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Cerebellar volume and cerebellocerebral structural covariance
in schizophrenia: a multisite mega-analysis of 983 patients and
1349 healthy controls
T Moberget1, NT Doan1, D Alnæs1, T Kaufmann1, A Córdova-Palomera1, TV Lagerberg1, J Diedrichsen2, E Schwarz3, M Zink3,4,
S Eisenacher3, P Kirsch5, EG Jönsson1,6, H Fatouros-Bergman6, L Flyckt6, KaSP11, G Pergola7, T Quarto7, A Bertolino7, D Barch8,
A Meyer-Lindenberg3, I Agartz1,6,9, OA Andreassen1 and LT Westlye1,10

Although cerebellar involvement across a wide range of cognitive and neuropsychiatric phenotypes is increasingly being
recognized, previous large-scale studies in schizophrenia (SZ) have primarily focused on supratentorial structures. Hence, the
across-sample reproducibility, regional distribution, associations with cerebrocortical morphology and effect sizes of cerebellar
relative to cerebral morphological differences in SZ are unknown. We addressed these questions in 983 patients with SZ spectrum
disorders and 1349 healthy controls (HCs) from 14 international samples, using state-of-the-art image analysis pipelines optimized
for both the cerebellum and the cerebrum. Results showed that total cerebellar grey matter volume was robustly reduced in SZ
relative to HCs (Cohens’s d=− 0.35), with the strongest effects in cerebellar regions showing functional connectivity with
frontoparietal cortices (d=− 0.40). Effect sizes for cerebellar volumes were similar to the most consistently reported cerebral
structural changes in SZ (e.g., hippocampus volume and frontotemporal cortical thickness), and were highly consistent across
samples. Within groups, we further observed positive correlations between cerebellar volume and cerebral cortical thickness in
frontotemporal regions (i.e., overlapping with areas that also showed reductions in SZ). This cerebellocerebral structural covariance
was strongest in SZ, suggesting common underlying disease processes jointly affecting the cerebellum and the cerebrum. Finally,
cerebellar volume reduction in SZ was highly consistent across the included age span (16–66 years) and present already in the
youngest patients, a finding that is more consistent with neurodevelopmental than neurodegenerative etiology. Taken together,
these novel findings establish the cerebellum as a key node in the distributed brain networks underlying SZ.

Molecular Psychiatry (2018) 23, 1512–1520; doi:10.1038/mp.2017.106; published online 16 May 2017

INTRODUCTION
In parallel with emerging evidence documenting cerebellar
involvement in complex mental operations, including
cognitive1,2 and emotional3 functions, it has been proposed that
the cerebellum also has an important part in the pathophysiology
of schizophrenia (SZ).4,5 According to this theory, and consistent
with the wide range of clinical symptoms and signs seen in this
disorder,6 cerebellar dysfunction manifest clinically as poor
coordination, or dysmetria, across both motor and cognitive
domains.5 Indeed, many of the most consistent sensorimotor
deficits (or neurological soft signs7,8) in SZ, such as increased
postural sway,9–11 are strongly suggestive of cerebellar
dysfunction.9,10 In line with such clinical observations, perfor-
mance on experimental tasks known to critically rely on cerebellar
circuitry—such as classical conditioning of the eye-blink reflex12—
has repeatedly been found to be impaired in both chronic13 and

first-episode unmedicated14,15 SZ patients, as well as in their first-
degree relatives.16 Moreover, the growing evidence for cerebellar
involvement beyond motor control1,3 is consistent with the notion
that cerebellar dysfunction may also underlie the core psychotic
symptoms and cognitive deficits seen in SZ.5

Functional imaging studies add further evidence for cerebellar
dysfunction and disrupted cerebrocerebellar connectivity in SZ (e.g.,
Whalley et al.17). Of particular note, several recent resting-state
functional magnetic resonance imaging (fMRI) studies have
independently replicated robust disruptions of cerebellothalamo-
frontal functional connectivity in psychotic disorders18–24 as well as
in youth at high risk.25,26 Indeed, one study reported that the most
informative feature for distinguishing between cases and controls
was the degree of cerebellar–prefrontal connectivity.20

