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There is general agreement that both motivation and cognitive

control play critical roles in shaping goal-directed behavior, but

only recently has scientific interest focused around the

question of motivation–control interactions. Here we briefly

survey this literature, organizing contemporary findings around

three issues: (1) whether motivation preferentially impacts

cognitive control processes, (2) the neural mechanisms that

underlie motivation–cognition interactions, and (3) why

motivation might be relevant for overcoming the costs of

control. Dopamine (DA) is discussed as a key neuromodulator

in these motivation–cognition interactions. We conclude by

highlighting open issues, specifically Pavlovian versus

instrumental control distinctions and effects of motivational

valence and conflict, which could benefit from future research

attention.
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Introduction
There has been a longstanding interest in investigating

motivation and cognitive control as modulators of goal-

directed behavior. However, only recently have research-

ers begun to examine these two processes in terms of their

integrated influence on behavior and the brain [1,2�].
Here we review recent studies on motivation–cognition

interactions, while highlighting key unresolved issues in

this burgeoning domain.

The challenge of operationalizing motivation

René Descartes once contended that the ‘passions’ in

human nature ‘dispose our soul to want the things that

nature decides are useful for us, and to persist in this

volition; and [to bring about] the agitation of the spirits

which customarily causes them to dispose the body to
www.sciencedirect.com 
those movements that help bring about those useful

things [3].’ Although to modern ears this quotation ini-

tially seems overly baroque, upon deeper inspection it

reveals a surprisingly apt description of what could be

considered the four central dimension of motivation:

value/utility (things of use), anticipatory affect (passion,

desire, and persistence), activation/energization (agita-

tion of the spirits), and directed action (disposing the

body to movement).

In the scientific literature, motivation has been charac-

terized as the energization and direction of behavior,

response vigor, arousal and intensity of motor output,

or as a biologically-driven impulse that compels an organ-

ism to act [4–7]. Since the concept of motivation was

created to provide a theoretical framework to describe a

diverse range of behaviors (e.g., approach, avoidance), a

precise operationalization of this multifaceted construct

has proved to be challenging. Despite valiant efforts,

researchers have yet to agree upon a unified definition

and comprehensive framework for this elusive construct

[7,8].

Nevertheless, the term ‘motivation’ is consistently used

to describe when an external or internal incentive alters

the biological system (i.e., generates a ‘motivated state’)

to stimulate an observable change in behavior. It is

generally assumed that providing incentives (e.g., offer-

ing rewards or threats/penalties) can induce such motiva-

tional states, which then lead to dynamic adjustments

in cognitive processing, and consequently, influence

behavior. However, open questions remain regarding

the mechanisms that underlie such motivation–cognition

interactions.

A further point to acknowledge is that motivation has

been found to influence a broad range of cognitive pro-

cesses, that is, attention [9,10], learning [11,12], memory

[13,14], and perception [15,16]. Here, we emphasize

studies that have examined motivation as it relates to

cognitive control, a key interaction underlying goal-

directed behavior.

The interactions of motivation and cognitive
control
The recent literature in this domain can be organized

around three central questions. First, is there evidence

that motivation selectively enhances cognitive control?

Second, what are the neural mechanisms that give rise to

these interactions? Third, why is motivation relevant for

overcoming costs of cognitive control?
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Selective motivation–cognitive control enhancements?

The claim that motivation preferentially impacts tasks

with higher cognitive control demands is compelling and

provocative [2�]. Demonstrating it would require two

steps: (1) isolation of a selective measure of cognitive

control and (2) showing that this measure is significantly

enhanced under high motivational value conditions (e.g.,

when incentives are offered). Some tasks include selec-

tive behavioral measures that isolate control processing,

such as task switching, conflict paradigms (e.g., Stroop,

flanker), response inhibition tasks (e.g., go/no-go, stop

signal) and context processing paradigms (e.g., AX-CPT).

In task-switching paradigms the control measure is the

mixing or switching cost (i.e., switch–no switch), while in

the Stroop and flanker tasks it is the interference effect

(i.e., incongruent–congruent), and in the stop-signal task

it is the stop-signal reaction time (i.e., time required to

inhibit an initiated response). Finally, in AX-CPT tasks,

cognitive control is indexed by performance on AY and

BX lure trials (Figure 1).

