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ARTICLE INFO ABSTRACT

Articlg history: Cognitive deficits are a core feature of schizophrenia, but the neural mechanisms that contribute to these charac-
Received 30 August 2017 teristics are not fully understood. This study investigated whether volume of the dorsal lateral prefrontal cortex
Received in revised form 14 February 2018 (DLPFC), inferior frontal gyrus (IFG), hippocampus, and white matter were associated with impairment in spe-
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cific cognitive domains, including executive functioning, working memory, verbal memory, verbal fluency, pro-
cessing speed, versus global functioning. The multi-site data used in this study was collected from the Bipolar and
Schizophrenia Network on Intermediate Phenotypes (B-SNIP), and consisted of 206 healthy controls and 247 in-
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Brain volume dividuals with either schizophrenia or schizoaffective disorder. The neuroimaging data was segmented based on
Structural MRI the Destrieux atlas in FreeSurfer. Linear regression analyses revealed that global cognition, executive functioning,
White matter working memory, and processing speed were associated with all brain structures, except the DLPFC was only as-

Dorsolateral prefrontal cortex
Hippocampus

sociated with executive fucntion. When controlling for the global cognitive deficit, executive function was
trending significance with white matter, but continued to be associated with the DLPFC and IFG, as did the asso-

Cognitive deficits ciation between processing speed and the hippocampus. These findings suggest that volumes of the DLPFC, IFG,
hippocampus, and white matter are associated with the global cognitive impairment seen in schizophrenia, but
some brain structures may also be specifically related to domain-specific deficits (primarily executive function)
over-and-beyond the global cognitive deficit.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction processing speed, verbal fluency, and attention) were mediated through

Cognitive impairments among individuals with schizophrenia have
been widely elucidated, with deficits apparent at the first-psychotic ep-
isode (Hoff et al., 1999) and remaining relatively stable throughout the
chronic state (Meier et al., 2014), making them a core feature of schizo-
phrenia. Understanding these deficits is particularly important given
that cognitive ability has been associated with every-day functioning
and quality of life for schizophrenia patients (Nuechterlein et al.,
2011; Tolman and Kurtz, 2012). Furthermore, antipsychotic medica-
tions have minimal effects on cognitive impairments (Goldberg et al.,
2007), indicating the need for further research into putative mecha-
nisms underlying cognitive deficits.

Decades of research have revealed the presence of both specific and
global cognitive deficits in schizophrenia (Dickinson et al., 2004;
Schaefer et al., 2013; Sheffield et al., 2014; Shmukler et al., 2015). Evi-
dence of the global deficit was highlighted by Dickinson et al. (2004,
2008), who showed that deficits in a multitude of cognitive domains
(e.g. working memory, episodic memory, executive functioning,
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a common factor that explained a significant proportion of diagnosis-
related variance. The presence of a global deficit has been replicated
by several other researchers (Mohamed et al., 1999; Keefe et al.,
2006). There is also evidence to suggest differential impairments
occur in areas of cognitive control (Lesh et al., 2011), episodic memory
(Saykin et al., 1991), and processing speed (Schatz, 1998), even in the
context of this global impairment. In fact, some researchers have sug-
gested that these domain-specific deficits may contribute to a global
deficit because they have wide-spread influences on other domains
(Gold et al., 2009). Therefore, both global and specific deficits are core
features of the cognitive impairment in schizophrenia, and both are crit-
ical to our understanding of the neural mechanisms underlying the
complex deficits observed in psychotic disorders.