In contrast, evidence from the structural imaging literature is
more mixed.27–30 While several studies have reported cerebellar
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structural differences in SZ,31–39 including the largest multicenter
study to date,40 other studies report negative results.41–45 More-
over, neither the specific cerebellar regions showing significant
group differences nor the direction of the effects (decreases or
increases) are consistent across studies (e.g., Levitt et al.46). These
inconsistencies are likely partly due to methodological limitations,
as most advanced analysis methods for structural brain imaging
data are optimized for the cerebrum, not the cerebellum. One
consequence is that while large collaborative studies have tested
the robustness of other structural imaging phenotypes in severe
mental disorders,47,48 no similar studies exist for the cerebellum.
Hence, the across-sample reproducibility, the regional specificity
within the cerebellum, the relative effect sizes compared with
other brain structures, associations between cerebellar and
cerebral morphological features, and the clinical correlates of
cerebellar structural differences in SZ remain largely unknown.
We addressed these questions using state-of-the-art analysis

pipelines optimized for both the cerebellum and the cerebrum in
a large multisite sample of 983 patients with SZ spectrum
disorders and 1349 healthy controls (HCs). In contrast to previous
reviews27,29 and meta-analyses,28,30 all included samples were
processed in-house using identical analysis pipelines and quality
control procedures, thus minimizing methodology-related hetero-
geneity. Our approach also allowed for comparison and ranking of
effect sizes across cerebellar and cerebral features, as well as
mapping of structural covariance49 between the cerebellum and
the cerebrum. We finally explored associations with available
demographic and clinical data, and tested for possible confound-
ing variables, such as MR image quality and harmful alcohol
consumption.35

Based on findings from the largest meta-analysis of brain
volumes in SZ to date,28 we hypothesized that total cerebellar
volume would be reduced in patients relative to controls, but
remained agnostic regarding both the regional distribution and
the relative effect size of cerebellar versus cerebral differences in
SZ. Further, based on recent evidence for disorder-specific
increases in cerebellocerebral structural covariance in neurode-
generative disorders,50 we hypothesized a stronger association
between cerebellar and cerebral anatomical features in SZ
compared with HCs, reflecting the underlying disease processes
jointly affecting closely integrated brain regions. Finally, as
cerebellar functional deficits have been reported in first-episode
SZ15 and high-risk25 samples, we expected to find cerebellar
volume reductions already in the youngest patients, consistent
with a neurodevelopmental etiology.

MATERIALS AND METHODS
Participants
Supplementary Note 1 describes participant inclusion and MR image
quality control procedures, whereas demographic information for all
included participants is given in Supplementary Table S1. Briefly, we
combined T1-weighted MRIs from 14 different cohorts, including seven
samples in the IMAGEMEND consortium (http://www.imagemend.eu/) and
seven freely available data sets from OpenfMRI51 (http: //openfmri.org) and
SchizConnect52 (http: //chizconnect.org), yielding a final data set of 983
patients and 1349 controls after quality control. Mean age (HCs = 33.6
years, s.d. = 10.0, range: 16–66; SZ: 33.3 years, s.d.: 10.4, range: 16–65) did
not differ significantly between groups (t=0.715, P=0.48). Control and
patient samples comprised on average 59% and 67% males, respectively,
with a larger proportion of males in the SZ than in the HC group (χ2 = 13.88,
P= 1.95e− 4). Information on handedness was available from 12 samples,
and did not indicate any significant group differences (percent right-
handed: HCs = 91.3, SZ = 89.7, χ2 = 1.56e− 4, P=0.99). As expected, mean IQ
estimates (available from seven samples) were significantly lower in SZ
(96.8) than in HCs (111.3; t=15.181, P= 1.2e− 44). Data on harmful alcohol
consumption, a potential confound in studies of cerebellar volume,35 was
available from five samples and revealed a higher incidence in SZ (36.3%)
than in HCs (19.8%, χ2 = 43.875, P= 3.5e− 11).

Clinical information for all included patients is summarized in
Supplementary Table S2. Positive and Negative Syndrome Scale scores
for positive and negative symptoms were available for eight samples, and
in five samples we estimated these scores from Scale for the Assessment of
Negative Symptoms and Scale for the Assessment of Positive Symptom
scores using a validated conversion equation.53 Mean Positive and
Negative Syndrome Scale positive score was 15.3 (s.d.: 5.0), whereas the
mean Positive and Negative Syndrome Scale negative score was 15.9 (s.d.:
6.0). Nine samples had information on age at illness-onset (mean: 23.2
years) and duration of illness (mean: 12.4 years). Each study sample was
collected with participants’ written informed consent approved by local
Institutional Review Boards.

