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A B S T R A C T

The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and
physical health outcomes in children, including substance use, brain and behavioral development, and their
interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by
multiple assessments, provide information about genetic and environmental contributions to developmental
associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children.
Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and
Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in
Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The
twins are recruited from registries of all twin births in each State during 2006–2008. Singletons at each site are
recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the
background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy
at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences
and test hypotheses critical to the aims of the ABCD study.

“Almost any experiment that one might think of doing with human
subjects will be more interesting and yield more valuable results if
one does it with twins.” David Lykken (Lykken, 1982, p. 361)

1. Introduction

Twin births represent an intriguing experiment of nature through
which individual differences in key psychological traits can be as-
cribed to genetic and environmental variation. The classical twin
study design contrasts the similarity of genetically identical (mono-
zygotic, MZ) pairs to that of fraternal (dizygotic, DZ) pairs – the latter
no more closely related than full sibling pairs − and has been used for
many decades to establish genetic contributions to normal human
variation and to risk of clinical outcomes (e.g., Kaij and Rosenthal,
1961; Partanen et al., 1966). The proportion of population variation in
a trait that is due to genetic influences is referred to as heritability. A
recent analysis of 2748 twin studies reported an average heritability of
49% across thousands of medical and behavioral phenotypes

(Polderman et al., 2015). Besides providing testimony to the value of
twins to science, this report showed that genetic influences are an
important component of variation for almost all human traits. Appli-
cations of the twin study design to determine causal interrelationships
between brain structure and function (Blokland et al., 2012; Jansen
et al., 2015), neuropsychological performance (Blokland et al., 2017),
and adolescent substance use (Hopfer et al., 2003; Lynskey et al.,
2010) are particularly compelling, though such designs can help ad-
dress causality in a number of other relationships as well (e.g., mal-
treatment and the development of child neuropsychiatric disorders,
Dinkler et al., 2017). The ABCD Twin Hub was inspired by the po-
tential for twin designs to help separate cause from consequence when
investigating typical development. In addition, it is well poised to
examine the effects of substances and other environmental adversities
on neurocognitive development, emotion development, mental health,
and physical health. The Twin Hub comprises four participating sites,
each with over 30 years of experience conducting twin research:
University of Colorado Boulder; University of Minnesota, Minneapolis;
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Virginia Commonwealth University, Richmond; Washington Uni-
versity, St. Louis, Missouri.

The twin design allows estimation of the separate contributions to
variance in a trait of genetic effects and shared (including family) en-
vironmental effects, as well as non-shared environmental effects (i.e.,
those differences in environmental exposures that contribute to twin
pair differences even in MZ pairs). The design is based on the testable
assumption that there is no higher correlation for trait-relevant en-
vironmental exposures (for example, peer influences on behavior) in
MZ than in DZ pairs except in so far as this is the result of genetic
differences, such as when an individual with a high genetic predis-
position to substance use seeks environments in which drugs are widely
used. This assumption can be evaluated on a trait by trait basis. Even
more informative are newer multivariate approaches that go beyond
assessment of heritable versus environmental contributors to an in-
dividual trait, to examining how these contributors govern how two
different traits co-vary within an individual, or govern how a single
trait (such as a brain morphometric feature) may differ across devel-
opmental time points. It is now recognized that the most powerful ge-
netic applications are usually multivariate, rather than merely focused
on univariate analyses of individual traits.

Multivariate approaches illuminate how genetic differences be-
tween individuals contribute to how one trait may relate to another
within-individuals, such as between traits: (i) within a measurement
domain (e.g., multiple measures of brain structure and function), (ii)
across measurement domains (e.g., brain measures with clinical out-
comes or with indices of neuropsychological functioning or other
measures of normal variation), and (iii) over time; e.g., across different
stages of development (Neale and Cardon, 1992c). Such applications
supplement information about the similarity of MZ and DZ twin pairs
estimated from correlations observed for individual traits (for example,
MZ versus DZ correlations for trait A, and for trait B), with cross-trait
correlations both within individuals (the usual phenotypic correlation
of trait A with trait B) and across the members of a pair (trait A in first
twin with trait B in cotwin, and vice versa, estimated separately by
zygosity). To the extent that genetic effects contribute to the covaria-
tion of two traits, the twin pair cross-trait correlations should be higher
in MZ than in DZ pairs (Martin and Eaves, 1977). As in the univariate
case, estimation of shared and non-shared environmental contributions
to trait covariation may also be obtained.

Measurement of environmental influences that may be shared by
members of a twin pair, including family, school, neighborhood or peer
influences, as well as exposures for which a pair may be discordant, will
allow testing of hypotheses about the “interplay” of genetic and en-
vironmental effects. These processes include: (i) GXE (Gene by
Environment) interaction effects and (ii) GE correlation effects. GXE in-
teraction effects are those genetic effects that may be moderated by
environmental exposures. In the simplest case, GXE can be determined
by evaluating the degree to which the strength of genetic effect varies
by presence or absence of an environmental exposure. For example,
Hicks et al. (2009) found that the genetic contribution to risk for ex-
ternalizing disorders was especially evident in those experiencing high
environmental adversity. As another example, Chiang et al. (2011)
found that heritability of diffusion measures of white matter was
greater in individuals from a higher socio-economic back ground. GE
correlation is present when genetic effects result in phenotypic differ-
ences that in turn affect environmental exposures within individuals
and, in some extended twin-family designs, within families (Dolan
et al., 2014; Eaves et al., 1977). For example, genetically-regulated
temperament may prompt a child to seek deviant peers, and evidence
for GE correlation has been found in regards to the relationship be-
tween specific types of stressful life events (those that could be influ-
enced by the individual, e.g., Bemmels et al., 2008) and psychotic like
experiences (Shakoor et al., 2016).

2. How ABCD’s inclusion of the Twin Hub strengthens the quality
of causal inference

To illustrate how a genetic analysis can inform how experiences
affect neurodevelopment, we use the example of substance use, though
this is only one example among many possible mental and physical
health outcomes that will be examined as part of the ABCD study. Youth
substance use is not a random event. Youth who abuse substances differ
from those who do not on a wide range of risk factors, many of which
predate use (Bailey et al., 2014; Hicks et al., 2014; McGue and Iacono,
2005). An association between substance use and a disadvantageous
outcome may reflect a causal consequence of use, or it could be a
product of pre-existing genetic and environmental risk factors that
predispose an individual to both drug use and some other adverse
psychosocial outcome. That is, a substance use-outcome association
may be confounded by etiologic influences that existed before use
began.

