses on the brain age gap accounted 
for age, age², sex, scanning site and Euler number. In addition, to assess overall 
model performance, a fivefold cross-validation was performed within the training 
set, with each fold implementing the above described training procedure and 
testing on the hold-out part of the training set. Brain age predictions on the level 
of individual brain regions followed the same procedures as those described for 
the full brain level, except that the feature set was reduced to cover only those 
features that overlapped more than 50% with a given region. Regions were defined 
following the Freesurfer lobesStrict segmentation as occipital, frontal, temporal, 
parietal, cingulate and insula. In addition, given the limited number of cerebellar 
features available in the Freesurfer summary statistics, cerebellar and subcortical 
features were grouped into a cerebellar–subcortical region (Fig. 1b). For additional 
validation, we compared our xgboost approach against two other approaches 
(Supplementary Fig. 3). One approach implemented a different machine learning 
algorithm on the same set of features (slm from the care package29), whereas the 
other approach made use of a fully independent processing pipeline, feature set 
and algorithm (https://github.com/james-cole/brainageR13,30). Furthermore, we 
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Data availability
The raw data incorporated in this work were gathered from various resources. 
Material requests will need to be placed with individual principal investigators.  
A detailed overview of the included cohorts is provided in Supplementary  
Table 1. GWAS summary statistics for the brain age gaps as well as the models 
needed to predict brain age in independent cohorts are available at github.com/
tobias-kaufmann.

Code availability
Code needed to run brain age prediction models is available at github.com/tobias-
kaufmann (see Data availability). Additional R statistics53 code is available from the 
authors upon request.
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection This is an analysis of previously collected magnetic resonnance imaging and genetics data. Cohort-specific details on data collection are 
provided in Suppl. Tables 1-3 and the references cited therein.

Data analysis GWAS summary statistics for the brain age gaps as well as the models needed to predict brain age in independent cohorts will be made 
available at github.com/tobias-kaufmann upon acceptance.  
 
Software used to analyse the data: 
- Freesurfer 5.3 
- Custom scripts in R 3.6, using packages xgboost 0.82, ggplot2 3.1, metafor 2.1, care 1.1, gplots 3.0, circlize 0.4, psych 1.8, ggridges 0.5 , 
MatchIt 3.0 
- BrainageR for model comparison (https://github.com/james-cole/brainageR) 
- PLINK 1.9 
- LD Score regression (https://github.com/bulik/ldsc) 
- Ensembl Variant Effect Predictor (https://www.ensembl.org/info/docs/tools/vep/index.html) 
- Matlab 2018 with conjunctional FDR 1.4 
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The data incorporated in this work were gathered from various resources (see acknowledgements). Material requests will need to be placed with individual PIs. 
Corresponding authors Tobias Kaufmann (tobias.kaufmann@medisin.uio.no) and Lars T. Westlye (l.t.westlye@psykologi.uio.no) will provide additional detail upon 
correspondence.  
Accession codes are provided in Supplementary Table 1.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We have included data collected through collaborations, data sharing platforms, consortia as well as available in-house cohorts. No statistical 
methods were used to pre-determine sample sizes. We included as much data as we could gather (brain scans from N=45,615 individuals) and 
sample size of individual clinical groups is thus based on data availability. 

Data exclusions Raw T1 data for all study participants were stored and analysed locally at University of Oslo, following a harmonized analysis protocol applied 
to each individual subject data (Suppl. Fig. 1). We performed automated surface-based morphometry and subcortical segmentation using 
Freesurfer 5.3. We deployed an automated quality control protocol executed within each of the contributing cohorts that excluded potential 
outliers based on the Euler number of the respective Freesurfer segmentations. Euler number captures the topological complexity of the 
uncorrected Freesurfer surfaces and thus comprises a proxy of data quality. In brief, for each scanning site we regressed age, age² and sex 
from the Euler number of the left and right hemispheres and identified scans that deceeded 3 standard deviations (SD) on either of the 
residualized Euler numbers. Suppl. Fig. 13 provides a validation of the approach against manual quality control. Data from a total of 977 
individuals was excluded in this step, yielding 45,615 subjects for the main analysis. To further minimize confounding effects of data quality, 
we performed supplementary analyses using a subset of data, where a more stringent threshold was used for exclusion (1 SD on Euler 
numbers). Thus, supplemental analysis provides a sanity check with those subjects excluded (sample size: n = 40,301).

Replication We split data into a training and test set. We validated the machine learning models using 5-fold cross validation within the training set. After 
verification of prediction accuracy, we applied the models to the independent test sets. 
We provide results from mega- and meta-analysis. Furthermore, to ensure that our results would replicate after more stringent outlier 
exclusion, we performed additional supplemental analysis as described above under "Data exclusions" and replicated the results in the 
respective subset of data with highest quality.

Randomization We grouped all subjects into different samples. For each of the ten clinical groups, we identified a group of healthy individuals of equal size, 
matched on age, sex and scanning site from a pool of 4353 healthy control subjects. All remaining individuals were joined into one 
independent sample comprising healthy individuals only. The latter constituted a training sample, used to train and tune the machine learning 
models for age prediction (n = 35,474 aged 3-89 years; 18,990 females), whereas the ten clinical samples were used as independent test 
samples.

Blinding The brain age prediction models were tuned within the training set. Thus, the results obtained in clinical groups are drawn from predictions in 
independent test sets.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics This study included data from healthy controls (HC; n = 39,827; 3-95 years), as well as from 5788 individuals with diverse brain 
disorders with typical onset age distributed across the lifespan. We included data from individuals with ASD (n = 925; 5-64 years) 
and ADHD (n = 725; 7-62 years), individuals with prodromal SZ or at risk mental state (SZRISK; n = 94; 16-42 years), individuals 
with SZ (n = 1110; 18-66 years), a heterogeneous group with mixed diagnoses in the psychosis spectrum (PSYMIX; n = 300; 18-69 
years), individuals with BD (n = 459; 18-66 years), MS (n = 254; 19-68 years), MDD (n = 208; 18-71 years), MCI (n = 974; 38-91 
years), and DEM (including Alzheimer’s disease; n = 739; 53-96 years). Supplementary Tables 1-3 provide details on the samples’ 
characteristics and scanning protocols. 