MRI acquisition and preprocessing
Please see Supplementary Table S3 for specific technical details concerning
scanners and acquisition parameters. T1-weighted MRI volumes were
analyzed using a dual processing steam, respectively, optimized for the
cerebrum and the cerebellum. FreeSurfer v.5.3 (http://surfer.nmr.mgh.
harvard.edu) was used to derive anatomical segmentations of cortical54

and subcortical structures55 of the cerebrum, estimates of total intracranial
volume (eTIV56), an index of white matter signal-to-noise ratio and surface
maps of vertex-wise cortical thickness.57 We chose cortical thickness as the
cerebrocortical structural index based on recommendations in the imaging
literature.58 However, as volumetric indices could in theory be more
sensitive to group differences (being products of both cortical thickness
and surface area), we compared effect sizes based on thickness and
volume indices in post hoc control analyses (see Supplementary Note 2). To
limit the number of tested variables, we computed the mean across left
and right hemisphere cerebral regions of interest (ROIs), resulting in 34
bilateral cerebral measures of regional cortical thickness (based on the
Desikan-Killiany Atlas54) and eight bilateral subcortical volumes (thalamus,
hippocampus, amygdala, pallidum, putamen, nucleus caudatus, nucleus
accumbens, lateral ventricles). Post hoc control analyses evaluated the
validity of this approach by comparing effect sizes between left and right
ROIs. Cortical thickness maps were smoothed with a two-dimensional
Gaussian kernel of 15 mm full-width at half-maximum before being
subjected to analyses.
The cerebellum-optimized analysis pipeline was performed with the

SUIT toolbox59 (see Supplementary Note 3). In brief, SUIT isolates the
cerebellum and brainstem, segments images into grey matter maps and
normalizes these maps to a cerebellar template, ensuring superior
cerebellar alignment across subjects compared with whole-brain
procedures.59 Normalized cerebellar grey matter maps were modulated
by the Jacobian of the transformation matrix to preserve absolute grey
matter volume. We extracted the summed modulated grey matter value
(i.e., a measure of regional volume) for 28 cerebellar lobules defined in the
probabilistic SUIT Atlas,59 and computed total cerebellar grey matter
volume by summing these indices. Further, as the functional anatomy of
the cerebellum does not strictly correspond to this gross anatomical
parcellation,60 we also extracted grey matter volume from seven
functionally defined ROIs from a large-scale fMRI study of cerebrocerebellar
functional connectivity.60 Finally, the modulated gray matter (GM)
maps were smoothed with a three-dimensional 4 mm full-width at half-
maximum Gaussian kernel before being subjected to voxel-wise analyses.

Meta-analysis of ROI measures
See Supplementary Figure S1 for histograms depicting the distributions of
all analyzed cerebellar and cerebral ROI measures across the 14 samples
and 2332 included subjects. Group differences for all ROI measures were
examined using univariate linear regression analysis (R’s linear model
function lm) within each sample. The main analyses included group (HCs,
SZ) and sex (male, female) as fixed factors and age as a covariate, with eTIV
added as an additional covariate in the analyses of volumetric measures.
For each sample, Cohen’s d effect sizes for each ROI were computed based
on the group contrast t-statistics.61 Pooled effect size estimates, as well as
indices of sample heterogeneity (the I2 statistic62), were computed across
samples using the r-package metafor.63 See Supplementary Note 4 for
details on the meta-analytical framework and computed statistics, and
Supplementary Note 5 for descriptions of control analyses testing for
possible confounding effects of MRI data quality and harmful alcohol
consumption. Alpha-levels (Po0.05, two-tailed) were adjusted for the total
number (78) of tested ROIs using Bonferroni correction, yielding a
corrected critical P-value o0.00064.
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Voxel-wise mega-analysis of group differences in cerebellar grey
matter volume
Voxel-wise analyses were performed on the full set (983 SZ, 1349 HCs) of
QC’ed SUIT-normalized, modulated and smoothed grey matter maps using
nonparametric permutation testing as implemented in FSL randomize.64

Voxels were included if they overlapped both (1) the probabilistic
cerebellar grey matter ROIs in SUIT and (2) a mask created by thresholding
the mean of the normalized (unmodulated and unsmoothed) grey matter
maps at 0.1. We tested for main effects of group while including sex,
estimated total intracranial volume, age and sample as covariates in a
general linear model (see Supplementary Note 6 for model specification).
Five thousand permutations were performed for each contrast and voxels
surviving a conservative voxel-wise family-wise error-corrected statistical
threshold of Po0.05 (two-tailed, permutation-based) were considered
significant.