Natural experiments such as twin difference designs afford in-
novative and powerful opportunities to evaluate such confounds.
Consider the case of MZ twins. Because both members of the pair share
their genetic endowment as well as their rearing environment (both
pre- and post-natal), the twin in a pair who uses substances less than his
or her cotwin serves as an ideal control for genetic predisposition and
shared environmental adversity. The twin design thus offers a unique
“what-if” neurodevelopmental scenario that is unavailable in studies of
singletons. Suppose longitudinal assessments of drug-using teens in-
dicate a flattening of some brain developmental trajectory that con-
tinues unabated in same-age non-using peers. One cannot confidently
assume that the drug use caused the “flattening” (or delayed matura-
tion) given the possibility of genetic programming for the deviant tra-
jectory. Mathematically leveraging a non-using twin enables an ap-
proximation of the “what if” the drug-using teen never used, to better
isolate causal effects of substance exposure as a unique environmental
event. Put differently, the lesser-using twin provides insight into what
the brain of the twin who uses substances more heavily could have been
expected to be like had the heavier using twin used less. If the heavy-
using twin shows a neurocognitive deficit not observable in the lesser
using co-twin, the results are consistent with the possibility that use
caused the deficit. If, despite one twin’s heavy use, members of the pair
have the same neurocognitive outcome, then predisposing familial risk
or other shared risk, not substance use, better explains the association
between substance use and outcome. The inclusion of DZ pairs, whose
shared environmental experiences are like those of MZ twins (Kendler
et al., 1993), provides information about the relative contribution of
genetic and shared environmental effects to any observed familial risk.
By taking into account risk factors that could account for why one twin
in a pair uses more than the other, it is possible to strengthen the in-
ference that it is use, and not a third variable, that accounts for any
observed within-pair difference in the outcome. The use of twin pairs
discordant for an environmental exposure, in an effort to achieve more
robust causal inference, has a decades-long history (Gesell, 1942;
McGue et al., 2010). In the modern era, it is recognized that quantita-
tive assessments of environmental exposure can provide additional in-
formation and greater statistical power.

So how is causality inferred from a twin design? More formally,
consider a strong causal hypothesis: the correlation between Exposure
A and Outcome B arises because Exposure A has a causal effect on
Outcome B (direction-of-causation modeling: Heath et al., 1993a; Neale
and Cardon, 1992b). In twin pair data, in the absence of third-variable
effects, a strong prediction can be made for the cross-correlations be-
tween exposure A in one twin, and outcome B in the other twin. Thus
twin pairs concordant as well as discordant for exposure contribute
information. For each twin zygosity group, these cross-correlations are
predicted to be the product of the twin pair correlation for A, and the
correlation of B with A, a prediction that can be tested by model fitting;
i.e., model fitting provides a test of the strong causal hypothesis, A
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causes B, that assumes no third-variable influences. Here, as with
simpler analyses of trait covariation, multivariate analyses using mul-
tiple indicators of trait A and outcome B are likely to be especially
persuasive because they can control for measurement error (Heath
et al., 1993a).

Recent work illustrates application of the twin pair design to eval-
uate causal effects of adolescent marijuana use on cognitive ability.
Meier et al. (2012) examined the relationship between marijuana use
and change in cognitive performance from pre-adolescence to age 38 in
approximately 1000 (non-twin) individuals enrolled in the Dunedin
Longitudinal Study. Greater marijuana use appeared to be associated
with greater cognitive decline over this interval, and the effects were
particularly strong for adolescent use. Other longitudinal studies have
also suggested negative effects of adolescent cannabis use, although
there is inconsistency regarding how strongly the results hold after
accounting for pre-adolescent performance and relevant covariates
(Fried et al., 2005; Mokrysz et al., 2016). Although longitudinal studies
like these ostensibly support the hypothesis that teen marijuana use
causes cognitive decline, they cannot rule out the possibility that the
cognitive decline would have occurred even in the absence of cannabis
use. Twin studies can help to resolve this question.

Using longitudinal data from twins followed through adolescence
and into young adulthood, Jackson et al. (2016) evaluated the effects of
teen marijuana use on IQ assessed at ages 9–12 and 17–20. Consistent
with Meier et al. (2012), use was associated with IQ decline for mea-
sures of crystallized intelligence. However, employing the co-twin
control design, it was found that non-using members of monozygotic
twin pairs discordant for use showed the same IQ decline as users, in-
dicating that familial risk, and not use per se, accounted for the decline.
This study included over 3000 twins from projects in Minnesota and
California, and the results replicated across sites. Of note, this pro-
spective study, also found that marijuana use during adolescence was
associated with IQ decline, but because twins were incorporated into
the longitudinal design, the results suggested the IQ decline was not a
consequence of use. Similar results have been reported by Meier et al.
(2017) who found that IQ at age five was lower in twins who became
cannabis dependent as teenagers, and that non-dependent co-twins of
cannabis dependent 18-year old twins matched their IQ at that age.
Resolution of this type of question is essential so that public health
messaging is accurate and so that appropriate interventions can be
structured at the proper time period in the lifespan. These studies
suggest that the focus of intervention and prevention should be on trait
factors that render some individuals vulnerable to substance misuse.

With its 90 min MRI assessment and accompanying comprehensive
neuropsychological and mental health test batteries, ABCD’s coverage
of neurocognitive and emotional outcomes is much broader than what
was possible in previous studies. This makes ABCD’s inclusion of twins
particularly valuable for evaluating the degree to which premorbid
emotional and behavioral traits contribute to adolescent substance use
or other mental and physical health outcomes, and which in turn
contribute to brain health. Combining the twin design with a pro-
spective, longitudinal investigation in which risk factors are compre-
hensively assessed prior to initiation of use provides one of the most
powerful designs available for making causal inferences. Indeed, be-
cause the ABCD study cohort will be assessed first at ages 9–10, prior to
the onset of substance use, twin study methods can be fruitfully utilized
during the first few years of assessment to identify the traits and other
characteristics that are most likely to be altered by environmental (e.g.,
substance use, stressful life events, trauma, family factors) circum-
stances.

The utility of the twin design for strengthening causal inference
regarding the consequences associated with substance use is just one of
many questions that can be answered in the ABCD study using this
approach. For example, there is a relatively large body of literature
showing genetic influences on aspects of brain structure, including both
gray matter (Eyler et al., 2012, 2011; Peper et al., 2009; Shen et al.,

2016; Yoon et al., 2011) and white matter (Chiang et al., 2009;
Kochunov et al., 2015; Koenis et al., 2015; Shen et al., 2014), with some
evidence for genetic influences on at least some aspects of task related
brain activity (Pinel and Dehaene, 2013) and functional connectivity
(Fu et al., 2015; Sinclair et al., 2015; van den Heuvel et al., 2013; Xu
et al., 2016; Yang et al., 2016). Further, there is intriguing evidence that
there are genetic effects on patterns of brain change over time (Anokhin
et al., 2017; Brouwer et al., 2014; Brouwer et al., 2017; van Soelen
et al., 2013), and evidence that the magnitude of relative genetic versus
environmental influences may increase over the course of development
(Jansen et al., 2015; Lenroot et al., 2009; Schmitt et al., 2014; Wallace
et al., 2006), though not all studies have found this (Swagerman et al.,
2014) and some have found a decrease (Wallace et al., 2006). However,
we know relatively little about environmental factors that may have a
causal influence on patterns of brain development, such as early
stressful life events and/or trauma, family factors, neighborhood, and
school factors. This is because many of the current studies on the re-
lationship between early environmental factors and brain outcomes are
not able to rule out either GE correlations or third variables that are
correlated with both the environment and brain factors (Hanson et al.,
2011; Luby et al., 2016; Noble et al., 2015). As such, the twin design
used in the ABCD study, coupled with the longitudinal nature of the
study, will provide crucial data relevant to these important questions
about casual influences of the environment on brain development (as
has been utilized at least one recent study, Dinkler et al., 2017).
Moreover, this approach will further inform interpretation of ABCD’s
longitudinal singleton data.

