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Abstract

Background—Individuals with schizophrenia have a diminished ability to use reward history to 

adaptively guide behavior. However, tasks traditionally used to assess such deficits often rely on 

multiple cognitive and neural processes, leaving etiology unresolved. In the current study, we 

adopted recent computational formalisms of reinforcement learning to distinguish between model-

based and model-free decision-making in hopes of specifying mechanisms associated with 

reinforcement-learning dysfunction in SZ. Under this framework, decision-making is model-free 

to the extent that it relies solely on prior reward history, and model-based if it relies on prospective 

information such as motivational state, future consequences, and the likelihood of obtaining 

various outcomes.

Methods—Model-based and model-free decision-making was assessed in 33 schizophrenia 

patients and 30 controls using a 2-stage 2-alternative forced choice task previously demonstrated 

to discern individual differences in reliance on the two forms of reinforcement-learning.

Results—We show that, compared to controls, schizophrenia patients demonstrate decreased 

reliance on model-based decision-making. Further, parameter estimates of model-based behavior 

correlate positively with IQ and working memory measures, suggesting that model-based deficits 

seen in schizophrenia may be partially explained by higher-order cognitive deficits.

Conclusions—These findings demonstrate specific reinforcement-learning and decision-making 

deficits and thereby provide valuable insights for understanding disordered behavior in 

schizophrenia.
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Introduction

Schizophrenia (SZ) has long been characterized by deficits in goal-directed decision-

making. However, the underlying mechanisms are not well understood. Recent work has 
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suggested the involvement of specific reward-learning deficits, namely that SZ patients have 

difficulties creating representations for the value of various actions, and in utilizing such 

representations to drive behavior (Gold, Waltz, Prentice, Morris, & Heerey, 2008). Given the 

existence of multiple decision-making processes and systems, a critical next step in this line 

of research is to identify specific mechanisms underlying aberrant value-learning. In the 

current study we use a recent reinforcement-learning (RL) framework to identify the 

contributions of separable value-learning systems to decision-making. This framework 

formalizes the idea that the value of actions can be learned either solely by considering prior 

reward history (model-free), or by taking into account the structure of the environment and 

future consequences of actions (model-based) (Daw, Niv, & Dayan, 2005).

Importantly, such RL algorithms have a number of attractive features. For example, they link 

data collected at many different levels of analysis (e.g., biological, behavioral), and thus, are 

well suited for linking symptomology of disorders, such as SZ, back to clinically-relevant, 

neural and psychological mechanisms. Further, they generate precise quantitative estimates 

of parameters, which are proposed to govern learning processes (e.g., learning rate). These 

precise estimates, in turn, afford specific predictions about the neural dynamics and 

behavioral correlates of reward learning. In addition, RL models are supported by a wealth 

of human and animal, neurophysiological and behavioral evidence, and they hold great 

potential for increasing the precision and sophistication of our current understanding of 

psychiatric disorders (Deserno, Boehme, Heinz, & Schlagenhauf, 2013). Here we leverage a 

recently developed RL framework to specify aberrant decision-making in SZ in terms of the 

relative contributions of putative model-free and model-based systems.

Broadly, decision-makers can express either habitual or goal-directed behavior (Balleine, 

Daw, & O’Doherty, 2008; Dickinson & Balleine, 2002). Habitual behavior is characterized 

by the repetition of rewarded actions (or avoidance of punished action) (Thorndike, 1927). 

For example, children may learn to refrain from touching a hot stove that burned them. In 

contrast, goal-directed behavior reflects decisions made prospectively by weighing actions 

based on an “internal model” of actions and their probable outcomes (Tolman, 1948). For 

example, adults may learn to grab the handle of a hot oven if doing so enables them to 

subsequently extract a delicious cake. Importantly, goal-directed decision-making allows for 

flexible and exploratory behavior; reductions in this system having been associated with 

rigid and problematic decision-making in several psychiatric populations (Gillan, Kosinski, 

Whelan, Phelps, & Daw, 2016; Voon et al., 2014). In the case of SZ, use of inflexible, 

habitual decision-making systems has been thought to underlie the formation of delusions, 

where individuals show a bias against disconfirmatory evidence (i.e., alternative 

explanations) for irrational belief structures (Woodward, Moritz, Cuttler, & Whitman, 2006). 