Vertex-wise mega-analysis of cerebellocerebral structural
covariance
To assess group differences in cortical thickness and to identify patterns of
covarying cerebellar and cerebral morphological changes in SZ, we first
tested for group differences in cortical thickness (see Supplementary Note
6 for model specification). Next, we tested for associations between
cerebellar volume and cortical thickness within each group. For these
analyses, we selected the cerebellar functional ROI showing the strongest
effect of group (HCs vs SZ) and residualized this measure with respect
to age, sex, sample and eTIV. Residualized cerebellar ROI volumes
were then entered together with age, sex and sample in a general
linear model predicting vertex-wise cortical thickness within each group

(see Supplementary Note 6 for model specification). For group com-
parisons and cerebrocerebellar association analyses, we used non-
parametric statistical testing using PALM,65 with 5000 permutations for
each contrast. Vertices surviving a conservative vertex-wise family-wise
error-corrected statistical threshold of Po0.05 (two-tailed, permutation-
based) were considered significant. We finally quantified the similarity
between (uncorrected) t-maps representing (1) case–control differences in
cortical thickness and (2) associations between cerebellar volume and
cortical thickness within each group, by computing their spatial (i.e., across
all vertices) Pearson's correlation coefficients.

Associations with demographic and clinical variables
For total cerebellar GM and functionally defined ROI60 volumes, we used
general linear models to test for associations with age and estimated IQ
within HCs and SZ. Within SZ we also tested for associations with positive
and negative symptom scores and medication status (unmedicated,
typical, atypical or both typical and atypical antipsychotic medication). In
addition to the demographic/clinical variable of interest, these analyses
included sample and sex (male, female) as fixed factors and eTIV and age
(except for in the analyses targeting this feature) as covariates. The α-level
(Po0.05, two-tailed) was adjusted for the 40 conducted tests (eight
cerebellar features × five demographic/clinical indices) using Bonferroni
correction (corrected critical P-value= 1.25e− 3), but we also report
uncorrected values. We finally explored the age dependence of any group
effects (HCs vs SZ) by computing t-tests on total and regional cerebellar
volumes (after regressing out effects of sex, sample and eTIV) in sliding
windows (each including 500 participants) covering the age range
between 16 and 66 in steps of 100 participants.

Figure 1. Total cerebellar gray matter volume is robustly reduced in schizophrenia (SZ). (a) Cartoon depicting the SUIT pipeline:59 (1) cerebellar
isolation, (2) normalization to a detailed cerebellar template, (3) assigment of lobular labels and (4) projection of cerebellar grey matter onto a
flat-map of the cerebellar surface.77 Total cerbellar volume was computed by summing all lobular grey matter volumes. (b) Forest plot
showing effect sizes (Cohen's d) of the group effect (healthy controls (HCs) vs SZ) on total cerebellar volume across the 14 included samples.
(c) Density plots showing the distribution of residualized total cerebellar volumes in SZ and HCs (after regressing out effect of sample, age and
sex). Dotted lines represent the means of each group. Figure a is adapted with permission from Diedrichsen 200659 and Diedrichsen and
Sotov 2015.77
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RESULTS
Total and lobule-wise cerebellar grey matter volume
Results from the meta-analysis of total cerebellar grey matter
volume are given in Figure 1. We observed a highly significant
(P= 2.7e− 15) pooled effect size (Cohen's d) of − 0.35, indicating
reduced total cerebellar grey matter volume in SZ relative to HCs.
Notably, the heterogeneity across the 14 samples was low
(I2 statistic = 0%).
Relative to HCs, patients showed significantly reduced grey

matter volume in 17 out of 28 lobules (see Supplementary
Figure 2).
As expected, our index of MR image quality (white matter

signal-to-noise ratio, white matter signal-to-noise ratio) was lower
in SZ relative to HCs (pooled Cohen's d=− 0.14, Po0.005).
Further, in the five samples with this information, we observed a
higher incidence of harmful alcohol consumption in SZ than in
HCs (36.3% versus 19.8%, Pearson's χ2 = 43.9, P= 3.5e− 11). Crucially,
however, including white matter signal-to-noise ratio as an
additional covariate in the models or restricting the analyses to
participants without evidence of harmful alcohol consumption
only increased the group effects (see Supplementary Note 7 for
further details).