3. Overview of the Twin Hub aims and rationale

The longitudinal twin design can answer a broad range of questions
on the interplay between adverse environmental impacts and mental
health outcomes in emerging adulthood. However, in light of ex-
panding decriminalization of cannabis in the US, one of the primary
goals of the ABCD Twin Hub is to deepen our understanding of the
effects of adolescent substance use (SU) on the brain, cognitive func-
tioning, and behavior through the integration of developmentally and
genetically informative data. As just noted, determinants and con-
sequences of SU are often confounded. For example, executive deficits
have been implicated in both the liability to substance use and, through
cross-sectional research, its consequences. ABCD’s powerful twin
method: (a) provides effective control for genetic factors, demographic
background, and shared familial environment, (b) permits the isolation
of the substance exposure effects; (c) can be extended to quantitative
differences in substance exposure (such as quantity/frequency of con-
sumption or biochemical markers of exposure); and (d) can integrate
longitudinal, twin and family data. Additionally, twin data can assess
the heritability of brain structure and function, the shared genetic and
environmental etiology of brain and behavioral phenotypes, genetic
influences on individual differences in neurodevelopmental trajectories
and mental illness, the detrimental effects of SU and other risky beha-
viors on the brain, and assessments of SU-induced epigenetic and me-
tagenomic (e.g., microbiome) changes. Analyses of longitudinal twin
data can also test a prevailing hypothesis that: (i) the relative im-
maturity of the cognitive control regions of the brain during adoles-
cence and peak activity within reward-related regions result in heigh-
tened impulsivity, heightened reward sensitivity, and increased risk for
SU initiation; and (ii) SU itself may further compromise inhibitory
control, thus creating a “vicious circle” of SU progression and self-
control deficits.

Our first aim is to assess genetic and environmental contributors to a
range of mental and physical health outcomes, including substance use
liability. As outlined above, we will use classic methods and co-twin
control designs to study genetic versus environmental contributions to
adolescent brain and neurocognitive development, evaluating how
these contributions affect propensity towards the development of
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mental health relevant outcomes, including SU. Using genetically in-
formed linear and non-linear latent growth curve and mixture models,
we will test genetic versus environmental contributions to these de-
velopmental trajectories across puberty via neuroimaging and beha-
vioral markers. We aim to predict who will initiate SU and/or develop
mental health challenges, considering key domains such as hormonal
change and the timing of cortical, subcortical, and psychological ma-
turation.

A second aim is to examine the impact of substance use, as well as
other environmental factors and risk-taking behaviors, on subsequent
neurodevelopment, as well as internalizing and externalizing sympto-
matology. These various behaviors may cause permanent changes in
brain structure, connectivity, and function, detectable by MRI. Again,
we use SU as an example. We hypothesize that SU interacts with genetic
effects that alter developmental brain trajectories and outcomes. This
will be tested by modeling GXE interactions within growth trajectory
models. We will test whether individuals’ substance use on one occasion
affects their environment on subsequent occasions (a GE correlation
reflecting niche selection), within and across substances and imaging
phenotypes. We will further evaluate how gateway effects – use of one
drug class influencing probability of progression to use of another drug
class – are mediated by genetic and environmental influences.

Finally, the twin hub is central to ABCD’s efforts to leverage bios-
pecimen data for the understanding of risk. We will collect biospeci-
mens for future studies of genomic, epigenomic, metabolomic, and
microbiome changes that may influence drug use and abuse and their
consequences for physical and mental health. We will obtain baseline
and follow-up serum, saliva, and in some cases gut microbiota (from
stool) and urine samples.

3.1. Rationale for the ABCD Twin Hub recruitment strategy

Although twin births are far from rare (now approximately 1.5% of
births or 3% of the population), standard survey research methods
(sampling of households and individuals within households; random
digit dialing; school-based ascertainment) would not be cost-effective
for the ascertainment of twin pairs in a narrow age range. Most twin
research has either been conducted using volunteer samples (e.g.,
Heath et al., 1997; Lynskey et al., 2003), with the significant limitation
of uncertain generalizability of findings, or, preferably, locating twin
pairs from birth records, with first assessment beginning at an age (e.g.,
12), closer to first use of a substance (e.g., Iacono et al., 2006; Waldron
et al., 2013). In the USA, the regulation of vital records is at the state
rather than federal level. Some states are relatively supportive of the
use of vital records for public health research, and others prohibitive,
which poses a challenge in capturing the race/ethnic and socio-
demographic diversity of the US population. Individual states may have
adequate representation of some but not all groups. We therefore
sought to approximate this diversity by forming a consortium of four
twin-research sites that have long-established relationships with state
vital records departments/divisions, in order to collectively provide
reasonable coverage of minority as well as white non-Hispanic twin
pairs. We decided to target only like-sex twin pairs, given the common,
though not universal (Vink et al., 2012), finding of lower correlations
for DZ unlike-sex pairs (Polderman et al., 2015), possibly due to dif-
ferences in gene expression between the sexes (c.f., Eaves et al., 1978).
Without this exclusion, given relatively modest sample sizes, estimates
of the magnitude of genetic effects might be inflated. We also targeted
all possible eligible twin pairs available within each birth cohort, ap-
proximating a random sample of these within the practical limits of real
world subject tracing and voluntary recruitment, and did not attempt to
select a subset of high risk individuals or pairs; to have done the latter
would distort our genetic and environmental analyses in ways that are
difficult to assess without a much larger twin study.

Table 1 uses maternal race/ethnicity data from the Center for Dis-
ease Control (CDC; https://wonder.cdc.gov/) on all births of twins to

determine the race/ethnic breakdown for the total US population of
twin pairs born 2006–2008, and suggests a breakdown that could ap-
proximate these proportions that would be achievable by the four twin-
site consortium. Rare minority groups are excluded because of concern
that in an Open Science project with wide data-sharing, participants
might be too easily identifiable. The Twin Hub is targeting a minimum
of 10 pairs per race/ethnic group per site (to maximize protection of
confidentiality) and approximately equal numbers of white non-His-
panic pairs per site (to balance recruitment challenges associated with
locating and engaging minority pairs across sites).