One potential mechanism contributing to such cognitive deficits are
alterations in brain structure in schizophrenia (Steen et al., 2006; Fusar-
Poli et al., 2013; Haijma et al., 2013). Volumetric reductions in schizo-
phrenia have been attributed to abnormalities in dendritic spines and
synapses, which can disrupt the neural circuitry underlying cognition
(Flashman and Green, 2004). Some aspects of brain structure that ex-
hibit volumetric reductions include the dorsolateral prefrontal cortex
(Volpe et al., 2012), hippocampus (Nelson et al., 1998), and total
white matter (Haijma et al,, 2013). Importantly, these brain structures
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have been found to be critical contributors to the types of cognitive def-
icits found among individuals with schizophrenia (Barch and Ceaser,
2012; Watson et al., 2012). For instance, numerous studies have sug-
gested that the DLPFC is involved in executive functioning and working
memory (Kawada et al., 2009; Ehrlich et al., 2012), as well as some as-
pects of episodic memory (Minatogawa-Chang et al., 2009) and pro-
cessing speed (Eckert et al., 2010). Further, a number of studies have
suggested that the IFG is important for verbal memory and verbal flu-
ency (Iwashiro et al,, 2016). Multiple studies report that the hippocam-
pus plays a critical role in executive functioning (Guo et al., 2014),
working memory, verbal episodic memory, and verbal fluency
(Schobel et al., 2009; Ehrlich et al., 2012; O'Shea et al.,, 2016). Additional
studies show that white matter integrity may also be important for ver-
bal fluency (Lee et al., 2007) and processing speed (Karbasforoushan
et al,, 2015).

The goal of the current study was to investigate whether brain vol-
ume of the DLPFC, hippocampus, IFG, and white matter are associated
with domain-specific and/or global deficits in cognitive ability, as well
as determine whether brain volume relationships are specific to any
cognitive domain, above and beyond the global deficit. Based on previ-
ously reported associations, we hypothesized that 1) Global cognition
and executive functioning would be associated with all brain structures.
2) Working memory would be associated with DLPFC and hippocampal
volume. 3) Verbal episodic memory would be associated with hippo-
campal and IFG volume. 4) Verbal fluency would be associated with hip-
pocampal, IFG, and white matter volume. 5) Processing speed would be
associated with DLPFC and white matter volume. 6) Executive function-
ing would remain associated with all brain structures, even after con-
trolling for global cognition.

To test this, we use a relatively large sample of individuals with
schizophrenia and healthy controls in addition to a well-established
comprehensive cognitive assessment: the Brief Assessment of Cognition
in Schizophrenia (BACS). Although previous studies have examined
general 1Q versus specific cognitive domains (Antonova et al., 2005),
the innovation of the current work is to investigate the magnitude of
correlations between the generalized cognitive deficit and domain-
specific deficits. Delineating the differences between distinct
structure-function relationships is essential for understanding how
structural brain abnormalities contribute to the complex constellation
of cognitive impairments in schizophrenia.

2. Methods
2.1. Participants

The data used in this study was collected from the B-SNIP
(Tamminga et al., 2013), and consisted of 206 healthy controls and
247 individuals with either schizophrenia (59.1%) or schizoaffective dis-
order (40.9%). Participants were recruited from the following six sites:
Baltimore MD, Boston MA, Chicago IL, Dallas TX, Detroit MI, and Hart-
ford CT. All sites used identical protocols and test assessments were ap-
proved by their local Institutional Review Board. Researchers from all
sites underwent initial training and attended monthly cross-site meet-
ings to maintain reliability (Tamminga et al., 2013). Structural MRI

Table 1
Demographic characteristics of healthy controls and schizophrenia patients.
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and cognitive data was collected from all participants included in the
current study.

The recruitment of healthy controls was initiated through flyers,
electronic advertisements, and research registries. Patients with schizo-
phrenia or schizoaffective disorder were recruited through mental
health providers, electronic advertisements, and talks at community or-
ganizations (Hill et al., 2013). All patients were required to have a diag-
nosis of schizophrenia or schizoaffective disorder with a history of
psychosis to meet inclusion criteria. The Structured Clinical Interview
for DSM-IV (SCID, (First et al., 1995) was used to assess clinical diagno-
sis. Exclusion criteria for all subjects included: no history of seizures,
neurological disorders that affect cognition, or head injuries with a
loss of consciousness >10 min. Participants could not have a diagnosis
of substance abuse in the past 30 days or substance dependence in the
past 6 months, and all participants were required to pass a urine drug
screen on the day of testing. Additional exclusion criteria for healthy
controls included: history of recurrent depression or a psychotic disor-
der, and immediate family members with a history of these disorders.