Monetary incentives appear to enhance cognitive

control performance via increased proactive control —

the utilization of preparatory tasks and/or contextual

cues to increase accuracy and reduce response times
Figure 1
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Schematic of classic version of AX-CPT paradigm. Single letters are

visually displayed as a series of cue-probe pairs. Here, the target pair

is the occurrence of an X probe followed immediately an A cue. Of the

three nontarget trial types, BY trials (where B refers to any non-A cue

and Y refers to any non-X probe) provide a low-demand baseline

general performance index, while BX and AY serve as low-frequency

lures that selectively index cognitive control (each lure type typically

occurs with 10% frequency). A range of studies with this paradigm

have found that optimal utilization of contextual cues can eliminate

typical interference effects observed in BX trials, because in these

trials the contextual cue allows for fully accurate preparation of a non-

target response [74–76]. By contrast, enhanced proactive control

increases interference on AY trials, since contextually based

preparation of a target response is invalid in these trials.
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[17��,18,19]. Recent studies have observed that anticipa-

tion of reward incentives selectively reduces switch costs

in task-switching paradigms [20,21]. Likewise, Chiew and

Braver (2016) found that task-informative cues in the

flanker task (indicating whether an upcoming trial was

incongruent) could reduce interference effects, but only

when cues were combined with rewards and sufficient

preparation time [17��]. Thus, reward incentives seem

most effective in modulating cognitive control in a pro-

active and preparatory manner [22�].

However, motivational enhancements of proactive control

can both benefit and impair task performance. This phe-

nomenon has been most directly examined within the

AX-CPT paradigm [23–25,26��]. Hefer and Dreisbach

(2017) observed that reward motivation manipulations

led to persistent increased use of contextual cue informa-

tion, even under conditions which result in sub-optimally

high AY errors (i.e., reduced BX interference but increased

AY interference) [26��], providing evidence for both costs

and benefits of reward motivation on proactive control.

Others have found that motivational incentives enhance

reactive control (i.e., rapid adjustment of control in

response to performance monitoring). Boehler et al.
(2014) observed that rewards speeded up response inhi-

bition in a stop-signal task without preparatory cues,

revealing that rewards also facilitate inhibitory respond-

ing, even when proactive mechanisms are likely not

engaged [27��]. More research is needed to determine

the relevant boundary conditions for when motivational

manipulations will result in proactive versus reactive

control enhancements.

What are the neural mechanisms by which motivation

impacts cognitive control?

Dopamine (DA) is hypothesized to play a key role in

motivation–cognition interface [28], with tonic DA activity

postulated to mediate the relationship between average

reward and movement vigor [29,30]. Movement vigor

appears to reflect a general arousal process, which leads

to quicker responding in a high reward context, and has

been considered a characteristic behavioral measure of

motivation [31,32]. Rigoli and colleagues (2016) examined

this hypothesis in a visual search task in which participants

received monetary rewards which varied block-wise

($1, $6, $11), independent of a $3 reward earned for

accurate performance within each trial [33��]. Higher

average reward (manipulated across blocks) was associated

with increased motor vigor (measured by button pressing

force). These effects were mediated by activation in

subcortical brain regions with high DA neuronal concen-

tration, bolstering the role of DA as critical in regulating

movement vigor. However, increased vigor in higher

reward contexts may not directly entail selective enhance-

ment of cognitive control mechanisms (e.g., vigor may

alternatively reflect priming of the motor systems).
www.sciencedirect.com
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Another hypothesis is that motivated cognitive control

arises from DA modulation of both striatum and PFC via

parallel neural pathways (Figure 2). Cools (2016) hypoth-

esized that PFC DA facilitates stabilization of current

goal representations (via tonic DA release), whereas

striatal DA disrupts these representations via attention

shifting and/or task-set updating in response to unex-

pected relevant stimuli (via phasic DA release) [34�]. This

dynamic tradeoff between cognitive stability and flexi-

bility [22�] may explain the sometimes paradoxical detri-

mental effects of monetary rewards on cognitive control,

as both excessive and insufficient PFC DA may impair

the ability to maintain task representations in working

memory over time (i.e., U-shaped DA effects) [35–37].

Interactions between motivational signals from dopami-

nergic midbrain and PFC consistently enhance cognitive

control [38,39], and may even selectively target specific

levels of cognitive control hierarchy in lateral PFC (e.g.,

posterior-to-anterior gradient corresponding to task rule

abstraction). Bahlmann and colleagues (2015) found

evidence consistent with this idea, and observed that

the strongest motivational effects in lateral PFC corre-

sponded to mid-level task representations, which were
Figure 2
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Dopamine (DA) may have differential effects on motivated behavior. It

has been hypothesized that tonic release of DA in the prefrontal cortex

(PFC) may facilitate the precision and persistence of current task goal

representations (i.e., cognitive stability). By contrast, phasic release of

DA in the striatum may facilitate attention shifting and updating of task

goal representations based upon unexpected, behaviorally important

stimuli (i.e., cognitive flexibility). Tonic DA is also hypothesized to

mediate the relationship between reward rate and response vigor in

tasks, although the neural pathway of such effects has not been well

investigated (not shown in figure).
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accompanied by increased functional coupling between

the DA midbrain and lateral PFC [40��].