4. The generalizability of twin data

If twin data generalize to singletons, any causal relationships be-
tween environmental factors, including drug use, and brain mor-
phology detected using this analytic approach will in turn inform the
interpretation of longitudinal relationships between such factors and
the brain detected in the much larger ABCD consortium singleton
sample. We cannot know a priori the limits to the external validity (i.e.,
generalizability) of twin data for the major assessment domains of
clinical or cognitive neuroscience (nor indeed of individuals from any
other family structure), given the relative lack of large-sample neuroi-
maging data for twins and singletons in this age-group (by large sample
we mean many thousands, given the high likelihood of false positive
conclusions in underpowered studies, c.f., Ioannidis, 2005). However,
the ABCD sample size will, in time, speak to generalizability. We know
that since monozygotic twinning occurs randomly (Bulmer, 1970), MZ
pairs should be representative of genetic variation in the general po-
pulation, and a simple test for MZ-DZ pair mean differences will flag
measurement domains where DZ pairs may be less representative, re-
quiring greater caution in generalizations of findings. There are few
compelling examples of such mean differences by zygosity in same-sex
pairs in the literature (Kendler, 2001). We can learn more about twin-
singleton differences that might limit generalizability from twin data
with respect to maternal sociodemographic characteristics, such as may
be derived from birth record data.

The likely sociodemographic generalizability of the Twin Hub
sample to consortium singletons was investigated by the Missouri site of
the Twin Hub, using data on singleton versus twin pair births.
Comparisons were limited to white non-Hispanic pairs and African-
American pairs because of small sample sizes for twin pairs from other
race/ethnic groups. Table 2 summarizes significant or near significant
associations found by fitting a multiple logistic regression model pre-
dicting twin pair versus singleton birth. Independent variables include:
maternal age at childbirth (dummy variables for categories shown in
the table), educational level (categories <= 11 years, 12 years, 13–14
years, 15–16 years, 17 + years), marital status at childbirth (unmarried
mother with unnamed partner, unmarried mother with named partner,
married mother) and maternal place of origin (born in state versus
elsewhere). The only strong effects observed are the reduced prob-
abilities of twin births among teenagers and (to a lesser degree) in

Table 1
US twin pair births and projected Twin Hub targets based on maternal race/ethnicity.

Race/Ethnicity US Twin Pairs Born 2006–08 Target Sample (N = 800
pairs)

N % N %

Non-Hispanic:
White 250,500 60.9 495 61.9
Black 68,882 16.8 136 17.0
American Indian 3170 0.8 – –a

Asian 20,162 4.9 40 5.0
Hispanic: 65,014 15.8 129 16.0

a Excluded due to potential identifiability (small N).
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20–25-year-old white non-Hispanic women. With these modest excep-
tions, sociodemographic characteristics of mothers of twins and mo-
thers of singletons at the time of childbirth are very comparable.

A final respect in which twin pairs differ from singletons concerns
prematurity, birth weight, and fetal and infant death. Twin pair preg-
nancies are considered high-risk because of the increased associated
risks of fetal death, premature birth and low birth weight (Morrison,
2005). However, behavioral and psychiatric literatures have generally
failed to find important twin-singleton differences in later life (e.g.,
Barnes and Boutwell, 2013; Christensen et al., 2006; Johnson et al.,
2002; Kendler et al., 1995; Ordaz et al., 2010; Sadeghi et al., 2017; Tsou
et al., 2008), suggesting that with appropriate exclusionary criteria for
prematurity, extreme perinatal complications, and low birth-weight,
twins are very much like singletons.

4.1. Geographic mobility and the external validity of birth cohort data

A second challenge to the implementation of any US-based study
that relies on birth-record recruitment is posed by population mobility.
How well does a birth cohort of children in a state capture the socio-
economic and race/ethnic diversity of all children living in that state,
since birth records exclude children who have moved into the state
after their birth? The answer will likely vary as a function of im-
migration rates into, and emigration rates from, different states.
Therefore, we need to understand more about population mobility
patterns. We analyzed US Census Public Use Microdata Series (PUMS)
data (Ruggles et al., 2015) to examine the percentages of all children
aged 9–12 who were born in state, in the metropolitan areas of Denver,
Colorado; Minneapolis-St Paul, Minnesota; St Louis, Missouri; and
Richmond, Virginia. Respective percentages born in state were: Denver,
77%; Minneapolis-St Paul, 82%; St Louis, 84%; and Richmond, 79%. In
other words, a birth cohort will capture 75–85% of the major race/
ethnic group children resident in state at ages 9–12 for the consortium
sites. Thus reliance on birth cohorts of twin pairs should have minimal
effects on the generalizability of findings.

5. Twin Hub sites and participant ascertainment

The four sites in the Twin Hub each have over 25 years of experi-
ence studying behavioral development in twins, adoptees, and nuclear
families, with a focus on the genetic contributions to substance use
(SU). Twin study findings from member sites have addressed a wide
range of substantive topics, including reports that have examined how
specific and generalized risk are associated with the development of
adolescent SU (Krueger et al., 2002; Maes et al., 2004; Palmer et al.,
2012, 2013b, 2009; Young et al., 2006, 2000), the strong relationship of
antisocial behavior to alcohol and drug use (Button et al., 2006, 2007,
2009; Hicks et al., 2013; Hopfer et al., 2013), insights into G-E interplay
in adolescent SUD development (Hicks et al., 2010, 2012, 2014; Irons

et al., 2015; Maes et al., 2017; Vrieze et al., 2012), the relationship
between SU and brain integrity (Anokhin and Golosheykin, 2016;
Botteron et al., 2002; Carlson et al., 2002, 2004a,b, 2007; Gustavson
et al., 2017; Harper et al., 2016; Isen et al., 2014; Malone et al., 2014a;
Pagliaccio et al., 2015; Palmer et al., 2013a; Perlman et al., 2009; Prom-
Wormley et al., 2015; Sparks et al., 2014; Wilson et al., 2015; Yoon
et al., 2015; Young et al., 2009), and the molecular genetic bases of
SUDs (Agrawal et al., 2012; Clark et al., 2017; Derringer et al., 2015;
Maes et al., 2016; McGue et al., 2013; Samek et al., 2016) and asso-
ciated endophenotypes (Iacono, 2014; Iacono et al., 2014a,b; Liu et al.,
2017; Malone et al., 2016, 2014b; Vaidyanathan et al., 2014a,b;
Vaidyanathan et al., 2014c; Vrieze et al., 2014). Member sites have also
led the field in the development of methods for the analysis of data from
twins (Neale and Cardon, 1992c; Neale et al., 2006), and pioneered
research on the human gut microbiome (Faith et al., 2013; Turnbaugh
et al., 2009), including human-to-mouse gut microbiota transplantation
studies (Ridaura et al., 2013).

