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ABSTRACT
BACKGROUND: Alcohol use has been reliably associated with smaller subcortical and cortical regional gray matter
volumes (GMVs). Whether these associations reflect shared predisposing risk factors or causal consequences of
alcohol use remains poorly understood.
METHODS: Data came from 3 neuroimaging samples (N = 2423), spanning childhood or adolescence to middle age,
with prospective or family-based data. First, we identified replicable GMV correlates of alcohol use. Next, we used
family-based and longitudinal data to test whether these associations may plausibly reflect a predispositional
liability for alcohol use or a causal consequence of alcohol use. Finally, we used heritability, gene-set enrichment,
and transcriptome-wide association study approaches to evaluate whether genome-wide association study–
defined genomic risk for alcohol consumption is enriched for genes that are preferentially expressed in regions
that were identified in our neuroimaging analyses.
RESULTS: Smaller right dorsolateral prefrontal cortex (DLPFC) (i.e., middle and superior frontal gyri) and insula GMVs
were associated with increased alcohol use across samples. Family-based and prospective longitudinal data suggest
that these associations are genetically conferred and that DLPFC GMV prospectively predicts future use and
initiation. Genomic risk for alcohol use was enriched in gene sets that were preferentially expressed in the DLPFC
and was associated with replicable differential gene expression in the DLPFC.
CONCLUSIONS: These data suggest that smaller DLPFC and insula GMV plausibly represent genetically conferred
predispositional risk factors for, as opposed to consequences of, alcohol use. DLPFC and insula GMV represent
promising biomarkers for alcohol-consumption liability and related psychiatric and behavioral phenotypes.
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Alcohol use and its associated negative consequences are
ubiquitous international public health concerns. Worldwide, the
average person 15 years of age or older consumes 6.2 liters of
alcohol annually, and alcohol use accounts for 6% of deaths
and 5% of disease burden (1). Combined with the widespread
prevalence of problematic alcohol use [e.g., alcohol use dis-
order lifetime prevalence = 29% (2); current-month binge
drinking = 26% of adults in the United States (3)], these
staggering public health consequences have led to extensive
efforts to understand the impact of alcohol use on brain and
behavior and to identify markers of alcohol use liability.

Neuroimaging studies have consistently shown that alcohol
consumption and alcohol use disorder are associated with
smaller subcortical and cortical gray matter volumes (GMVs),
particularly among regions that feature prominently in emotion,
memory, reward, cognitive control, and decision making
(4–10). While there is evidence that these associations may
N: 0006-3223
arise as a consequence of drinking (e.g., reduced neuro-
genesis in nonhuman primate models, greater GMV decline
among adolescents following the initiation of heavy drinking,
GMV normalization following abstinence from alcohol among
alcohol-dependent individuals) (9,11–18), other data suggest
that such associations may reflect preexisting vulnerabilities
that precede and predict drinking initiation and escalating use
(19–23).

Here, using neuroimaging data from 3 samples (N = 2423)
(24–26) spanning childhood and adolescence to middle age
with prospective or family-based data, we first identified
replicable GMV correlates of alcohol use before testing
whether these correlates 1) are plausibly attributable to shared
predisposing factors (e.g., shared genetic influence) or arise as
a consequence of alcohol use, 2) prospectively predict future
drinking in young adulthood, and 3) predict drinking initiation
in adolescence. Finally, using curated postmortem data, we
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examined whether genetic risk for alcohol consumption is
associated with genes and genetically conferred differences in
gene expression that are preferentially expressed in regions
identified by neuroimaging analyses or the brain more gener-
ally. Here, we applied gene-set enrichment, partitioned heri-
tability, and transcriptome-wide association study (TWAS) (27)
analyses to genome-wide association study (GWAS) summary
statistics from the UK Biobank (N = 112,117) (28) and Alcohol
Genome-Wide Consortium and the Cohorts for Heart and
Aging Research in Genomic Epidemiology Plus consortia
(AlcGen/CHARGE1) (N = 70,460) (29) studies of alcohol con-
sumption, and RNA-seq data from the Genotype-Tissue
Expression (GTEx) project (n = 81–103) (30) and the Common
Mind Consortium (N = 452) (31).