Further, use of rigid and inflexible decision-making is characteristic of the negative 

symptoms of SZ where patients show a reduction in the variety of pleasurable activities they 

pursue on a daily basis, and a reduced ability to mentally generate such pleasurable options 

(Hartmann et al., 2015; Strauss, Waltz, & Gold, 2014).

Recently, the post-training distinction between habitual and goal-directed behavior has been 

proposed to arise from two distinct computational learning rules, model-based and model-

free. This account enables the precise quantitative assessment of the relative contributions, 
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and thereby neural mechanisms of these systems during decision-making (Balleine, et al., 

2008; Daw, et al., 2005). The model-free system, for example, has become associated with 

reward prediction error signaling in midbrain dopamine neurons and, in human fMRI, their 

targets in areas like the ventral striatum (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; 

Gläscher, Daw, Dayan, & O’Doherty, 2010; Schultz, Dayan, & Montague, 1997). In 

contrast, model-based decision-making is reliant on a network of regions needed for 

representing internal models of the environment to bias value functions including lateral and 

dorsolateral prefrontal cortex (dlPFC) (Smittenaar, FitzGerald, Romei, Wright, & Dolan, 

2013), and ventromedial and orbital prefrontal cortices (vmPFC and OFC) (Lee, Shimojo, & 

O’Doherty, 2014; McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011) (Gläscher, et 

al., 2010; Lee, et al., 2014), as well as ventral striatum (Daw, et al., 2011; McDannald, et al., 

2011). Recent work has also pointed to a critical role of ventral striatal presynaptic 

dopamine in modulating the relative contributions of these systems (Deserno et al., 2015).

Previous reports have explored mechanisms associated with both habitual and goal-directed 

control in SZ. For example, SZ patients have impairments in cognitive systems associated 

with model-based decision-making including proactive cognitive control and working 

memory (Barch & Ceaser, 2012; Otto, Raio, Chiang, Phelps, & Daw, 2013; Otto, Skatova, 

Madlon-Kay, & Daw, 2014). SZ patients also have functional and structural abnormalities in 

brain regions thought to support model-based behavior (dlPFC: (Barch, Csernansky, 

Conturo, & Snyder, 2002; Minzenberg, Laird, Thelen, Carter, & Glahn, 2009; Semkovska, 

Bédard, Godbout, Limoge, & Stip, 2004); vmPFC: (Hooker, Bruce, Lincoln, Fisher, & 

Vinogradov, 2011; Park, Park, Chun, Kim, & Kim, 2008); OFC: (Gur et al., 2000; Pantelis et 

al., 2003; Plailly, d’Amato, Saoud, & Royet, 2006). SZ patients are also impaired at goal-

directed control as assessed using outcome devaluation (Morris, Quail, Griffiths, Green, & 

Balleine, 2015). In contrast, SZ patients often show intact functioning in apparently model-

free RL processes, such as, procedural learning (Kéri et al., 2000; Weickert et al., 2002) and 

implicit reinforcement-learning (Heerey, Bell-Warren, & Gold, 2008). However, such 

interpretations are complicated by studies that show impaired ventral striatal prediction error 

signaling (the key mechanism believed to support model-free learning) in schizophrenia 

(Juckel, Schlagenhauf, Koslowski, Wüstenberg, et al., 2006; Murray et al., 2007; 

Schlagenhauf et al., 2014), and are also behaviorally impaired at blocking tasks, a classic 

test of model-free error-driven learning (Moran, Al-Uzri, Watson, & Reveley, 2003). 

Predictions of intact model-free learning and impaired model-based learning are consistent 

with a recent computational study showing that while basic learning of stimulus-response 

contingencies is intact in schizophrenia, deficits in working memory interact to undermine 

learning that relies on internal models of the environment (Collins, Brown, Gold, Waltz, & 

Frank, 2014). However, relative reliance on model-based and model-free RL has never been 

directly tested in SZ. Applying computational formalisms of these very different forms of 

learning may allow specific and quantifiable characterization of aberrant value-learning in 

SZ, and also provide testable hypotheses about specific mechanisms, enabling development 

of targeted interventions (Deserno, et al., 2013; Montague, Dolan, Friston, & Dayan, 2012).