However, the exact mechanism by which motivation

enhances control remains unknown. One hypothesis is

that motivation improves the signal-to-noise ratio in the

neural coding of task rules within PFC, thus increasing

the efficacy and precision of cognitive control perfor-

mance. Such an account would be consistent with classi-

cal experimental and computational studies of DA effects

on PFC activation [41–45]. Etzel et al. (2015) reported

data consistent with this account, as they used multivari-

ate pattern analyses to decode task representations on a

trial-by-trial basis under reward motivation manipula-

tions. There, incentives not only sharpened task repre-

sentations in frontoparietal cortex (i.e., more discrimina-

ble voxel patterns in each task), but also increased task

decoding accuracy, with the latter statistically mediating

improvements in task performance [46]. Together, these

studies suggest that motivational incentives impact cog-

nitive control via dopaminergic signaling to frontoparietal

control network, thus facilitating more effective, stable,

and precise task representations.

Why is motivation relevant for overcoming the costs of

cognitive control?

Cognitive control, specifically utilizing cognitive

resources in the service of decision-making, is intrinsi-

cally costly [47,48]. The term ‘cognitive effort’ typically

refers to the subjective experience of up-regulating the

cognitive control system during goal-pursuit, and is often

considered to be a canonical metric for the cost of cogni-

tive control engagement [47]. Individuals are less willing

to engage in cognitively demanding tasks if the allocated

effort costs outweigh the expected benefit [49–51].

Motivation may act as a modulatory factor that offsets

these effort costs. Manohar and colleagues (2015) pro-

posed a computational framework which argued that moti-

vation improves task performance beyond normal bounds

(e.g., faster and more accurate/precise choices in motor and

decision tasks) [52��]. Thus, task performance can be

improved without contravening the speed-accuracy trade-

off. However, missing from this framework is an explana-

tion of why cognitive control is costly to begin with. One

speculation is that recruiting cognitive control detracts

from available cognitive resources in a limited capacity

system, thus representing an opportunity cost [53�].
Importantly, what makes such costs ‘expensive’ or ‘cheap’

depends on whether using that resource involves forgoing

another beneficial use or not, respectively.

These ideas are consistent with the Value-Based Cognitive
Control (VBCC) framework, which posits that engaging

cognitive control can be construed as an economic deci-

sion between the estimated subjective/computational

costs of control weighed against the expected benefits
Current Opinion in Behavioral Sciences 2018, 19:83–90
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of enhanced control [54]. Broadly, VBCC opens up a

novel domain of quantifying effort, and argues that moti-

vation and cognitive effort are juxtaposed: higher moti-

vational value can offset higher effort costs in shaping

control policy selection and behavior. In other words,

appetitive motivation should increase the subjective

value of the current option, thus decreasing the opportu-

nity cost of exerting cognitive control to obtain it. Con-

versely, aversive motivation should offset potential ben-

efits of reward, such that a negative option should

decrease cognitive control engagement.

In this framework, DA is theorized to modulate the

efficacy of control through titration of the precision and

persistence of task representations [55]. Precision refers

to the clarity of the task goal representation in the brain

(i.e., sharpness, signal-to-noise ratio), whereas persistence

refers to the duration over which these task goal repre-

sentations are actively maintained (i.e., sustained eleva-

tions in neuronal activity). Because of the well-estab-

lished limited capacity of active goal maintenance, the

degree to which an individual commits to representing a

task goal clearly and persistently incurs an opportunity

cost, that is, they forgo the chance to use those cognitive

resources for alternative tasks. Thus, motivationally trig-

gered DA release in the PFC should facilitate goal-

directed task performance and reduce control costs.

Although these ideas regarding the role of DA in moti-

vating cognitive control have been laid out conceptually

[56�], there is still a lack of convincing experimental

support. The most direct evidence would be to demon-

strate a multi-way link between increased motivational

value, increased DA release and neural changes within

PFC, which together mediate improvements in behav-

ioral cognitive control measures. Such evidence may be

hard to obtain with current neuroscience methods, but a

potentially promising route is to utilize simultaneous

PET-fMRI to co-localize changes in DA release (via

radioligand binding) with changes in PFC BOLD

activity.

Open issues
In our opinion, two important factors require further

investigation to make progress in this domain: (1) Pav-

lovian versus instrumental influences of motivational

incentives; and (2) effects of motivational valence and

conflict.