METHODS AND MATERIALS

Participants

Neuroimaging data were drawn from 3 independent studies—
the Duke Neurogenetics Study (DNS) (n = 1303) (26), the Hu-
man Connectome Project (HCP) (n = 897) (24), and the Teen
Alcohol Outcomes Study (TAOS) (n = 223) (25)—that assessed
behavioral, experiential, and biological phenotypes among
young adult college students (DNS sample), young to middle-
aged adults (HCP sample), and children and adolescents
(TAOS sample). The DNS and TAOS studies collected longi-
tudinal data on alcohol use subsequent to the baseline scan.
The family-based HCP sample is composed of twin and non-
twin siblings. All studies followed protocols approved by
relevant institutional review boards and remunerated partici-
pants. Additional information regarding each sample is pro-
vided in Supplement 1.

Alcohol Use Assessment

Alcohol use in the DNS was assessed at baseline (past 12-
month use) and follow-ups (questions modified to reflect use
following the prior assessment) using the Alcohol Use Disor-
ders Identification Test consumption subscale (AUDIT-C)
(DNS: a = .85; mean = 3.76; SD = 2.64; range = 0–12) (32,33).
The AUDIT-C was approximated (aAUDIT-C) in the HCP
sample (a = .786; mean = 3.42; SD = 2.65; range = 0–12) and
TAOS (a = .893; mean = 0.45; SD = 1.26; range = 0–9) using
questions from Semi-Structured Assessment for the Genetics
of Alcoholism (34) and Substance Use Questionnaire (35),
respectively. In TAOS, the initiation of alcohol use was defined
as attaining a score of $1 on the aAUDIT-C (i.e., participant
reports consuming $1 full alcoholic beverage; n = 82 started
during the study; age (in years): mean = 16.68, SD = 1.39,
range 14.12–19.64). Supplement 1 contains additional details.

Covariates

Variables known to be correlated with alcohol consumption,
GMV, or both were included as covariates in all analyses: age
(36–38), sex (37–40), ethnicity (40,41), socioeconomic status
(SES) (36–40), early-life and recent-life stress (42–44), and
intracranial volume. In adult samples (DNS, HCP), the presence
of any nonsubstance Axis I DSM-IV psychiatric disorder was
included as a covariate. As the TAOS sample was composed
of children and adolescents enriched for a family history of
2 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
depression, Tanner stage and depressive symptoms were
included as covariates. Supplement 1 contains additional de-
tails, including consideration of nicotine and cannabis use.

Magnetic Resonance Imaging Processing

Acquisition parameters and GMV processing for each study
are described in Supplement 1.

Statistical Analyses

Discovery—DNS. A whole-brain voxel-based morphometry
generalized linear model regression analysis was conducted
using SPM12 to test whether alcohol consumption (AUDIT-C)
is associated with differences in GMV. Covariates included
sex, age, self-reported race/ethnicity (i.e., not-white/white, not-
black/black, not Hispanic/Hispanic), scanner identification (2
identical scanners were used), intracranial volume, presence of
a diagnosis other than alcohol or substance abuse or depen-
dence, perceived stress, parental education level, early-life
stress (assessed via the Childhood Trauma Questionnaire),
and perceived SES. Analyses were thresholded at p , .05
familywise error corrected with a cluster extent threshold of 10
contiguous voxels (ke = 10) across the entire search volume.

Replication—HCP. Analyses examined whether alcohol
consumption (aAUDIT-C) predicted GMV only within regions of
interest (ROIs) where associations were observed in the dis-
covery DNS sample (Figure 1, Table S1 in Supplement 1). ROIs
were defined by the Automated Anatomic Labeling atlas (45). A
voxelwise generalized linear model regression was conducted
using multilevel block permutation–based nonparametric
testing (FSL PALM v.alpha103; tail approximation p , .10 with
5000 permutations), which accounts for the family structure of
the HCP data while correcting for multiple comparisons
(46–48). Covariates included sex, age, self-reported race and/
or ethnicity, intracranial volume, twin and/or sibling status
(dizygotic or not, monozygotic or not, half-sibling or not),
presence of a diagnosis other than alcohol or substance abuse
or dependence, perceived stress, education level, and SES.
Analyses were thresholded at p , .05 familywise error cor-
rected with a cluster extent threshold of 10 contiguous voxels
(ke = 10).

Post Hoc Analyses

Total anatomical GMV of ROIs associated with alcohol use in
both the DNS and HCP (i.e., right insula and middle and
superior frontal gyri) (see Results) were extracted from both
datasets for post hoc analyses. Total volumes were used
so that effect sizes would not be inflated by selecting only
voxels that were specifically associated with the outcome of
interest (49).