Recruitment Cohort-specific details on recruitment are provided in the referenced publications in Supplementary Table 1.

Ethics oversight This is a re-analysis of previously published data from studies that have each received ethical approval. More information for 
each individual study is available in the referenced publications in Supplementary Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Anatomical scan

Design specifications Information available in Suppl. Table 3 and the therein cites references.

Behavioral performance measures No task was performed (anatomical scan)

Acquisition

Imaging type(s) structural, T1-weighted

Field strength 1.5T or 3T, see Suppl. Table 3

Sequence & imaging parameters Suppl. Table 3

Area of acquisition whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We employed a centralized and harmonized processing protocol including automated surface-based morphometry and 
subcortical segmentation using Freesurfer 5.3 (recon-all)

Normalization We used standard procedures as implemented in Freesurfer recon-all.

Normalization template fsaverage

Noise and artifact removal Standard pipelines for anatomical data were applied (Freesurfer recon-all). Euler number was calculated as a proxy of 
image quality and data from individuals with insufficient image quality were excluded.

Volume censoring No volume censoring was performed (anatomical scan)

Statistical modeling & inference

Model type and settings We used machine learning to predict brain age in an independent test set. Group statistics and association analyses 
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Model type and settings were performed on the resulting brain age gaps. We controlled all associations and group differences for age, age², sex, 

scanning site and a proxy of image quality (Euler number). 

Effect(s) tested We used linear models to assess the effect of group on brain age gap within each test sample, accounting for age, age², 
sex, scanning site and Euler number. Given the relationship between P-values and sample size, we used Cohen's d effect 
sizes as the main statistical outcome, but also provide two-sided P-values alongside. Statistical analysis is based on 
Nakagawa and Cuthill (2007) and described in detail in the online methods section. 
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. 
Biol Rev Camb Philos Soc 82, 591-605, doi:10.1111/j.1469-185X.2007.00027.x (2007).

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Glasser et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature

Statistic type for inference
(See Eklund et al. 2016)

Linear models on brain age gaps.

Correction FDR

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis We utilized a recent cortical parcellation scheme (Glasser et al, reference above) to extract cortical 
thickness, area and volume for 180 regions of interest (ROI) per hemisphere. In addition, we extracted the 
classic set of cerebellar/subcortical and cortical summary statistics. This yielded a total set of 1118 
structural brain imaging features (360/360/360/38 for cortical thickness/area/volume as well as 
cerebellar/subcortical and cortical summary statistics, respectively).  
We used machine learning on this feature set to predict the age of each individual’s brain. First, we split 
the available data into a training sample and ten independent test samples (Fig. 1a). The test samples in 
total comprised 5788 individuals with brain disorders and 4353 healthy controls. For each of the ten 
clinical groups, we selected a set of healthy controls from the pool of 4353 individuals, matched for age, 
sex and scanning site using propensity score matching. Thus, data from some healthy individuals acted as 
control data in several test samples, yet each test sample had the same number of patients and controls 
and all subjects in the test samples were independent of the subjects in the training sample. The remaining 
datasets (45,615 – (5788+4353) = 35,474) went into the training set. For each sex, we trained machine 
learning models based on gradient tree boosting utilizing the xgboost package in R, chosen due to its 
resource efficiency and demonstrated superior performance in previous machine learning competitions, to 
predict the age of the brain using data available in the training set. First, model parameters were tuned 
using a 5-fold cross-validation of the training data. This step identified the optimal number of model 
training iterations by assessing the prediction error for 1500 rounds and implementing an early stopping if 
the performance did not improve for 20 rounds. Based on previous experience, the learning rate was pre-
set to eta=0.01 and all other parameters were set to default for linear xgboost tree models. After 
determining the optimal number of training iterations, the full set of training data was used to train the 
final models with the adjusted nrounds parameter. These models were used to predict brain age in the 
test samples, and the brain age gap (deviation between brain and chronological age) was computed. In line 
with a recent recommendation, all statistical analyses on the brain age gap accounted for age, age², sex 
and scanning site. In addition, to assess overall model performance, prediction models were cross-
validated within the training set using a 5-fold cross validation, each fold implementing the above 
described training procedure and testing on the hold-out part of the training set. Brain age predictions on 
the level of individual brain regions followed the same procedures as those described for the full brain 
level, except that the feature set was reduced to cover only those features that overlapped more than 50% 
with a given lobe. Regions were defined following the Freesurfer lobesStrict segmentation as occipital, 
frontal, temporal, parietal, cingulate and insula. In addition, given the limited number of cerebellar 
features available in the Freesurfer summary statistics, cerebellar and subcortical features were grouped 
into a cerebellar/subcortical region (Fig. 1b). For additional validation, we compared our xgboost approach 
against two other approaches (Suppl. Fig. 3). One approach implemented a different machine learning 
algorithm on the same set of features (slm from the care package), whereas the other approach made use 
of a fully independent processing pipeline, feature set and algorithm (github.com/james-cole/brainageR). 
Furthermore, we assessed the impact of sample size on model performance by creating random subsets of 
data with sample sizes of 100, 500, 1000, 2000, 5000, 10,000, and 20,000 individuals (40 random subsets 
per sample size). For each subset and sample size we assessed model performance using cross-validation   
[See supplement for references to the methods described above]
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