The demographic characteristics of all participants are displayed in
Table 1.

2.2. Cognitive measures

Cognitive function of all participants was assessed using the Brief As-
sessment of Cognition in Schizophrenia (BACS, (Keefe et al., 2008),
which is a valid and reliable assessment that has been widely used in
schizophrenia research. This cognitive assessment is approximately
30 min long and consists of tests pertaining to five different cognitive
domains including executive functioning, working memory, verbal epi-
sodic memory, verbal fluency, and processing speed. Executive func-
tioning was measured by the Towers Task, which asks participants to
rearrange a set of balls using the lowest amount of moves possible.
Working memory was assessed by the Digital Sequencing task, which
asks participants to remember a random order of numbers and recall
them from smallest to largest. Verbal episodic memory was assessed
by the List Learning task, which asks participants to read fifteen words
and repeat as many as possible. Verbal fluency was assessed by the Se-
mantics Fluency and Letter Fluency tasks, which asks participants to
generate as many words possible given a certain category or letter. Pro-
cessing speed was measured by the Symbols Coding task, which asks
participants to use a key to match as many letters and numbers together
within 90 s. Global cognition was defined as the first factor in a principal
axis factor analysis that included all BACS subtests (Hochberger et al.,
2016), which was done on this sample and explained 61% of the vari-
ance in cognitive function. Scores on the BACS were age-normed and
z-scored. Z-scores > |4.0] were truncated to limit the impact of outliers.

2.3. Neuroimaging measurements

Structural MRI data was acquired from T; _weighted structural brain
scans at all six sites. Specific imaging protocols differed slightly across
sites (Table S1), however, all T1 images included 1 x 1 x 1.2 mm voxels
(Meda et al., 2015). The neuroimaging data was volumetrically seg-
mented and analyzed in an automated manner using the Destrieux

Demographics mean (standard deviation) Healthy controls n = 205

Schizophrenia n = 247 Statistics

Age (years) 36.4(11.7)
Gender (male/female) 87/118
Ethnicity (Caucasian/African American) 62%/28%
Subject education (years) 14.8(2.3)
Father education (years) 13.6(2.1)
Mother education (years) 13.2(3.2)

33.48(11.6) f(1,450) = 0.9, p = 0.008
154/93 X2 = 17.8, p < 0.001
53%/39% X2 =58,p=0.02
13.1(222) f(1,445) = 2.0, p < 0.001
13.9(3.6) f(1,375) =0.01, p = 0.42
13.5(3.0) F(1,413) = 0.9,p = 038
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atlas (Destrieux et al., 2010) in the FreeSurfer software (Fischl, 2012).
The cortical regions used to define the DLPFC were the sum of the Mid-
dle Frontal Gyrus and the Middle Frontal Sulcus, which corresponds to
parcellation units 15 and 53, respectively. The cortical regions used to
define the IFG were the sum of the opercular and triangular part of
the IFG, which corresponds to parcellation units 12 and 14, respectively.
Hippocampus volume was generated using the ASEG segmentation file,
and Total White Matter volume was taken from ASEGWM segmenta-
tion. FreeSurfer data from all subjects was visually inspected by a single
rater (J.M.S) to assess accuracy of white/gray matter automatic segmen-
tation. Six subjects had poor segmentation and when excluding these
six participants the results remained consistent. Given differences in
neuroimaging parameters across sites, analyses were performed that in-
cluded B-SNIP site as a covariate, with the same results as our main
findings.