Heritability. SOLAR-Eclipse software (http://solar-eclipse-
genetics.org) (50), in conjunction with the R package solarius
(51), which uses maximum likelihood variance decomposition
methods, was used to estimate phenotypic heritability (h2, the
fraction of phenotypic variance attributable to additive genetic
factors), as well as genetic (rg) and unique environmental (re)
correlations (i.e., the fraction of the correlation between 2
phenotypes that is attributable to either additive genetic or
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Figure 1. Identification of replicable volumetric
associations with alcohol consumption. This statis-
tical parametric map illustrates regions of reduced
brain volume associated with increased alcohol
consumption (Table S1 in Supplement 1), which are
overlaid onto a canonical structural brain image
Montreal Neurological Institute coordinates and
statistics (Duke Neurogenetics Study [DNS]: p , .05,
familywise error whole-brain corrected, $10 contig-
uous voxels; Human Connectome Project [HCP]: p,

.05, familywise error region-of-interest corrected,
$10 contiguous voxels). Alcohol consumption was
not associated with increased volume in any region.
Notably, in the HCP dataset, the superior frontal
gyrus cluster extended into the right middle frontal
gyrus and was located relatively far (34 mm dorsal)
from the original right superior frontal cluster identi-
fied in the DNS. In contrast, this peak in the HCP
was located 11.6 mm away from the right middle
frontal peak identified in the DNS. Thus, for the
purposes of post hoc analyses, the combined vol-
ume of both the right middle and superior frontal gyri
cortices was extracted from both samples. Cluster
overlap at an uncorrected threshold and comparison
of effect sizes are shown in Figures S2 and S3 in
Supplement 1.
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individual-specific environmental factors, respectively) of GMV
and alcohol consumption. Post hoc analyses (Supplement 1)
assessed the contribution of shared environmental factors to
phenotypic correlations (rc). These analyses were conducted
among the subset of related participants from the HCP (n =
804; 293 families, 115 monozygotic and 64 dizygotic twin pairs
and 422 nontwin siblings, excluding singletons and half-
siblings). Covariates were identical to those in neuroimaging
analyses. To ensure normality of measurements and accuracy
of estimated parameters, an inverse normal transformation
was applied to all continuous traits and covariates prior to
analyses.

DiscordantTwinandNontwinSiblingAnalysis. Following
evidence that alcohol consumption is coheritable with volume of
the right insula and middle and superior frontal gyri (see Results),
we examined whether same-sex twin and nontwin sibling pairs
discordant for alcohol consumption differed from each other on
brain volume in the HCP sample. These analyses examined
whether aAUDIT-C was associated with insular or middle and
superior frontal volume after accounting for sibling-shared ge-
netic background and experience. Same-sex siblings were
considered “high alcohol consumers” if their aAUDIT-C score
was.0.5 SD above the sample mean (aAUDIT-C. 4.67), or “low
alcohol consumers” if their score was,0.5 SD below the sample
mean (aAUDIT-C , 1.54), respectively. A concordant sibling pair
was defined as a pair who were both in the same category of
consumption (i.e., high or low) and additionally scored within 1 SD
of each other (low alcohol concordant pairs: n = 117; aAUDIT-C
mean = 0.84, SD = 0.77; high alcohol concordant pairs: n = 54;
aAUDIT-C mean = 7.08, SD = 1.4). There were 72 discordant
sibling pairs (“low discordant”; aAUDIT-C mean = 1.25, SD =
0.73; “high discordant”; aAUDIT-C mean = 6.47, SD = 1.67).
B

Participants could be included in .1 pair (n = 368 individuals)
when considering relationships with multiple siblings. Discor-
dancy analyses were conducted using linear mixed models, using
the psych (52) and lme4 (53) packages in R (54) to account for the
multiple-sibling structure within families. Covariates were identical
to those used in neuroimaging analyses. Additional information
on models tested and their interpretation are available in
Supplement 1.

DNS Longitudinal Changes in Alcohol Con-
sumption. Hierarchical density-based clustering (R dbscan
package) (55) was used to detect and remove temporal outlier
responses to the follow-up questionnaire (Supplement 1,
Figure S5 in Supplement 1). The R nlme package (56) was used
to fit a longitudinal multilevel linear model to examine whether
GMV predicted AUDIT-C at follow-ups. The model included
both random intercept and random slope components with a
continuous autoregressive correlation structure. Time was
coded as both linear and quadratic age at the date of response
(baseline or follow-up). Models tested the interaction between
brain volume and age (i.e., does baseline ROI volume predict a
different slope of change in drinking behavior as
participants age?). Covariates were z-scored, and they were
identical to those used in neuroimaging analyses, with the
addition of second-order interactions between covariates
and primary variables (57,58). Each of the 2 ROIs was tested
in a separate model, and p values were false discovery
rate (FDR) corrected (i.e., 4 tests: middle 3 linear age,
superior 3 linear age, middle 3 quadratic age, superior 3

quadratic age).