To investigate relative reliance on model-based versus model-free control in decision-

making we utilized a previously validated 2-stage Markov decision task (Daw, et al., 2011; 

Otto, et al., 2013; Otto, et al., 2014; Smittenaar, et al., 2013; Voon, et al., 2014; Wunderlich, 
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Smittenaar, & Dolan, 2012). In the first-stage, participants decide between two alternatives, 

each of which yields a common (70%) or rare (30%) transition to a respective second-stage, 

where they again choose between two alternatives that are rewarded probabilistically (Figure 

1). Reward contingencies of second-stage choices vary trial-by-trial, so that participants 

must learn from experience to maximize rewarded outcomes. The fact that first-stage 

choices are rewarded only indirectly, via the second-stage, allows distinguishing model-

based from model-free learning strategies, because the former is characterized by evaluating 

options prospectively in terms of a model of their consequences. Thus, if the likelihood of 

repeating first-stage choices is based solely on the prior trials being rewarded; choice 

behavior is considered model-free (i.e., habitual). However, if the likelihood of repeating 

first-stage-choices depends on the interaction of prior rewards with the transition 

contingencies they are considered model-based (i.e., goal-directed).

We hypothesized that SZ patients would be more reliant on model-free systems compared to 

healthy controls. This prediction is consistent with previous reports, which show intact 

procedural learning and implicit RL in SZ (Bleuler, 1950; Heerey, et al., 2008; Kéri, et al., 

2000; Weickert, et al., 2002). We also predicted that SZ patients would show diminished 

model-based behavior in the Markov decision-making task. This prediction is consistent 

with literature suggesting that SZ patients have deficits in proactive cognitive control and 

working memory capacity (Barch & Ceaser, 2012), as well as functional and structural 

abnormalities in brain regions associated with model-based RL. Furthermore, we 

hypothesized that patient deficits in model-based RL would be correlated with measures of 

working memory capacity and premorbid intellectual functioning. This prediction is 

consistent with the aforementioned literature linking model-based RL to higher order 

cognitive processes such as cognitive control and working memory capacity (Otto, et al., 

2013; Otto, et al., 2014). Finally, we predicted that parameter estimates reflecting 

diminished model-based RL would be correlated with negative symptoms such that 

individuals with greater negative symptom severity would demonstrate decreased model-

based behavior.

Materials & Methods

Participants

Participants were 33 individuals meeting DSM-IV criteria for SZ or schizoaffective disorder 

(SZA; N=13), and 30 controls (CN), with no personal or family history of psychosis, from 

the Saint Louis community. All SZ patients were stable outpatients in the chronic phase of 

the illness. SZ patients were recruited from outpatient clinics in the Saint Louis community. 

Controls were recruited through flyers. Exclusion criteria included 1) DSM-IV diagnosis of 

substance abuse or dependence in the past six months for all participants; 2) DSM-IV 

diagnosis of major depressive disorder or dysthymia in the past year for controls; 3) changes 

in medication type or dosage two weeks prior to consent; 4) past head injury with 

documented neurological sequelae and/or loss of consciousness. We did not exclude 

participants for current/previous anxiety or personality disorders in either group. One control 

participant met criteria for a previous depressive episode, but was currently in full remission. 

We excluded 4 controls (2 for previous head injury and 2 for current substance abuse) and 2 
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patients (for current substance abuse). The Washington University Institutional Review 

Board approved the study. Participants provided written informed consent in accordance 

with Washington University’s Human Subject Committee’s criteria.

Clinical Assessments

Diagnoses were determined by the Structured Clinical Interview for DSM-IV-TR (First, 

Spitzer, Gibbon, & Williams, 2001). Negative symptoms were assessed using the Brief 

Negative Symptom Scale (BNSS) (Kirkpatrick et al., 2011). Raters were master’s level 

clinicians who participated in regular joint interview and rating sessions to ensure reliability. 

Anhedonia was also assessed using the Snaith-Hamilton Pleasure Scale (Snaith et al., 1995). 

Premorbid intellectual functioning was estimated using the Wechsler Test of Adult Reading 

(WTAR) (Wechsler, 2001). The WTAR is a brief reading recognition test, which has shown 

robust correlations to Wechsler Adult Intelligence Scale. All participants we required to pass 

a urine drug screen and a Breathalyzer test.