5.1. University of Colorado – Boulder

Participation in the Colorado Twin Registry (CTR) is achieved
through longstanding collaboration between the Institute for
Behavioral Genetics (IBG) and the Colorado Department of Health
(CDH), and is described in Rhea et al. (2006, 2013). Briefly, in 1984 the
CDH began mailing inquiry letters on behalf of IBG to parents of living
twins born from 1982 forward. Since 1999, the CDH had adopted a
‘negative consent’ process whereby data were released for twin births
unless the parents returned a card specifically prohibiting the CDH from
doing so. The CDH does not release information if inquiry letters are
returned as undeliverable, ‘return to sender’. In preparation for the
ABCD project, we collaborated with the CDH to update addresses of the
original undeliverable ‘return to senders’ from the birth years
2006–2008 and tried again to contact them. We also used our proven
tracking methods to update all contact information for the target birth
cohorts.

According to the CDH, 3217 twin pairs were born in Colorado
during the target years 2006–2008. The CTR initially had consent to
contact and access birth record information for 82% of those (2647
pairs). Among those, 1691 pairs are same sex, and we estimate, based
on same-sex and opposite-sex numbers and using Weinberg’s formula,
that 625 (38.2%) of those are MZ, and 1011 (61.8%) are DZ. For the
birth cohort as a whole, the estimates of the proportions of MZ to DZ
pairs among the same-sex pairs are 39.2% and 60.8% respectively, not
significantly different from the CTR ascertained pairs. The increase in
the proportion of DZ pairs compared to two decades earlier (see e.g.,
Hur et al., 1995) is common across all sites in the twin hub, and is
largely a function of increasing average maternal age and the higher DZ
twinning rate associated with older mothers (Rhea et al., 2017). As
described above, additional contact effort added a further 243 pairs to
our target sample. The approximate race/ethnicity breakdown, from
CDH reports based on birth record information is 25% Hispanic or
Latino (75% non-Hispanic), 96% white, 3% black or African Amer-
ican,< 1% each of American Indian/Alaskan, Asian, and Native Ha-
waiian or Other Pacific Islander.

5.2. University of Minnesota

In Minnesota, prospective ABCD twin pairs are drawn from the
MCTFR twin registry (Iacono and McGue, 2002; Iacono et al., 2006).
Using publicly available Minnesota Department of Health birth records,
which include a multiple birth check-off and the address of the parents
at the time of twin births, we begin by identifying the records for live-
born twins from birth years of interest (e.g., from 2006 to 2008 for
ABCD). Using this information, other publicly available resources, and
commercial search software, the MCTFR updates the addresses and
obtains parent phone numbers. We then contact families and, if they

Table 2
Maternal sociodemographic predictors of twin pair versus singleton births in Missouri,
2006–07, to white non-Hispanic and African-American mothers.

White non-Hispanic African-American

Adjusted OR 95% CI Adjusted OR 95% CI

Maternal Age
≤19 0.44 0.34–0.58 0.38 0.23–0.62
20–25 0.69 0.60–0.80 0.86 NS 0.62–1.18
26–30 1.00 – – 1.00 – –
31–34 1.18 1.01–1.38 1.10 NS 0.73–1.66
>35 1.42 1.18–1.72 1.04 NS 0.61–1.66

Mother Missouri-born 1.12 NS 0.99–1.26 0.88 NS 0.66–1.17
Maternal Education 17+

years
1.18 1.01–1.38 1.20 NS 0.70–2.07

Significance is indicated by 95% confidence intervals which are in the table.
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still reside in Minnesota, ask them to become part of the MCTFR reg-
istry where they can expect to be contacted at some future time to
participate in a research project. For ABCD, the MCTFR recruits families
who live in the metropolitan Twin Cities region (approximately 50% of
the statewide population) from this registry during the year the twins
reach age 9 or 10. Twin eligibility for participation requires that fa-
milies satisfy the same inclusion and exclusion criteria employed con-
sortium wide by ABCD singletons. For any given ABCD-relevant birth
year, there are approximately 730 metropolitan twin births, 270 of
which are opposite sex dizygotic pairs who are not recruited for ABCD.
From this information, and using Weinberg’s formula, the MCTFR can
estimate that of the 460 same sex pairs born in the greater Minneapolis
area each year, approximately 40% are monozygotic and 60% dizy-
gotic. According to the State birth certificate data, about 74% of the
families are white non-Hispanic, 6% are black, 3% are Asian, and 17%
are of other, mixed, or unknown ethnicity. Six percent of the parents
identify as Hispanic.

5.3. Virginia Commonwealth University

In Virginia, prospective ABCD twin pairs are drawn from the Mid-
Atlantic Twin Registry (MATR; Anderson et al., 2002; Lilley and
Silberg, 2013) of Virginia Commonwealth University (VCU). Using
Department of Health birth records from VA and NC, the MATR begin
by identifying the records for live-born twins from birth years of in-
terest (e.g., from 2006 to 2008 for ABCD). This information is then
combined with other publicly available resources, and commercial
search software to update addresses and obtain parents' phone num-
bers. We then contact families and ask them to become part of the
MATR, which allows us to keep track of them and invite them to take
part in research studies. The ABCD study recruits families from the
MATR who live within a three-hour drive of Richmond during the year
the twins reach age 9 or 10. Eligibility for participation requires that
families satisfy the same inclusion and exclusion criteria employed
consortium-wide by ABCD singletons. For the ABCD-relevant birth
years of 2006–2008 in Virginia, there are approximately 5432 twin
births, 1968 of which are opposite sex dizygotic pairs who are not re-
cruited for ABCD. From this information, and using Weinberg’s formula,
the MATR can estimate that of the 3464 same sex pairs born in the state
during these years, approximately 27.5% are monozygotic and 72.5%
dizygotic. According to the State birth certificate data potentially eli-
gible twin families in VA and NC ages 9–10 during the ABCD recruit-
ment timeframe, about 65% of the families are white non-Hispanic, 3%
are white with Hispanic ethnicity, 22% are black, 6% are Asian, and 4%
are of other, mixed, or unknown ethnicity.

5.4. Washington University

At the Washington University site, after review by the state DHSS
IRB and approval of stringent data security measures, we were granted
access to all birth records for years 2006–2008, with the exception of
births where an adoption had occurred (because of a restriction in state
law). This authorization, in addition to identifiers, included standard
sociodemographic variables (such as maternal educational level, mar-
ital status during pregnancy/childbirth, age at childbirth, maternal
state/country of birth). Such variables are useful for the characteriza-
tion of sampling biases occurring through failure to locate a twin pair,
or through non-response of a family to invitations to participate. We
identified like-sex twin pairs, and excluded pairs with known fetal or
other death of either or both twins, and pairs not meeting study elig-
ibility criteria because of prematurity or low birth weight. We merged
maternal data with a cumulative data-base of state driver’s license/state
ID records for a secondary data analysis phase (negative screen), to
exclude pairs whose mother appeared either to have moved out of state,
or to be not resident within Missouri within one hundred miles of the
Medical Center. However, because Hispanic families in Missouri are

disproportionately resident in Kansas City, some 250 miles from the
Medical Center, these families were retained in our sampling frame.
Pairs were then assigned for tracing using standard fee-for-service
commercial data-bases.