TAOS Longitudinal Initiation of Alcohol Use. The R
lme4 package (59) was used to fit a longitudinal logistic
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 3
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multilevel model, which tested whether baseline brain volume
in nondrinking adolescents predicted future initiation of alcohol
use. The model included both random intercept and random
slope components, and time was coded as both the linear and
quadratic age at the date of response. The model tested the
interaction between GMV and age (i.e., does baseline ROI
volume predict a different likelihood of initiation as participant’s
age?). Covariates were z-scored, and they included de-
mographic variables (age, sex, ethnicity, and SES), stress
(Childhood Trauma Questionnaire and Stressful Life Events
Schedule), Tanner stage, Mood and Feelings Questionnaire
scores, family history of depression, age at magnetic reso-
nance imaging scan, and intracranial volume. Second-order
interactions between covariates and primary variables (e.g.,
middle frontal volume 3 sex, middle superior volume 3 SES,
age3 sex, age3 SES) were also included (58). Each of 2 ROIs,
right superior frontal cortex and right middle frontal cortex, was
tested in a separate model. Insula volume was excluded, as it
was not significant in DNS longitudinal analyses. The p values
were subsequently FDR corrected (4 tests).

Single Nucleotide Polymorphism–Based Enrich-
ment. We tested whether the single nucleotide poly-
morphism (SNP)–based heritability of alcohol consumption is
enriched in brain-expressed gene sets and whether this
enrichment is specific to any region. Stratified linkage
disequilibrium–score regression (60–62) was applied to sum-
mary statistics from the GWAS of alcohol consumption in the
UK Biobank (N = 112,117) (28). Tissue-enriched gene sets
were generated using data from the GTEx Consortium (30,61).
A gene is assigned to a gene set if it shows greater enrichment
in that tissue than 90% of genes. It was further tested whether
genetic associations with alcohol consumption are enriched in
brain-expressed gene sets using the analysis tool MAGMA (63)
implemented through the platform FUMA (64).

Transcriptome-wide Analysis. We tested whether ge-
netic risk for alcohol consumption is predictive of
Table 1. Location of Volumetric Reductions Associated With Al

Index No. of Voxels
p, Familywise Error

Corrected t

Duke Neurogenetics Study

1 279 .003 5.24

1.b .010 4.95

2 344 .004 5.14

2.b .006 5.05

3 44 .005 5.08

4 76 .007 5.03

5 64 .007 5.03

6 23 .019 4.80

7 17 .023 4.75

8 12 .029 4.59

Human Connectome Project

1 42 .003 4.92

2 88 .008 4.70

AAL, Automated Anatomical Labeling; L, left; R, right.
aCoordinates are provided in Montreal Neurological Institute space.
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differences in postmortem gene expression. Precomputed
gene-expression RNA-sequencing weights for 9 brain re-
gions and the liver from the GTEx project (30) were analyzed
using the FUSION suite (27). Analyses used GWAS results
for alcohol consumption from the UK Biobank (28). Results
were Bonferroni-corrected for n = 9839 tests across the 10
tissues (Supplemental Data). Replication was tested using
an independent alcohol-consumption GWAS (N = 70,460)
(29) and dorsolateral prefrontal cortex (DLPFC) gene-
expression weights from the CommonMind Consortium
(31). As the gene that showed the strongest association in
the discovery dataset was not present in the replication
data, we examined whether any of the Brodmann area 9 (BA
9) gene-expression associations at FDR-corrected p , .05
were significant in the replication data (see Results). Repli-
cated genes were probed for association with other GWAS
phenotypes using a phenome-wide association study
(PheWAS) implemented through the “GWAS Atlas” browser
(65). BA 9 in the GTEx dataset and DLPFC in the Com-
monMind consortium dataset overlap with the prefrontal
regions implicated in our neuroimaging analyses (i.e., mid-
dle and superior frontal gyri) (see Results). No postmortem
insula data were available.
RESULTS