Sequential Learning Task

Participants completed a modified version of a two-stage decision task (Figure 1) (Daw, et 

al., 2011). Extensive instructions on the task structure and practice trials were completed 

prior to task administration (see supplement). At the start of each trial, two alternatives were 

presented. Participants’ choices then led, probabilistically, to one of two second-stage 

“states” comprising two subsequent alternatives. Importantly, each first-stage choice led 

more frequently (70%) to one of two second-stage states (Figure 1). Choices in the second 

stage probabilistically resulted in visual feedback of reward or no-reward. In order to ensure 

learning throughout the task, the probability of receiving a reward for the four second-stage 

alternatives varied slowly according to Gaussian random walks. Altogether, participants 

completed 200 trials. Participants were given 3 seconds to make each choice. The interval 

between first and second-stage stimuli was 1 second, following choice. Feedback following 

the second-stage choice was presented for 1 second, followed by another 1 second before the 

next trial began. Participants were informed that they would receive increased bonus money 

for task accuracy. However, we paid participants a five-dollar bonus for completing the task, 

regardless of performance. Stimuli on the task consisted of spaceships and aliens, instead of 

the Tibetan characters in the original report (Daw, et al., 2011), to provide a more intuitive 

task environment for better engaging the patient population (Decker et al., under review).

N-Back Task

In order to assess the contribution of working memory to model-based and model-free 

learning estimates, a subset of participants (20 SZ; 20 CN) completed two versions of an N-

Back task (1-Back and 2-Back). During the task, participants were instructed to identify 

letters, presented one at a time on a computer screen, as targets or non-targets. In a given 

level of the N-back, a letter is a target if the same letter was presented “N” trials before the 

current trial. Each version (1-Back and 2-Back) consisted of 64 trials and 16 targets per run. 

Interstimulus intervals were 2 seconds, thus runs were 128 seconds each, regardless of N-

back level.
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The sensitivity index, d’, was used to quantify N-back performance, controlling for target or 

non-target response biases. Raw d’ values were adjusted by the “log linear” transformation 

to address extreme false-alarm and hit proportions (Hautus, 1995).

Task Data Analysis

Trial by trial learning was analyzed for signs of model-based vs. model-free updating in two 

ways (Daw, et al., 2011), first using a hierarchical linear regression examining selection of 

the same or a different first stage option based on the previous trial’s reward and transition 

type. This is a simplified approximation to a more detailed RL model, which we also fit. The 

RL model considers choices in light of the full history of preceding events.

Hierarchical Linear Model (HLM)—We fit a HLM following (Daw, et al., 2011). 

Analyses were performed using the lme4 linear mixed-effects package in R (Bates & Sarkar, 

2007). The dependent variable was the first-stage choice (coded: stay or shift). Predictors 

included dummy variables indicating whether the previous trial was rewarded or not (1 and 

−1, respectively), whether the previous trial’s transition was rare or common (−1 and 1, 

respectively), and their interaction. All coefficients were taken as random effects across 

participants, and estimates are reported across participants. To observe group differences 

between model-based and model-free estimates, diagnostic group was dummy coded for 

controls and patients (0 and 1 respectively). IQ as determined by the Wechsler Test of Adult 

Reading (WTAR), clinician-rated negative symptoms, the Snaith-Hamilton pleasure scale, 

and olanzapine equivalent antipsychotic dose (Gardner, Murphy, O’Donnell, Centorrino, & 

Baldessarini, 2014) were group-centered and interacted as factors with task effects (i.e., 

reward, rarity, and the reward × rarity interaction) to determine individual difference 

relationships.

RL Modeling—We modeled choice behavior as reflecting a combination of model-based 

and model-free value-learning, using an adaptation of a previously described hybrid RL 

model (Daw, et al., 2011; Doll, Shohamy, & Daw, 2015). Altogether, the task consisted of 3 

states (stage 1. state a; stage 2. state b & c) with two possible actions at each state (a1, a2) 

(Figure 1). The model predicted choice behavior as reflecting trial-wise RL of the value of 

all six state-action pairs. Specific parameters were incorporated to quantify the extent to 

which individuals’ choice patterns reflected reliance on model-based or model-free estimates 

of state-action values during decision-making.

Model-free component—Model-free RL was computed using a modified SARSA (State-

Action-Reward-State-Action) temporal difference-learning algorithm. This algorithm 

updates, at each stage i of trial t, the action value (QMF ) for each state (s) action (a) pair 

visited:

where 
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and α is a free learning-rate parameter, which we have set equivalent for both task stages. 