In a small proportion of pairs the mother could not be linked to
driver’s license/state ID data (2.2%). Major predictors of inability to
link the mother were (i) mother born out-of-state (Spearman
rhos = −0.17 for white non-Hispanics, −0.12 for African-Americans):
64% of linked versus 7% of unlinked white non-Hispanics born out-of-
state, 74% versus 38% for African-Americans; (ii) low maternal edu-
cational level (Spearman rho of −0.14 in white non-Hispanics, with
37% of linked versus 75% of unlinked having high school education or
less, but no significant association in African Americans); (iii) mother
married, more likely to be reported by linked than unlinked white non-
Hispanics (76% versus 53%, Spearman rho = 0.07) but less likely to be
reported by linked than unlinked African Americans (28% versus 53%,
Spearman rho = −0.04). Given the relatively small absolute percen-
tage unlinked, we would not expect the exclusion of these pairs from
our sampling frame to negatively impact external validity.

6. Data analysis overview

Consistent with the ABCD Data Analysis and Informatics Core, the
primary statistical analysis framework for modeling twin data is the
hugely popular statistical programing language R (R Core Team, 2012).
This standardization around open source software conveys enormous
benefits for transparency, rigor and reproducibility between the twin
and non-twin analyses. The most widely used methodological frame-
work for analyses of twin data is structural equation modeling (SEM;
Bollen, 1989), which encompasses a huge array of statistical methods,
including regression, mixed models, multilevel and factor analysis.
Fortunately, it is possible to fit these models in R, which makes for a
seamless integration of the twin and non-twin data analyses. The fol-
lowing sections describe in more detail the precise analyses that yield
the interpretations described in Sections 1 and 2.

6.1. Blending twin data with singleton data across the ABCD consortium

Data from the ABCD twins can be analyzed in two main ways. First,
the intent is that all data will be shared with the ABCD Data Analysis
and Informatics Center (DAIC) for incorporation in all non-twin ana-
lyses. Linear modeling – such as may be used to predict substance use at
a later time from earlier neurocognitive and demographic variables –
will include clustering by twin pair to correct parameter standard errors
which may be biased by the non-independence of the members of a
twin pair. Thus twin pairs will play an important role in almost all ‘non-
twin’ analyses in the ABCD study. Second, the twin data can be ana-
lyzed to yield inferences about the relative impacts of genetic and en-
vironmental factors, be these measured or inferred (i.e., latent). In light
of how twin subjects undergo the same assessments as singletons, these
analyses will also include singletons, because more accurate estimates
of the within-person means, variances and covariances increase the
statistical power to make inferences about individual differences in
cognition, development, psychopathology and SU. Importantly, twins
located through school-based recruitment at singleton ABCD sites will
be welcomed into the ABCD study, and will be pooled with Twin Hub
twin data in analyses where their non-random (non-birth-record) in-
clusion (such as referred by a schoolmate) would not be a confound.

6.2. Univariate analysis

A statistical model for the classical twin design is shown as a path
diagram in Fig. 1. There is a one-to-one relationship between a path
diagram and a set of linear model equations that describe it (Neale and
Cardon, 1992a). Latent variables (A, C, E and D) are shown in circles,
and observed measurements as rectangles. With MZ and DZ twins it is
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possible to estimate paths (regression coefficients) from the latent ad-
ditive genetic (a), individual specific environment (e) and either genetic
dominance (d) or common/shared environment (c) factors. The model
is identified by separating the twins into MZ and DZ groups, in which
the covariances between twins’ latent variables differ according to ge-
netic theory. MZ twins’ genotypes are essentially identical, so their
additive genetic factors are set to correlate 1.0, whereas those of DZ
twins are set to 0.5, consistent with a model of many loci on the genome
being (weakly) associated with outcomes. Repeated application of this
univariate (monophenotype) model to, e.g., voxel-wise cortical thick-
ness data, enables construction of maps of the impact of genetic and
environmental factors on the brain (e.g., Schmitt et al., 2007a). These
will be generated separately according to gender, with statistical con-
trol for age, research site, scanner type and sociodemographic variables
as needed. SU, psychopathology and risk factors will be analyzed si-
milarly. Such baseline analyses are important to validate methodology;
results may be compared against previous findings and can provide
‘sanity checking’ of more complex analyses.

6.3. Multivariate analysis

Similar to the partitioning of variation within MRI measures or SU,
covariation between them can be divided into genetic and environ-
mental sources. These multivariate analyses (see Fig. 2), when applied
to measures such as voxelwise data of cortical thickness or surface area,
enable the drawing of genetic correlation maps either among brain
measures or between them and relevant cognitive or substance use
outcomes (Prom-Wormley et al., 2015; Schmitt et al., 2007a; Schmitt
et al., 2009, 2007b; Wallace et al., 2010). Although very high dimen-
sional models (there being many tens of thousands of voxels per
hemisphere in a typical scan) cannot be fitted with only 800 pairs of
twins, it is possible to assemble such large genetic or environmental
correlation matrices from the repeated application of bivariate ana-
lyses. These large matrices can then be explored for genetically
homogeneous regions, such as were reported by Twin Hub and UCSD
researchers in Science (Chen et al., 2012) and PNAS (Chen et al., 2013).
Of particular interest in the present study are associations between MRI
assessments and risk factors or outcomes such as SU phenotypes and
mental health.

An important issue with many phenotypes is that data of interest is
not yet available on those who have not yet expressed the phenotype of
interest. For example, abuse or dependence are not available among
those who have yet to initiate use. For some purposes, such as esti-
mating the dose-response relationship of SU on brain structure or
function, it is appropriate to code non-initiators as zero. However, in
cases where an individual’s propensity to heavy use or dependence
(Conway et al., 2010; Vanyukov et al., 2012) is of interest, ‘probe’ items
concerning quantity of use, symptoms of abuse or addiction are best
coded as missing in the absence of initiation. Maximum likelihood
methods are robust to data of this type, which may be considered as

‘missing by design.’ Importantly, the relationship between liability to
initiate use and liability to express symptoms of, say, addiction cannot
be measured in unrelated individuals. Effectively, there is no variation
in the initiation measure among those who have been measured on
addiction (i.e., all youth with measures for problems of addiction have
initiated use), so it is not possible to estimate covariance between in-
itiation and addiction. Data from twins, however, overcome this lim-
itation by using the cotwin’s data. Conceptually, we can imagine that
average liability to initiate would be higher among twins concordant
for initiation than in discordant pairs. If liability to initiate is related to
that for addiction, then higher rates of addiction should be observed in
concordant than in discordant pairs. This is an issue the Twin Hub is
poised to address as the ABCD pre-adolescent sample ages into ado-
lescence. Statistical models for this type of effect are known as condi-
tional-causal-common pathway (Kendler et al., 1999; Koopmans et al.,
1999; Neale et al., 2006). These alternative models provide a way to
distinguish between the effects of actual use as compared to the pro-
pensity to use. More fine-tuned resolution can be effected using co-
morbidity models (Neale and Kendler, 1995) which can be dis-
tinguished with adequate statistical power under many scenarios (Rhee
et al., 2004).