Pavlovian versus instrumental effects of motivational

incentives

The dichotomy between Pavlovian versus instrumental

control of behavior has long played an influential role in

the study of motivation [57], but researchers have only

recently started to examine this distinction in terms of

effects on human decision-making [58,59�]. Pavlovian

control refers to a behavioral reflex elicited by predictive
Current Opinion in Behavioral Sciences 2018, 19:83–90 
stimuli associated with appetitive or aversive outcome

(e.g., approach, withdrawal), while instrumental control

refers to learning of the stimulus-dependent contingency

between responses and outcomes (e.g., a rat must press a

lever to earn a food pellet reward). Thus, in instrumental

paradigms, motivational incentives are typically used to

reinforce or punish behavioral responding (e.g., present-

ing food pellets will increase lever pressing, whereas

presenting shocks will decrease lever pressing).

Researchers have attempted to disentangle these disso-

ciable influences in simple decision tasks (e.g., stimulus–

response associations, go–no-go tasks) [60]. Some have

proposed that instrumental responses are unsigned and

therefore not sensitive to the valence of the motivational

incentive driving the behavior, whereas Pavlovian condi-

tioned responses are evolutionarily hard wired and thus

explicitly linked to incentive valence [61]. These distinct

mechanisms appear to have orthogonal effects in modu-

lating simple decisions, with instrumental influences

giving rise to more specific enhancement of behavioral

responding, whereas Pavlovian influences may lead to a

general excitatory or inhibitory bias on instrumental

responding (Figure 3a).

However, it remains ambiguous whether motivational

enhancements of cognitively controlled behavior might

reflect Pavlovian as well as instrumental mechanisms.

One approach for investigating this question would be

to use well-established Pavlovian Instrumental Transfer

(PIT) paradigms [62], although to date these have not

been examined within the context of motivation–cogni-

tion interactions.

Valence and motivational conflict

Although motivational incentives are inherently valenced

(e.g., appetitive, aversive), surprisingly few studies have

examined this dimension in motivation–cognition inter-

action studies. Moreover, a broader unanswered question

is how control processes are modulated by motivational

conflict (i.e., integration of both appetitive and aversive

incentives) [63,64].

A recent novel design developed by Yee et al. (2016)

highlights these issues within the context of a cued task-

switching paradigm [65], in which individuals must exert

cognitive control to earn money, but are provided with

liquid incentives of differing valences (e.g., appetitive,

neutral, aversive) as task performance feedback [66��].
Motivational conflict occurs in the aversive liquid block,

as subjects must integrate the prospect of saltwater

delivery (as performance feedback) with potential mon-

etary earnings in deciding whether to enhance cognitive

control and maximize reward rate. The parametric effect

of these bundled incentives suggests that humans

indeed integrate different incentives into a net motiva-

tional value that modulates cognitively controlled
www.sciencedirect.com
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(a) Reward incentives may have parallel effects on motivation and behavioral responding via both Pavlovian and instrumental control influences.

The Pavlovian effect may reflect a general motivation mechanism, such that the valence of an incentive biases responding in an overall excitatory

(e.g., arousal, vigor) or inhibitory manner (e.g., behavioral suppression). Instrumental influences may implement a more directed motivation

mechanism (e.g., specific enhancement of task performance). These two effects may occur simultaneously and alter behavioral responding via

parallel mechanisms, but this distinction has not yet been fully explored within the context of cognitive control. (b) The engagement of cognitive

control might be construed as an economic decision. In the case of motivational conflict — consideration of an option that has both associated

costs and benefits (e.g., money and saltwater) — appetitive motivation can be used to increase the subjective value of an option, thus offsetting

the cost of engaging cognitive control (which would otherwise have negative subjective value; top panel). By contrast, aversive motivation has the

opposite influence, decreasing the value of an otherwise attractive option (i.e., with positive appetitive value), and reducing cognitive control

engagement via motivational conflict (bottom panel).
behavior (i.e., better performance on juice + money

trials, poorer performance on saltwater + money trials

compared with tasteless liquid + money; Figure 3b). As

the foregoing suggests,  motivational valence is an impor-

tant dimension that should be more systematically

explored in future investigations of motivation–cogni-

tion interactions, as it may lead to deeper insights

regarding more complex issues, such as incentive inte-

gration (i.e., bundling) and motivational conflict [67–69].

Conclusions
Recent studies of motivation–cognitions have primarily

focused on understanding whether, how, and why moti-

vation interacts with cognitive control. The recent VBCC

framework conceptualizes the motivation–cognition

interaction as a decision-making process that juxtaposes

motivation and cognitive effort costs. We suggest prom-

ising future directions regarding how to incorporate Pav-

lovian versus instrumental influences and motivational

valence/conflict into this research domain. It is our hope

that this review spurs future innovative investigations,

which could also extend into broader relevant issues such

as aging and developmental trajectories [70–72], and the

neural mechanisms of psychopathology [73].
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