2.4. Statistical analyses

All statistical analyses were completed with SPSS software version
24, Before computing primary analyses, data was tested for normality
using Q-Q plots, and multivariate outliers were identified using the
Mahalanobis distance. A total of six multivariate outliers (4 patients
and 2 healthy controls) were excluded from the data set before statisti-
cal analysis began. Linear regressions were used to assess relationships
between cognition and brain volume. Cognitive function was always the
dependent variable and predictors included: region of interest (ROI)
brain volume, age, gender, and diagnosis group (when analyzing all
subjects together). Total brain volume (minus the ROI for that analysis)
was also included as a predictor, to assess the specificity of the relation-
ship between ROI and cognition. For white matter, total gray matter vol-
ume was included as a predictor. Interaction variables were included to
assess differences between groups in the relationship between brain
volume and cognition. A second level of linear regressions were con-
ducted, which included global cognition as an additional predictor in
order to determine if associations between specific cognitive domains
and brain volume remained significant even when controlling for gen-
eral cognition. Post-hoc tests were performed to assess differences in
correlation magnitude between brain ROIs and specific cognitive tasks
for all subjects, while controlling for age and gender, using methods
from Meng et al. (1992). Additional linear regressions were performed
with site dummy codes included as predictors, and all significant associ-
ations reported in the results section remained consistent.

3. Results
3.1. Group difference in cognition and brain volume

As previously reported (Tamminga et al., 2014), patients were sig-
nificantly impaired in all cognitive domains, including executive func-
tioning (F(1, 431) = 46.8, p < 0.001), working memory (F(1,432) =
85.9, p <0.001), verbal memory, (F(1,432) = 904, p <0.001), verbal
fluency (F(1,432) = 56.5, p < 0.001), processing speed (F(1,433) =
190.3, p < 0.001), and global cognitive functioning (F(1,432) = 206.9,
p <0.001).

Patients had significantly reduced hippocampal volume compared
to controls (F(1,449) = 6.5, p = 0.011) but did not have significant vol-
umetric reductions in the DLPFC (F(1,449) = 0.2, p = 0.62), IFG (F
(1,449) = 0.2, p = 0.62), or total white matter (F(1,449) = 0.1,p =
0.78).

3.2. Global cognition

As shown in Table 2 and Fig. 1, global cognition was significantly as-
sociated with all brain regions of interest (trend level for DLPFC) even
when controlling for brain volume outside the regions of interest. No
significant interactions were found between any brain structure and

diagnostic group (Table 2), suggesting that these associations were
present across patients and controls. To confirm this, we conducted fol-
low up analyses within groups. Global cognition was associated with
the IFG, hippocampus and white matter in both controls and patients.

3.3. Executive functioning

As shown in Table 2, executive functioning was significantly associ-
ated with all brain regions of interest even while controlling for brain
volume outside the regions of interest. When controlling for the global
cognitive deficit, executive functioning was no longer significantly asso-
ciated with the hippocampus (p > 0.10), but continued to be associated
with the other three brain structures (Fig. 2): DLPFC (p = 0.09,t = 2.2,p
= 0.03), IFG (p = 0.14, t = 3.23,p = 0.001), and a trend for white mat-
ter (B = 0.08,t = 1.76, p = .08). There were no significant interactions
between brain structures and diagnostic group in the prediction of exec-
utive functioning (Table 2), again suggesting that these associations
were present across patients and controls. To confirm this, we con-
ducted follow up analyses within groups, and executive function was
related to all brain metrics in both groups individually.

3.4. Working memory

Working memory (Table 2) was significantly associated with the
IFG, hippocampus and white matter, but not with the DLPFC. However,
working memory did not remain significantly associated with these

Table 2
Regional brain volume predicting cognitive function while controlling for age, gender, to-
tal brain volume, and diagnostic group (between-group only).