6.4. Analyzing direction of causation with data from twins

Standard multivariate models for twin data (e.g., Fig. 2), which
cannot speak to causation, are essentially common factor models that
separate both factor and residual variances into A, E and C/D compo-
nents (McArdle and Goldsmith, 1990). Direction of causation models
replace one or more of the common factor components with regression
paths directly from one phenotype to another, i.e., multiple linear re-
gression (e.g., Fig. 3). In the absence of common factors, a model with
direct causal paths from every observed variable to every other ob-
served variable is identified with data from relatives. In practice, such
causal models are sensitive to the proportion of measurement error in
each phenotype (Heath et al., 1993a), but bias from this issue can be
corrected when either multiple indicators or repeated measures are

Fig. 1. Path diagram for resemblance between observed variables between twin 1 and
Twin 2 in a pair. Latent additive genetic (A), common environment (C), dominance ge-
netic (D), and individual- specific environment (E) variables cause variation.

Fig. 2. Multivariate genetic factor model for endophenotypes (End1-END3) and beha-
vioral measures (Beh4–Beh7). Latent additive genetic (A), common environment (C), and
individual-specific environment (E) sources of variation affect the factors and the residual
variance specific to each measure.
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available − as is the case in the ABCD study. These methods can be
applied to either continuous measures (e.g., neuroimaging) or ordinal
ones (e.g., substance initiation or quantity). Hybrid models that include
both common factors and direct phenotype-to-phenotype causation are
an active area of methodological development; such models should be
available for future ABCD analyses.

6.5. Longitudinal models for twin data

Randomized experimental designs are considered the gold standard
for inferring causation, but they are unsuitable for epidemiological
studies of substance use, because the experimental conditions depart
from those in nature, and it is, clearly, unethical to give drugs to chil-
dren. Both longitudinal and twin study data permit some causal in-
ference, and their combination provides internal validation. The four
Twin Hub sites have a long history of conducting longitudinal twin
studies, and of developing methods to analyze them. The Markov model
coauthored by Heath (Eaves et al., 1986) permits estimation of genetic
and environmental contributions to developmental change of a single
trait, e.g., hippocampal volume (see Fig. 4).

A straightforward extension is to permit moderation of, e.g., genetic
innovation by substance use status, the prediction being that new
sources of genetic variation would emerge as a direct function of sub-
stance use. This approach is essentially a longitudinal data extension of
the genotype by environment interaction (GXE) model described by
Purcell (2002) and van der Sluis et al. (2012), with the important ad-
dition that substance use can elicit new sources of genetic variance
(increase values of a2…a4) as well as change the effect size of factors
operating in the absence of substance use (a1). GXE interaction models
in the presence of G-E covariance present special challenges (Rathouz
et al., 2008; Van Hulle and Rathouz, 2015; Zheng and Rathouz, 2015;
Zheng et al., 2015); some are met by careful structural equation mod-
eling, while others require complexities such as numerical integration
of the likelihood over the range of hypothetical values of an un-
measured genetic or environmental factor.

Latent growth curve (LGC) models (Meredith and Tisak, 1990;
Muthen and Asparouhov, 2015; Muthén et al., 2011; Nylund et al.,
2008) are popular for the analysis of longitudinal data, partly because
they require relatively few parameters regardless of the number of
measurement occasions. They also make predictions about means and
covariances over time, and across relatives. Most applications feature
variance in level, slope, quadratic and residual components, and these
random components can be partitioned into the genetic and environ-
mental factors using the twin study design. We note that beyond de-
scriptive polynomial growth curves, it is possible to compare the fit of
many mathematical curves, such as the Gompertz, exponential or

logistic (McArdle and Hamagami, 2003; Neale and McArdle, 2000).
Variable inter-test intervals are also readily modeled, as Schmitt et al.
(2014) showed in analyses of twins and siblings in the NIMH intramural
study of brain development. To address whether substance use directly
affects developmental trajectories, or that they covary due to shared
common risk factors, we will use multivariate extensions of the LGC
model. Analogous to the single occasion models, both common factor
and direction of causation models can be implemented within the LGC
framework. We will also test for heterogeneity of developmental tra-
jectories (Lubke and Muthen, 2005; Muthén et al., 2011), and patterns
of switching between them, using growth mixture modeling (Dolan
et al., 2005; Raijmakers et al., 2001).

Patterns of substance use over time vary considerably both within
and between persons; individuals may oscillate between periods of drug
use and remission. To investigate such irregular variation, we can
employ dynamical systems models. These are especially useful for long
time series (e.g., from fMRI or ecological momentary assessments such
as might be obtained from Fitbit or other personal devices), and here a
more individual-specific approach may be taken (Boker et al., 2014,
2009; Boker and Nesselroade, 2002; Hu et al., 2014). Parameter esti-
mates from such models may then be explored to identify ‘types’ of
substance use pattern, via methods such as latent class analysis. These
models are again suitable for application to multivariate and twin data.
They can offer novel insights into processes such as relapse and rebound
effects, known phenomena in substance use patterns over time.

6.6. Models for data collected from parents

While the twin study is a powerful design to partition genetic and
environmental factors, it has its limitations, and can benefit greatly
from the addition of data collected from other relatives (Keller et al.,
2009; Medland et al., 2009). Measures of psychopathology and sub-
stance use history from the parents can provide valuable insights into
the environmental and genetic transmission of substance use liability.
In addition, spousal resemblance for substance use has been found to be
substantial. In a twin study, the genetic effects of parental assortative
mating can be confounded with those of the shared environment, as

Fig. 3. Multivariate direction of causation model for five observed variables (×1–×5)
with additive genetic (A), common environment (C), and individual-specific environment
(E) sources of variation specific to each measure.

Fig. 4. Genetic model of developmental change over time, following Eaves et al. (1986).
The effects of occasion-specific (a1…at) and constant genetic factors (a) may accumulate
over time through paths g. Similar processes may occur for environmental components.
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both processes increase equally the phenotypic variance and MZ and DZ
covariances. Modeling data from parents permits resolution between
mechanisms of marital resemblance (Eaves and Heath, 1981), and ex-
panded twin models that include parents can differentiate between
genetic and cultural transmission over generations (Neale and Fulker,
1984).