Volumes of functionally defined cerebellar ROIs
Ranked effect sizes across the seven functionally defined
cerebellar ROIs60 are displayed in Figure 2.
Patients showed significantly reduced grey matter volume in

five ROIs, with the largest effect sizes for the cerebellar nodes of
the frontoparietal (Cohen's d=− 0.40) and default mode (Cohen's
d=− 0.33) networks. Heterogeneity across samples was low, with
the I2 statistic ranging from 0 to 4.85%. Including SNR as a
covariate, or restricting analyses to participants without alcohol
abuse, did not reduce the group effects (see Supplementary Note
7 and Supplementary Figure 4).

Ranked effect sizes across cerebellar and cerebral ROIs
Figure 3 displays ranked effect sizes and heterogeneity indices
across cerebellar, subcortical and cortical ROIs.

Compared with HCs, patients with SZ showed significant
volume or cortical thickness reductions in 30 ROIs (Cohen's d
ranging from − 0.15 to − 0.41; mean: − 0.31), and significant
volume increases for the basal ganglia and lateral ventricles
(Cohen's d ranging from 0.23 to 0.47; mean: 0.31). Across all 50
included brain morphology indices, total cerebellar GM volume
ranked as the ninth strongest, whereas the regional volume of
cerebellar functional ROI6 (frontoparietal network) ranked as the
second strongest negative effect size (after mean hippocampus
volume). Post hoc control analyses of cerebrocortical ROI volumes
overall yielded somewhat weaker group effects than ROI mean
cortical thickness (see Supplementary Note 8 and Supplementary
Figure 5), and we observed no consistent differences in the
magnitude of effect sizes between left and right hemisphere ROIs
(see Supplementary Figure 6), justifying our a priori choice of
cortical thickness averaged over left and right ROIs as sensitive
indices of cerebral changes in SZ.

Voxel-based mega-analysis of cerebellar grey matter volume
Results from the voxel-based analyses are given in Figure 4a,
Supplementary Figure 7 and Supplementary Table 4. Confirming
the ROI-based analyses, group effects (HC4SZ) were most
pronounced in posterior cerebellar regions. The opposite contrast
(SZ4HC) yielded one small cluster (27 voxels) located in right
lobule VIIIb, and four smaller clusters (5 voxels or less) bilaterally in
the superior cerebellar peduncles and in right Crus II.

Cerebrocortical group differences and cerebellocerebral structural
covariance
Confirming previous reports,66 permutation testing revealed
widespread significant group differences in cerebral cortical
thickness, with the strongest reductions in SZ in frontotemporal
regions (Figure 4b). Figures 4c and d show the associations
between regional cerebellar volume (ROI6) and cortical thickness,
revealing significant positive cerebellocerebral structural covaria-
tion in frontotemporal areas, in particular in patients (Figure 4c).
The spatial Pearson's correlations between uncorrected t-maps
(see Supplementary Figure 8) for the (1) case–control comparison

Figure 2. Cerebellar grey matter reductions in schizophrenia (SZ) are most prominent in regions that show functional connectivity with
associative regions of the cerebral cortex. (a) Seven color-coded cerebrocortical functional connectivity networks based on resting-state
functional magnetic resonance imaging (fMRI) data from 1000 subjects.78 (b) Cerebellar regions showing functional connectivity with the
seven cerebrocortical networks in the same 1000 subjects60 displayed on a flat-map representation of the cerebellar cortex.77 (c) Forest plot
displaying ranked effect sizes, I2 indices and confidence intervals (c.i.) for the difference between healthy controls and SZ across the seven
cerebellar networks shown in (b). Asterisks mark significant effects at a Bonferroni-corrected threshold of Po0.00064 (0.05/78). ROI, regions of
interest. Figure a is adapted with permission from Buckner 2013.1 Figure b is adapted with permission from Diedrichsen and Sotov 2015.77

Cerebellar structure in schizophrenia
T Moberget et al

1515

© 2018 Macmillan Publishers Limited, part of Springer Nature. Molecular Psychiatry (2018), 1512 – 1520



and (2) the within-group cerebellar volume associations was 0.57
in SZ and 0.38 in HCs (Figures 4e–f), indicating considerable
overlap between the effects of group (HC4SZ) and cerebellar
volume on cortical thickness.