Regression analyses including groups Analyses within each

group
Cognitive Brain area Main  Interaction Healthy Schizophrenia
domain effect  (p) controls  (P)
(®) B)
Global DLPFC 0.10" 0.01 0.08 0.12
cognition IFG 0.19"" —0.08 025" 020"
Hippocampus 0.17"""  0.02 019" 021"
White matter 0.18""" 0.01 0.25" 0.19"
Gray matter ~ 0.15""  —0.04 027" 0.11
Executive DLPFC 017" 0.06 0.18" 0.19"
functioning  IFG 027" 030 033" 028"
Hippocampus 0.19"  0.04 022" 020"
White matter  0.21°"  0.02 028" 020"
Gray matter ~ 0.17""" —0.07 029" 0.08
Working DLPFC 0.04 0.01 NA NA
memory IFG 011" —0.17 0.13 0.10
Hippocampus 0.12°  —0.01 0.14~ 0.13~
White matter 0.14°  —0.03 0.20° 0.11
Gray matter ~ 0.13"  —0.08 025" 0.05
Verbal episodic  DLPFC 0.04 0.05 NA NA
memory IFG 0.11" 0.06 0.13 0.12
Hippocampus 0.10" 0.07 0.06 0.16"
White matter 0.05 0.03 NA NA
Gray matter  0.06 —0.02 NA NA
Verbal fluency ~ DLPFC 0.06 —0.08 NA NA
IFG 0.107 —0.35 0.06 0.10
Hippocampus 0.06 —0.02 NA NA
White matter 0.08 0.01 NA NA
Gray matter  0.09 —0.01 NA NA
Processing DLPFC 0.08 0.01 NA NA
speed IFG 017" 0.16 023" 017"
Hippocampus 0.18""*  0.01 020" 023"
White matter 019" —0.01 025" 020"
Gray matter ~ 0.13"""  0.02 0.13 0.02
= p<0.10.
* p<0.05.
** p<001).
*** p <0.005.
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Relationship Between Global Cognition and Structural Brain
Metrics
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Fig. 1. Positive associations between global cognition and brain structure, controlling for age, sex, and gray matter volume. Larger Hippocampal volume (3 = 0.19, p<0.005), IFG volume (>
= 0.19, p < 0.005), white matter volume (3 = 0.18, p < 0.005) were significantly associated with better cognitive ability in all participants, while DLPFC volume was associated at a trend-
level (3 = 0.10). NC = normal control; SCH = schizophrenia. DLPFC = dorsolateral prefrontal cortex; IFG = inferior frontal gyrus.

three regions when controlling for the global cognitive deficit (p's >
0.19).

3.5. Verbal episodic memory

Verbal episodic memory (Table 2) was associated with IFG and hip-
pocampal volume, and not with the DLPFC or white matter, but theses
relationship did not hold when controlling for the global cognitive def-
icit (p's > 0.26).

3.6. Verbal fluency

Verbal fluency (Table 2) was not associated with any brain region of in-
terest, except trend level with IFG, nor were there any significant interactions.

3.7. Processing speed

Processing speed (Table 2) was not associated with the DLPFC, but
was associated with the IFG, hippocampus, and white matter even
when controlling for brain volumes outside the regions of interest.
However, none of these relationships remained significant when con-
trolling for the global cognitive deficit except for the hippocampus (3
=0.07,t = 2.28,p = 0.02).

3.8. Total gray matter covariate
The covariate total gray matter volume (Table 2) was correlated

with global cognition, executive function, working memory and pro-
cessing speed, but not verbal memory or verbal fluency. There were

Relationship Between Executive Functioning and Structural
Brain Metrics Controlling for Global Cognition
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Fig. 2. Executive functioning ability was positively associated with DLPFC (3 = 0.17, p < 0.005), IFG (3 = 0.27, p < 0.005) and white matter volume (> = 0.21, p <0.005) in all participants,
controlling for age, sex, and global cognition. NC = normal control; SCH = schizophrenia. DLPFC = dorsolateral prefrontal cortex; IFG = inferior frontal gyrus.
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no significant interactions with group, but separate analyses within
group showed significant relationships only in controls and not in
patients.