Following Doll et al. 2014, the reward term is divided by subjects’ learning rates. This 

division does not influence overall choice likelihood. It does, however, rescale beta weights 

in the softmax choice rule, and reduces the correlation between subjects’ beta weights and 

their learning rates, thereby enhancing parameter estimation.

Note that the update rule for both first and second stages i is in terms of the terminal reward 

only, and we have omitted subsequent-stage action values from δ. This corresponds to the 

restriction λ=1 in the model of (Daw, et al., 2011). We did so because in the second-stage, 

no subsequent stages are visited, and in the first-stage, we observed (analyses not reported) 

that choices did not depend on model-free, TD(0), first-stage updates from second-stage 

action values. Specifically, beta weights (described below) relating choices to model-free 

updates of first- to second-stage transitions were not reliably different from zero across 

participants. For this reason, no separate eligibility trace was needed in the calculation of 

model-free state-action values because there was only a single stage-skipping update for the 

first-stage.

Model-based component—Model-based action values (QMB ) for first-stage actions are 

defined prospectively, considering the maximally valued outcomes that one could obtain, 

given state transitions.

This equation gives the model-based value of action aj in state s1, based on the probability 

that each stage 1 action would lead to a given second-stage state and the maximally valued 

actions a’ in second-stage states s2a and s2b. We variously modeled transition structure 

learning.

by assuming that either 1) participants knew the correct transition structure from the 

beginning, 2) that they guessed which transition was rare and which was common based 

upon experienced transition frequencies (Daw, et al., 2011), or 3) that they calculated 

transition probabilities from a running tally of transitions from each action in each state. 

Results were the same regardless of the model used for transition structure learning. We 

present results specifically from the model in which we assume that participants calculated 

transition probabilities from a running tally of transitions from each action in each state. For 

example the following equation yields the probability of observing second stage state (s2k) 

given action (aj) in the first stage 
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where n is the number of observed states.

Combining model-based and model-free values to predict choices—Model-

based and model-free value estimates were combined to predict first-stage choices using the 

softmax rule.

For first-stage choices, we included free parameters βMF and βMB describing the extent to 

which model-free and model-based value estimates predict choice behavior. Note that this 

formulation is algebraically equivalent to that used by Daw et al., 2011 with βMB = wβ and 

βMF = ((1 − w)β). Following Daw et al. (2011), we also included a stickiness parameter p to 

account for individual differences in perseveration in first-stage choices from the previous 

trial; rep is an indicator function set to 1 in case the individual repeats their first-stage choice 

from the previous trial and 0 otherwise.

Second-stage model-based and model-free values are identical (QMB = QMF) and the choice 

is thus weighted by a single parameter βstage2.

In total the model had 5 free parameters (βMF,βMB,βstage2,α, ρ). Parameter values were 

estimated for each participant individually by likelihood maximization using the MATLAB 

function fmincon, and then subjected to group and individual difference analyses. Given the 

lack of normality in parameter distributions, non-parametric Wilcox ranked-sum tests were 

used for group differences. We also tested for individual difference correlations between 

symptom, neurocognitive, medication metrics, and model parameter estimates.

Reaction Time—Finally, we analyzed median second-stage reaction times for additional 

evidence of group differences in model-based decision-making. We conducted a repeated-

measures ANOVA with two factors: diagnostic group and transition type. In order to observe 

individual difference relationships of second-stage reaction time differences between 

transition types, partial correlations were conducted between an RT difference score (rare–

common) and negative symptoms, neurocognitive measures, and the Snaith-Hamilton 

pleasure scale holding diagnostic group status constant.
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Results

Demographics

Groups did not significantly differ in age, gender, ethnicity, or parental education (Table 1). 

However, the personal education of the SZ group was lower than the controls. The SZ group 

self-reported increased levels of anhedonia compared to the controls.

Task Behavior

To assess relative contributions of model-based and model-free learning, we analyzed first-

stage choice behavior that, critically, should vary as a function of reward and transition 

history, depending on model-based or model-free learning. For example, consider a trial 

where a first-stage choice results in a rare transition leading to an unlikely second-stage state 

where a reward is obtained (rare-rewarded condition, Figure 2). The pure model-free learner 

would stay with the same first stage choice, following a reward, ignoring the transition 

structure. However, the model-based learner, taking into consideration both reward and task 

structure, would show a reward × rarity interaction: a decreased likelihood of repeating the 

same first-stage choice because shifting would increase the probability of encountering the 

previously rewarded second-stage state. Figure 2 illustrates frequency of staying with 

previous first-stage choices for each group.