Associations with demographic and clinical variables
See Supplementary Note 9 for more detailed description of these
results. In brief, total and regional cerebellar volumes showed
robust negative associations with age in both groups. In SZ, we
also observed nominally significant (Po0.05, uncorrected)

positive associations between estimated IQ and total cerebellar
volume, ROI2, ROI6 and ROI7, whereas ROI3 showed a nominally
significant positive association with estimated IQ in HCs. No
associations were observed with the severity of positive or
negative symptoms or medication status in SZ (all uncorrected
P-values 40.134).
Notably, for the ROI showing the strongest effect of group

(ROI6), estimated age curves for patients and controls were highly
parallel (Figure 5a), with sliding-window t-tests revealing consis-
tent effects of diagnosis across the age range (Figure 5b and see
Supplementary Figure 9 for the remaining tested ROIs).

Figure 3. Cerebellar effect sizes are comparable in magnitude to the most consistently reported cerebrocortical and subcortical brain
alterations in schizophrenia (SZ). The forest plot displays ranked pooled effect sizes (healthy control (HC)4SZ) and heterogeneity indices (I2)
for 34 (bilateral) cerebrocortical regions of interest (ROI) measures of cortical thickness, 8 subcortical volumes, total cerebellar volume and the
volume of 7 cerebellar ROIs. ci, Confidence intervals. Asterisks mark significant effects at a Bonferroni-corrected threshold of P o0.00064
(0.05/78).
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Figure 4. Voxel- and vertex-wise mega-analyses reveal regional patterns of (a) cerebellar and (b) cerebral structural changes, as well as (c–f)
cerebellocerebral structural covariation in schizophrenia (SZ). (a) Cerebellar grey matter reductions in SZ; (b) cortical thickness reductions in
SZ; (c and d) regions of cortical thickness associated with regional cerebellar volume (regions of interest (ROI) 6) in SZ and healthy controls
(HCs). Top rows display t-maps ranging from 2 to 5, whereas the bottom row displays regions surviving vertex-wise family-wise error (FWE)
correction (Po0.05, two-tailed). (e and f) Color-coded scatter plots showing the spatial correlations (across all 299 881 cortical vertices)
between the group difference map (a) and the cerebellocerebral associations in SZ (c and e) and HCs (d and f).

Figure 5. Cerebellar volume reductions in schizophrenia (SZ) are consistent across the age range. (a) Mean residualized volumes of cerebellar
regions of interest (ROI) 6 (after correcting for effects of estimates of total intracranial volume (eTIV), sex and sample) plotted against age for
healthy controls (HCs) and SZ. (b) Results from a sliding windows t-test (each including 500 participants) covering the age range between 16
and 66 in steps of 100 participants. The position of each dot on the x axis denotes the mean age of the respective sliding-window subsample
and t-values are plotted on the y axis. The red horizontal lines denote critical t-values for Po0.05 (two-tailed).
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DISCUSSION
The current large-scale international multisite effort analyzing data
from over 2300 participants yielded three main findings. First,
compared with HCs, cerebellar grey matter volume was robustly
reduced in patients with SZ, with the strongest effects seen in
cerebellar regions associated with higher-level cognitive functions.
Effect sizes were comparable in magnitude to the most
consistently reported cerebral alterations in SZ and showed low
heterogeneity across the 14 samples. Second, we document
robust positive correlations between regional cerebellar grey
matter volume and cerebral cortical thickness. This association
was more pronounced in patients than in controls, and primarily
involved frontotemporal regions, that is, highly overlapping with
the case–control difference maps. Third, we found that the
cerebellar volume reduction in SZ was highly consistent across
age, and present already in the youngest patients. In combination,
these results provide robust empirical support for the classical
hypothesis of cerebellar involvement in SZ pathophysiology,4,5

and further provide novel evidence suggesting coordinated
cerebellar and cerebral changes and a neurodevelopmental
etiology for the cerebellar structural alterations seen in SZ.
Combining data from 983 SZ patients and 1349 HCs across 14

sites allowed us to both calculate robust pooled estimates of
effect size and assess the variability across sites. For total
cerebellar GM volume, the pooled effect size across all samples
(Cohen's d=− 0.35) was highly significant (P= 2.7e− 15) and the
I2-statistic (0%) indicated low heterogeneity across samples. In line
with previously reported supratentorial effects (e.g., Rimol et al.66

and Shah et al.67), our ROI and voxel-wise analyses further
revealed that cerebellar grey matter reductions in SZ show a
regional pattern of preferential affectedness. Notably, the largest
group effects were seen in posterior cerebellar regions, which are
associated with high-level cognitive function68 and show func-
tional connectivity with associative regions of the cerebral cortex
(e.g., frontoparietal and default mode networks60). Conversely,
markedly smaller—but still significant—differences between SZ
and HCs were observed in anterior cerebellar regions more
strongly linked to motor function.60,68