Whole-brain discovery analyses in DNS revealed that greater
alcohol consumption is associated with lower GMV across 8
clusters (Figure 1, Table 1) that encompass regions identified in
prior studies of unselected samples (5,17) and among in-
dividuals with alcohol use disorder (4,6). The associations with
2 of these clusters (right insula, right middle and superior
frontal gyri) replicated within an ROI analysis in the HCP
(Figure 1, Table 1). Post hoc analyses revealed that effect sizes
were nearly identical in the 2 samples, that results were equiv-
alent when excluding nondrinkers (Figure S2 in Supplement 1),
and that associations between alcohol use and GMV remained
largely unchanged and significant when correcting for tobacco
cohol Consumption

x, mma y, mma z, mma
AAL-Atlas
Location

27 39 25 R middle frontal

32 50 23 R middle frontal

56 3 0 R superior temporal

48 6 25 R insula

0 63 23 L medial orbital frontal

38 18 51 R middle frontal

23 233 42 L middle cingulum

2 27 30 R middle cingulum

29 62 8 R superior frontal

2 33 45 R medial superior frontal

38 12 0 R insula

20 24 42 R superior/middle frontal
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Figure 2. Shared genetic predisposition between alcohol consumption
and brain volume. In the Human Connectome Project (HCP) sample, (A)
alcohol consumption scores (approximated Alcohol Use Disorders Identifi-
cation Test consumption subscale scores [aAUDIT-C]) and gray matter
volumeof the right insula and rightmiddle and superior frontal corticeswere all
observed to be heritable (aAUDIT-C: 51.79%, p , 2.2 3 10216; insula:
68.83%, p , 2.2 3 10216; frontal: 74.46%, p , 2.2 3 10216) (Table S1 in
Supplement 1). (B) Significant phenotypic correlations between aAUDIT-C
scores and volumes of the right insula and middle and superior frontal gyri
are attributable to shared genetic factors (insula: 20.2314, p = .0022;
frontal:20.2192, p = .0054) but not unique environmental factors (Table S1 in
Supplement 1). Distribution of (C) right insula and (D) rightmiddle and superior
frontal volumes by alcohol exposure group. High = aAUDIT-C score. sample
mean1 0.5 SD (i.e.,. 4.67); Low= aAUDIT-C score, samplemean2 0.5 SD
(i.e., , 1.54); Concordant = both siblings are in the same alcohol exposure
group; Discordant = one sibling is in the high group, while the other is in the
low group. Contrast comparisons found evidence for predispositional
effects of brain volume on alcohol consumption in both cases (insula: graded
liability: b =20.0037, p = .049, predispositional: b = 0.0037, p = .0006; frontal:
predispositional: b = 0.0019, p = .029) (Table S2 in Supplement 1).

Figure 3. Frontal volume prospectively predicts alcohol use and initiation
of consumption. (A) In the Duke Neurogenetics Study, participants with
reduced volume of the right middle and superior frontal cortices reported
elevated alcohol consumption before 20.85 years of age following the
neuroimaging scan, and after accounting for baseline drinking (frontal 3 age
interaction: b = 0.150, false discovery rate–corrected p = .008) (Table S3 in
Supplement 1). (B, C) In the Teen Alcohol Outcomes Study, participants with
increased volume of the right middle and superior frontal cortices report
initiation of alcohol consumption at an older age (midfrontal 3 age inter-
action: b = 257.042, false discovery rate–corrected p = .036; superior
frontal 3 age interaction: b = 260.74, false discovery rate–corrected p =
.036) (Table S4 in Supplement 1). Analyses were conducted with continuous
data; the partition into 3 equally sized groups according to volume was done
for display purposes only. AUDIT-C, Alcohol Use Disorders Identification
Test consumption subscale.
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and cannabis use (Table S11 in Supplement 1). Statistics are
presented in the table and figure legends.

Family-based analyses in the HCP (n = 804) revealed that
alcohol consumption and GMV of the right insula and right
middle/superior frontal gyrus are moderately to largely herita-
ble (Figure 2A; Table S1 in Supplement 1). Moreover, decom-
position analyses showed that phenotypic correlations
between frontal and insular GMV and alcohol consumption are
attributable to shared genetic, but not unique environmental,
influences (Figure 2B, Table S1 in Supplement 1). Post hoc
analyses confirmed that shared environmental factors did not
significantly contribute to the correlation of alcohol consump-
tion and GMV (Table S1 in Supplement 1). Analyses within twin
and sibling pairs in the HCP sample who were concordant or
discordant for alcohol use revealed that relative to siblings who
were concordant for low alcohol use, siblings who were
concordant for high use or discordant for use (i.e., 1 high use, 1
low use) had lower insular and frontal GMVs (Figure 2C, D;
Table S2 in Supplement 1). Further, GMVs did not differ be-
tween low and high alcohol-using members of discordant
B

pairs. As shared genetic and familial factors are matched
within pairs, this pattern of results suggests that smaller frontal
gyri and insula GMVs may reflect preexisting vulnerability
factors associated with alcohol use, as opposed to a conse-
quence of alcohol use.