6.7. Statistical power

The advantages of data from twins described above are clear, but
the choice of 800 pairs is less so. To maximize statistical power, one
might choose to study 5500 pairs (i.e., make the entire consortium
sample a twin sample), but this would not be feasible for many reasons,
and the representativeness of the sample and the generalization of
findings to non-twins might be questioned. Instead, ABCD is designed to
assess and control for any twin-non-twin differences, by ascertaining
both types at each of the four Twin Hub sites. Each Twin Hub site will
ascertain and Image 200 pairs, along with 150 or 200 non-twins, within
a single two-year timeframe for baseline data collection. The resulting
study of 800 twin pairs is the largest longitudinal prospective neuroi-
maging study of twins to date. Because DZ twins outnumber MZ pairs
by about 2:1, to optimize power to detect both genetic and shared
environmental effects, the twin hub plans to over-recruit MZ pairs such
that the final sample is more balanced by zygosity. The power to detect
additive genetic effects depends on the proportion of shared environ-
mental effects, and vice versa (Visscher, 2004; Visscher et al., 2008).
For continuous measures (neuroimaging phenotypes, height, weight,
factor scores derived from many test items), power to detect heritable
variation (a2) consistently exceeds 0.8 when a2 > 0.3 regardless of the
proportion shared environmental effects, c2. The converse is true for
detecting c2. Power to detect a2 or c2 in binary measures (e.g., initiation
of marijuana) is lower (Neale et al., 1994) and depends on the pro-
portion who meet criteria. Maximum power is available when half the
sample meets criteria, for which case our sample size yields> 0.8
power to find a2 > 0.5 significant at the 0.05 level; for prevalences of
25, 10 and 5%, a2 of 0.6, 0.7 and 0.8, respectively, suffice. Power in-
creases when shared environmental variance is non-zero. Considerably
more power is available to detect variation in traits measured at the
ordinal level; a2 > 0.4 with a 5-category scale where the lowest ca-
tegory is 50%. These results emphasize the need to use at least ordinal
and preferably continuous level measurement wherever possible. Mul-
tivariate analyses also increase power in many circumstances (Evans,
2002).

Power to identify direction of causation hypotheses increases with
the difference in the pattern of twin correlations of the two traits. Heath
et al. (1993b, see their Table IV) show that 800 pairs can be adequate
for traits correlating as little as 0.15 if their twin correlations differ
substantially. The greater the traits correlate, the higher the statistical
power. We expect to find highly heritable structural neuroimaging
traits, but lower values for functional imaging measures, substance use,
psychopathology and risk factors, which benefits power for this type of
analysis. It would be optimistic to find correlations exceeding 0.3 across
domains.

7. Summary and conclusions

The study of twins has provided compelling evidence of the ubi-
quitous influence of genetics, as well as environments, on important
human traits ranging from anthropometric characteristics, to physio-
logical and biochemical traits, to diseases, and psychological and be-
havioral traits and disorders (Polderman et al., 2015). Recent advances
in molecular biology and neuroscience have brought into even sharper
focus the value of the classical twin study in understanding the biolo-
gical pathways, including those involving epigenetics, the metabolome,
the microbiome, and brain structure and function, that underlie com-
plex human traits (van Dongen et al., 2012).

If twins were rare or unusual in some respect, this conceptual ele-
gance would not be of much practical advantage. However, twin births
are relatively frequent (now approximately 3% of children) and their
twin status carries no stigma or barrier to their participation in re-
search. Indeed, it has been the uniform experience of the ABCD Twin
Hub investigators, and that of researchers around the world, that twins
are exceptionally willing to participate in research studies (Martin
et al., 1997) and that they show strong levels of commitment to long-
itudinal assessment. This has allowed us to develop twin registries in-
volving thousands of pairs of twins and their family members who are
representative of the population as a whole, and who are willing to
participate in multiple research assessments over long periods of time
(Anderson et al., 2002; Iacono et al., 2006; Rhea et al., 2006, 2013).
These fortuitous circumstances have made twins and their families ideal
participants for an intensive and extensive ten-year longitudinal study
like the ABCD.

The ABCD twin study will allow us to assess the role of genetics and
environment on deep and detailed phenotypic assessments, such as
functional MRI data, that would be hard to achieve any other way. By
comparison, in genome wide association analysis (GWAS) and its re-
lated estimation of ‘SNP heritability’, very large samples are needed to
obtain reasonable statistical precision. Having such large samples
would preclude the level of fine grained and extensive phenotypic
analysis required by ABCD. Establishing the extent of the genetic con-
tribution to the outcome is a critical first step, especially when con-
sidering novel phenotypes in developmental neuroscience, like fMRI
data during complex cognitive tasks.

But the real power of twin studies, and their careful and rigorous
statistical analysis, is that they permit us to address critical questions
about the associations among traits and even the causal relationships
underlying them. Through bivariate and multivariate analyses, we can
test hypotheses about the causes of comorbidity or correlation between
two or more traits. Thus although two traits may be associated, they
may be so because of genetic pleiotropy when a common genetic cause
influences two or more phenotypes; the classic early example in psy-
chiatric genetics is that depression and anxiety share a common genetic
vulnerability (Kendler et al., 1992). Alternatively, they may be asso-
ciated because one trait, e.g. substance use, directly alters the second
trait, e.g. brain development.

Conceptually, the most striking application of the twin design in
distinguishing phenotypic causation from genetic pleiotropy is the
through the use of discordant MZ twins. MZ co-twin designs are par-
ticularly powerful for testing hypotheses about specific risks because
MZ twins are perfectly matched for age, sex, and genetic background,
and partially matched for environmental background (van Dongen
et al., 2012). Given this, the association of a risk phenotype (like
marijuana use), that is present in one member of a pair and not the
other, with an outcome (like IQ or brain function), would provide clear
evidence of causation that cannot be explained away as mere genetic
correlation. As has been described in this paper, this conceptually ele-
gant idea can be extended to quantitative analyses of the twins’ re-
semblance for the traits. The signature characteristic of genetic pleio-
tropy as distinct from phenotypic causality is that there is a genetic
correlation but no environmental correlation. The signature char-
acteristic of phenotypic causation is that the outcome is predicted to the
same degree by both the genetic and environment variation influencing
the causal phenotype. This distinction can be assessed through appro-
priate bivariate or multivariate genetic modeling of twin data (e.g., De
Moor et al., 2008; Jackson et al., 2016; van Beek et al., 2014). In the
absence of twin data, ABCD’s epidemiological survey of individual
children would leave unresolved some critical questions about the in-
terpretation of observed associations among substance use or other
environmental exposures and outcomes for the developing brain or
cognitive performance.

Outlining, in hypothetical terms, the utility of twins in develop-
mental neuroscience, versus making an intensive and extensive study
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like the ABCD a reality, are quite different things. Fortunately, the
ABCD Twin Hub comprises four study sites that each represent decades
of experience in ascertaining and recruiting twins, implementing in-
tensive assessment protocols, and successfully retaining families in their
studies over long periods of time, in some cases over decades from in-
fancy to adulthood. To accomplish this requires the development of
highly experienced study teams, an investment of time and funds in
establishing relationships with government offices, maintaining data-
bases and family contacts through such things as annual newsletters
and holiday cards over long periods of time, considerable efforts de-
voted to regulatory compliance, a substantial dose of dogged persis-
tence and, perhaps above all, an enthusiasm for the value of the study of
twins to make a real contribution to psychological science in general
and, now, ABCD in particular.
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