Importantly, the magnitude of cerebellar effect sizes were
comparable to or larger than several previous findings in large-
scale studies of SZ brain morphometry,47 such as decreased
hippocampal volumes and enlarged basal ganglia and ventricle
volumes.47 Note also that analyses of these cerebral anatomical
features in the current sample yielded considerably larger I2

indices (mean: 42.4%) than analyses of cerebellar features (mean:
0.27%), indicating more pronounced heterogeneity across sam-
ples. While it must be emphasized that the magnitude of all
consistently reported MRI-based structural brain differences in SZ
are relatively modest (Cohen's do1),69 the cerebellum thus
appears to be among the brain areas showing the strongest and
most consistent differences in SZ.
Our cerebrocerebellar structural covariance analyses were partly

motivated by recent reports of network-specific cerebrocerebellar
correlations of GM atrophy in neurodegenerative disorders50 and
disrupted supratentorial development following focal cerebellar
lesions in childhood.70–72 Taken together, these findings suggest
that cerebellar and cerebral regions are linked through develop-
mental and/or pathological processes.49 The current findings of
significant associations between cerebellar volume and cerebral
cortical thickness are in line with such a coordinated network
perspective, and the stronger associations in patients suggest that
SZ jointly affects the cerebellum and the cerebrum. Indeed, such
correlated structural perturbations may reflect common causal
factors,49,73 and further research efforts targeting the genetic and
environmental impact on cerebellar structure and cerebellocer-
ebral structural covariance may thus provide new leads towards a

more comprehensive understanding of the complex SZ
pathophysiology.
The estimated group difference in cerebellar GM volume was

remarkably stationary across an age range from 16 to 66 years,
indicating that cerebellar volume reductions are present already at
disease onset, and does not show evidence of progressive
deterioration with increasing age and duration of disease. Thus,
our cerebellar findings fit better with a neurodevelopmental74

than with a neurodegenerative account75 of SZ, and highlight the
need for future studies of cerebellar development in younger
cohorts of high-risk populations. Based on the current results, we
hypothesize that cerebellar volume, especially in posterior regions,
will emerge as a predictor (rather than a consequence) of
developing SZ.
Notable strengths of the current study include the large sample

size of 983 SZ patients and 1349 HCs, identical in-house analysis
pipelines optimized for both the cerebellum and the cerebrum,
and the prospective nature of our meta-analyses of cerebellar
features that were previously unexamined in all samples (protect-
ing against effects of publication bias). Its main weaknesses are
different acquisition parameters across sites and the lack of
detailed and consistent demographic and clinical information
across all samples. Moreover, the use of different analysis methods
(cerebellar voxel-based morphometry, subcortical segmentation
and cerebral surface-based estimates of cortical thickness)
warrants some caution in the interpretation of the relative effect
sizes presented in Figure 3. We find it highly unlikely, however,
that these limitations affect our main findings, as (1) the difference
between SZ and HCs were remarkably homogenous across
samples and (2) the analyses of cerebral morphological features
closely replicate existing multisite studies (e.g., van Erp et al.47 and
Okada et al.76). More plausibly, the variability in cognitive and
clinical evaluation, resulting in few common measures across sites,
may have contributed to our failure to detect any robust
behavioral correlates of cerebellar volume, but note that such
significant structure–function associations are generally rare in
multisite studies.40,47

In summary, our results provide strong evidence for cerebellar
structural abnormalities in SZ, primarily in regions associated with
advanced cognitive functions. We also show robust correlations
between cerebellar volume and cerebral cortical thickness in
patients, suggestive of common underlying disease processes.
Finally, our results reveal that cerebellar volume reductions are
present already at disease onset, thus highlighting the need for
future studies on cerebellocerebral structural networks in
developmental and high-risk samples.
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