Using available longitudinal data from the DNS (n = 674),
lower GMV of the right frontal gyri, but not insula, predicted
increased future alcohol consumption, over and above
baseline consumption, but only in individuals who are under
the legal age of drinking (i.e., younger than 21 years of age) in
the United States (Figure 3A, Table S3 in Supplement 1).
Similarly, in the TAOS longitudinal sample of children and
adolescents, lower right middle and superior frontal gyri GMV
predicted the initiation of alcohol use at an earlier age in
those who were nondrinkers at baseline (Figure 3B, C;
Table S4 in Supplement 1).

Gene-based association and partitioned heritability
enrichment analyses of the UK Biobank GWAS of alcohol
consumption revealed enrichment only among brain gene sets
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 5
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Figure 4. Tissue-specific enrichment of alcohol-consumption genomic risk. Enrichment of alcohol-consumption genome-wide association study (UK
Biobank, N = 112,117) (A) associations and (B, C) heritability, in gene sets defined by the relative expression of genes (A, B) across all tissues and (C) within the
brain, in the Genotype-Tissue Expression project dataset (Supplemental Data). The x-axis and color scale represent the significance of the enrichment
(negative logarithmic scale of the p value). Solid, dashed, and dotted lines represent Bonferroni-corrected, false discovery rate–corrected, and nominally
significant p values, respectively. BA, Brodmann area; EBV, Epstein-Barr virus.
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(Figure 4). Moreover, BA 9, which overlaps with the frontal
region identified in neuroimaging analyses, was among the
regions with strongest enrichment (Figure S4 in Supplement 1,
Supplemental Data). A TWAS analysis of these GWAS data
similarly found that genetic risk for alcohol consumption was
significantly associated with differences in gene expression
across the brain within the GTEx dataset, including expression
of C16orf93 within BA 9 (Figure 5, Table 2, Supplemental Data).
C16orf93 was not available in the TWAS replication dataset
[i.e., the dataset of Schumann et al. (29) and the CommonMind
Consortium (31)] (Table 2). Three additional genes survived
FDR correction in BA 9, two of which (i.e., CWF19L1 and
C18orf8) were available in the TWAS replication dataset (Figure
5, Table 2)1. Genomic risk for alcohol consumption was
significantly predictive of differential expression of CWF19L1
1Notably, correcting for only tests within BA 9 based on our neu-
roimaging results, CWF19L1 remains significant following
Bonferroni correction.

6 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
and C18orf8 within the DLPFC of our TWAS replication data-
set, in the same direction as was observed in the discovery
dataset (Table 2, Supplemental Data). Notably, genetic risk
for alcohol consumption was not significantly associated
with the expression of any gene in the liver (Figure 5). A
phenome-wide association study using the GWAS Atlas
revealed evidence that both CWF19L1 and C18orf8 have been
implicated in a host of phenotypes, including psychiatric
conditions and related traits such as executive function and
schizophrenia (CWF19L1), and substance use (C18orf8)
(Supplemental Data).

Behavioral variables that might mediate links between brain
structure and alcohol consumption (i.e., IQ, delay discounting,
self-reported impulsivity, negative urgency, and neuroticism)
and that were available in the DNS and HCP data sets and
were tested for association with GMV. Despite nominally sig-
nificant associations in the DNS between delay discounting
and IQ and GMV of the right frontal cortex, none of these as-
sociations replicated within the HCP data or were robust to

http://www.sobp.org/journal


Figure 5. Transcriptome-wide association study of alcohol consumption
predicting gene expression. Genetic risk for alcohol consumption according
to the UK Biobank genome-wide association study (n = 112,117) is asso-
ciated with differences in human postmortem gene expression (Genotype-
Tissue Expression project; ns = 81–103), including frontal cortex Brodmann
area (BA) 9 (Supplemental Data). Notably, associations in the liver (far-right
panel) do not survive Bonferroni correction for multiple comparisons, though
4 are significant at a less-stringent false discovery rate–based correction.
The y-axis represents the significance of the association. Solid, dashed, and
dotted lines represent Bonferroni-corrected, false discovery rate–corrected,
and nominally significant p values, respectively.
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multiple testing correction (see Supplement 1, Tables S9, S10
in Supplement 1).