4. Discussion

The findings of this study provide evidence that volume of the
DLPFC, IFG, hippocampus, and white matter are associated with global
cognition, and with executive function after controlling for global cogni-
tion (except for hippocampus). Further, these associations were signifi-
cant when controlling for total gray matter volume and demographic
variables, suggesting that these specific brain structures are critical for
cognitive functioning. These structure-function relationships (other
than total gray matter) were observed in both healthy controls and
schizophrenia patients, indicating that regardless of diagnostic group,
brain volume of these structures appears to be associated with cognitive
functioning. However, hippocampal volume was significantly reduced
in schizophrenia, suggesting the potential for particular vulnerability
in schizophrenia to the cognitive impairments associated with hippo-
campal volume.

Consistent with the previously reported results from the full B-SNIP
sample (Tamminga et al., 2014), patients were significantly impaired
across all domains, in line with the conceptualization that a global defi-
cit is present in schizophrenia (Dickinson and Gold, 2008). Furthermore,
a global deficit, as measured by the shared variance in performance
across multiple cognitive domains, was associated with volume of all in-
vestigated brain structures, indicating that a more severe global cogni-
tive deficit is associated with volumetric reductions in the DLPFC, IFG,
hippocampus, and white matter. Further, these relationships remained
even when controlling for brain volume outside the regions of interest,
suggesting some specificity of these relationships. These findings are
consistent with the hypotheses that the global deficit would be associ-
ated with multiple neural mechanisms and widespread volumetric re-
ductions of gray matter (Antonova et al., 2004) and white matter
(Kubicki et al., 2005).

We also observed some evidence of specificity of relationships be-
tween brain structure and cognition, beyond the generalized deficit.
Post-hoc analysis revealed that volumetric reductions in the DLPFC,
IFG, and white matter were specifically related to deficits in executive
functioning, above and beyond the global deficit. The brain-behavior re-
lationship between the DLPFC, IFG, white matter, and executive func-
tioning has been consistently reported both functionally (Hampshire
et al.,, 2010) and structurally (Premkumar et al., 2008; Kawada et al.,
2009; Guo et al., 2014). However, this is one of the first reports demon-
strating specific associations between brain volume of these structures
and executive function, while controlling for general cognitive ability.
Executive function is a critical facet of general cognitive ability believed
to facilitate continuous interactions between multiple cognitive pro-
cesses, in order to support goal-directed behavior (Gilbert and
Burgess, 2008). Therefore, these results suggest that DLPFC, IFG, and
white matter volumes are not only important for overall cognition,
but may more specifically contribute to cognitive ability through dis-
tinct support of executive functions. In addition, we saw a specific rela-
tionship between hippocampal volume and processing speed, even
controlling for the global deficit. While unexpected, this finding is con-
sistent with the literature in aging suggesting that hippocampal func-
tion and structure may be important for this cognitive domain (Papp
et al., 2014).

Several limitations exist within the current study. One potential lim-
itation is that the BACS cognitive assessment, although reliable and
well-validated, may be less robust at identifying isolated domain-
specific deficits relative to other types of tasks designed to specifically
isolate particular cognitive functions, such as those developed by the
Cognitive Neuroscience Test Reliability and Clinical Applications for
Schizophrenia Consortium (Gold et al., 2012). Additionally, the neuro-
imaging data was segmented using the Destrieux atlas in Freesufer,

but this parcellation may not capture important subdivisions of the
DLPFC that might show more fine grained relationships. Lastly, the ma-
jority of schizophrenia patients in this study were taking antipsychotic
medications. Although there is evidence that cognitive deficits are not
the consequence of medications (Goldberg and Weinberger, 1996),
the effects of medications on brain changes are still being investigated
(Hoetal, 2011).

Considering that this study is one of the first to investigate the struc-
tural neural correlates of global and domain specific deficits, it is impor-
tant that our findings are replicated and expanded on by examining
whether other brain regions might show evidence of more specific rela-
tionships to domains such as verbal episodic memory or verbal fluency.
Additionally, future research is necessary to determine if these associa-
tions between brain volume and cognitive impairments are similar in
first-psychotic episode patients and treatment-naive patients, or
whether they change with time.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.schres.2018.06.017.
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