DISCUSSION

We report convergent evidence that smaller GMVs of the right
insula and DLPFC (i.e., middle and superior frontal gyri) plau-
sibly represent genetically conferred liabilities that promote
early alcohol use. First, we show that smaller GMVs of the right
insula and DLPFC were replicably associated with alcohol use
in 2 large neuroimaging samples. Second, family-based data
Table 2. TWAS Discovery and Replication

Discovery—GTEx Frontal BA 9

Gene CHR Locus Start Locus End TWAS z T

C16orf93 16 30772519 30772656 5.0152 5.3

CWF19L1 10 102000000 102000000 24.1674 3.0

PHBP9 10 102000000 102000000 23.8862 1.0

C18orf8 18 21083473 21110576 3.831 1.2

Summary of transcriptome-wide association study (TWAS) results in the f
genome-wide association study (N = 112,117) and Genotype-Tissue Expr
Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging R
genome-wide association study (N = 70,460), and CommonMind Consorti
indicate that the gene was not present in replication dataset. The p valu
rate correction. Expression quantitative trait loci are available in the Supple

BA, Brodmann area; CHR, chromosome; DLPFC, dorsolateral prefrontal

B

provide evidence that these associations are attributable to
shared genetic factors with no evidence of a causal associa-
tion, or that shared or unique environmental factors contribute
to this association. Third, reduced DLPFC volume prospec-
tively predicted future alcohol use among young adults as well
as alcohol use initiation during adolescence among children
and adolescents who were unexposed to alcohol at baseline.
Finally, we found evidence that genomic risk for alcohol use is
enriched among genes that are preferentially expressed within
the DLPFC and is replicably predictive of gene expression in
the DLPFC. Collectively, these convergent data suggest that
lower GMVs in the middle and superior frontal gyri and insula
may represent a preexisting genetic liability for drinking that
could serve as a prognostic biomarker. Further, these data
suggest that the alcohol use in the general population does not
induce reductions in GMV, at least as measured using mag-
netic resonance imaging, as has been previously hypothesized
(5,7,9). It is possible that reduced GMVs in the middle and
superior frontal gyri and insula may promote alcohol use,
increasing the likelihood of heavy use, which may then further
potentiate GMV loss in these regions and others (9,11,12).

A few notable points within our data require additional
interpretation. In the longitudinal child and adolescent sample
of baseline nonusers (i.e., the TAOS sample), we found that
DLPFC GMV prospectively predicts an early age of drinking
initiation. In the DNS longitudinal prospective data of young
adults, reduced GMV in these regions also predicted future
alcohol use, even after accounting for the extent of baseline
alcohol use. However, this characteristic was only predictive
up until 20.85 years of age. It is possible that risk conferred by
reduced GMV in the DLPFC is developmentally constrained or
may be minimized by environmental differences in permissivity
or legality, as the legal drinking age in the United States is
21 years (66).

We found no compelling evidence that behaviors that have
been speculated to contribute to alcohol use (e.g., executive
function, negative urgency, and impulsivity) are associated
with prefrontal or insula GMV, leaving the behavioral mecha-
nisms through which these GMVs may influence alcohol use
unclear. DLPFC GMV was negatively correlated with delay
discounting and using alcohol to cope with stress in our young
adult sample (DNS sample) at nominal levels of significance,
while these behavior characteristics and DLPFC GMV were
unlinked in our young and middle-age adult sample (Tables S9,
Replication—CMC DLPFC

WAS p Locus Start Locus End TWAS z TWAS p

0 3 1027
– – – –

8 3 1025 102000000 102000000 22.11116 .0348

2 3 1024
– – – –

8 3 1024 21083433 21111771 2.1613 .0307

rontal cortex, conducted with FUSION. Discovery analysis: UK Biobank
ession (GTEx) project gene expression (N = 92). Replication analysis:
esearch in Genomic Epidemiology Plus consortia (AlcGen/CHARGE1)
um (CMC) gene expression (N = 452). Empty rows in replication data
es are all uncorrected—all associations listed survive false discovery
mental Data.
cortex.
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S10 in Supplement 1). This finding suggests that these
behavioral factors may represent mechanisms through which
GMV influences alcohol use in adolescence and young adult-
hood, potentially contributing to continued use, while GMV is
uncorrelated with these behaviors as measured in later life.
Nonetheless, it is also plausible that these nominally significant
findings represent false-positives.

While both the discovery analysis in the DNS sample and
the replication analysis in the HCP sample showed that alcohol
use was significantly correlated with reduced GMV, the voxels
of strongest association only partially overlap. Post hoc ana-
lyses found that the effect sizes of the association with atlas-
defined ROIs were nearly identical in the 2 samples
(Figure S2 in Supplement 1), further supporting the interpre-
tation that identified GMV correlations with alcohol use are
replicable. The limited overlap of peaks between the samples
likely reflects the lower power in the HCP sample, which is a
result of its smaller sample size and the family structure of the
data, which resulted in even fewer independent observations.
Several GMV findings in the DNS did not replicate, an outcome
that may be attributable to differences between the samples
(e.g., age), though the possibility that they are false-positives,
or that null findings in the HCP sample are false-negatives,
cannot be ruled out.

Substantiating the idea that it is biologically plausible that
reduced GMV in the DLPFC represents a preexisting genetic
liability for drinking, genomic risk for alcohol use was enriched
only within brain gene sets. BA 9, which overlaps with the
DLPFC regions identified in our neuroimaging analyses, was
among the regions of strongest enrichment (Figure 4). Further,
TWAS analyses revealed replicable evidence that genomic risk
for alcohol use is associated with differential expression of
CWF19L1 and C18orf8 within BA 9. While the function of these
genes is not understood, both have been previously implicated
in psychopathology and related traits, including schizophrenia,
substance use, and cognition (Supplement 1), with rare mu-
tations in CWF19L1 causing autosomal recessive cerebellar
ataxia (66,67), which is characterized by a loss of control of
bodily movements, as well as developmental delay and mental
retardation. Additional discussion of these findings and their
limitations is presented in Supplement 1.

Given evidence that genetic liability is shared across
substance use involvement (67) and other forms of psycho-
pathology (68), our findings may generalize to other sub-
stances and overall psychopathology risk. While enrichment
analyses implicate only brain pathways and TWASs identify
replicable associations between genetic risk for alcohol
consumption and gene expression in the frontal cortex, we
cannot rule out the possibility that our observed effects are
partially mediated by altered functioning of other pathways,
such as alcohol metabolism in the liver (69). Moreover, the
present results do not distinguish between reduced GMV as
part of the mechanism by which genetic risk affects drinking
behavior (10,70) and a pleiotropic effect of genetic risk on
multiple outcomes (20).

We must note assumptions of heritability analyses including
random mating and equal environments (71). On one hand,
violations of the random-mating assumption would result in
downwardly biased estimates of coheritability (72). On the
8 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
other hand, violations of the equal environment assumption
would result in upwardly biased estimates of coheritability
(72), though there is evidence that this bias, when present,
is modest (73,74). An additional limitation of heritability
analyses is that the statistical power required to parse the
role of overlapping genetic and shared environmental fac-
tors is substantial, and it is beyond the scope of the current
analysis. However, given that we found little evidence that
shared environment contributes to the correlation of GMV
and alcohol use, shared environment is an unlikely
confound.

While our study is limited by our sample size, particularly
of discordant siblings and longitudinal analyses, a major
strength of our results is the convergent evidence provided
by the different study designs (75). We note that our cross-
sectional analyses of alcohol consumption and longitudinal
analyses of adolescent use initiation are the largest to date
that we know of. A primary limitation of our gene-expression
analyses is that both of the gene-expression datasets
included alcohol-exposed donors. Given the wide prevalence
of alcohol use across the world (76), it will likely be impos-
sible to ever definitively confirm in human adults that alcohol
use is not confounding these results. Notably, none of the
identified genes have been found to be differentially
expressed in the frontal cortex of donors with alcoholism
(77,78). Our analyses are also limited by the omission of the
insula from the gene-expression data, precluding a compar-
ison of the gene-expression correlates between the insula
and frontal cortex.

Limitations notwithstanding, our study provides convergent
evidence that smaller GMV in the insula and DLPFC associated
with alcohol use may represent a genetically conferred liability
that promotes early alcohol use. While early alcohol use may in
turn lead to accelerated volume loss within these and other
regions, these findings challenge predominant interpretations
that smaller brain volumes tied to alcohol use emerge primarily
from the atrophy-inducing effects of alcohol. As larger pro-
spective samples are acquired (e.g., via the Adolescent Brain
Cognitive Development study) (79), it will be interesting to
examine the interplay of genetic risk and substance use on the
trajectories of brain development.
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