1. Hierarchical Linear Model—We fit a HLM predicting the current first-stage choice as 

a function of the previous trial’s reward, the previous transition rarity, and diagnostic status 

(Table 2). We found a significant effect of reward, such that the probability of staying with 

the same first-stage choice increased when the previous choice was rewarded, demonstrating 

model-free learning. There was also a significant reward × rarity interaction – a marker of 

model-based learning – such that participants were less likely to repeat the prior first-stage 

choice that led to a reward if it was preceded by a rare versus common transition. 

Furthermore, there was a significant reward × rarity × group interaction, supporting that the 

SZ group demonstrated less model-based learning compared to the CN group. Finally, the 

group × reward interaction was not significant, suggesting that groups did not differ on 

estimates of model-free learning.

We further examined individual difference interactions with model-based and model-free 

decision-making estimates (Table 3). Contrary to our hypotheses, clinician-rated negative 

symptoms (BNSS total and BNSS Avolition/Anhedonia Subscale) did not interact with 

estimates of model-based or model-free decision-making. However, separately, we observed 

a significant reward × rarity × IQ interaction, controlling for group, suggesting that, 

independent of diagnostic status, individuals with greater intellectual capacity utilized 

model-based control more than those with reduced premorbid functioning. This relationship 

was also observed in the CN and SZ groups separately. In another model, we observed a 

significant Snaith × reward interaction suggesting a positive relationship between hedonic 

capacity and model-free decision-making. However, when fitting the model separately for 

each group, this relationship remained significant only in the patient group. Olanzapine 

equivalent dose and age did not interact with model-free and model-based effects.

Culbreth et al. Page 9

J Abnorm Psychol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, given significant effects of IQ and diagnostic group on model-based learning 

estimates we fit a HLM, which included both factors into the same model to determine if IQ 

accounted for the diagnostic group effect (supplement). The results indicated a significant 

effect of IQ (IQ × rarity × reward interaction), and a trend level effect of group (group × 

rarity × reward) on model-based learning estimates. These results suggest that while the IQ 

differences associated with SZ account for part of the effect of diagnostic group on model-

based learning, there is still some effect of psychosis above and beyond differences in 

premorbid intellectual functioning, which has been found to be reduced in association with 

the development of psychosis (Agnew-Blais et al., 2015; David, Malmberg, Brandt, 

Allebeck, & Lewis, 1997).

2. Computational Modeling of Learning Processes—The preceding analysis is 

based on a simplified marker of model-based and model-free learning in terms of experience 

on the previous trial. To verify that our results were not dependent on this simplification, we 

also fit a full RL model to choice and reward data to estimate the influence of model-based 

and model-free learning on decision-making for each subject (Daw, et al., 2011; Doll, et al., 

2015). Our model had 5 free parameters: βMB (model-based weighting factor), βMF (model-

free weighting factor), βstage2 (second-stage inverse temperature), ρ (preservation of the 

first-stage choice), α (learning rate). Table 4 provides the group level estimates for each 

parameter. Converging with previous HLM analyses, the model-based weighting factor 

(βMB) was significantly blunted in the SZ group suggesting decreased reliance on model-

based learning in the patient group. However, model-free parameter estimates did not differ 

between groups. No further group differences were reliable. Note that Table 4 excludes two 

outlier participants with exceedingly large βMF estimates from the SZ group, but none of our 

conclusions change when all participants are included.

Correlations of individual difference metrics with parameter estimates from the 

computational model mirrored the HLM analyses. βMB positively correlated with IQ 

(r=0.42,p<0.01). In order to more fully explore the relationship between βMB and premorbid 

intellectual functioning we correlated performance on an n-back task, d’, with βMB in a 

subset of participants and found these variables to be trend-level related (r=0.30; p=0.06). 

Consistent with previous analyses the effect of diagnostic group was estimated with the 

same sign but did not remain significant after accounting for premorbid intellectual 

functioning (p=0.1). The Snaith-Hamilton pleasure scale positively correlated with βMF 

(r=0.375,p<0.01) (supplemental materials). Correlations between negative symptoms (BNSS 

total and BNSS Avolition/Anhedonia Subscale), olanzapine equivalents, age, and parameters 

estimates were not significant. Finally, βMB positively correlated with task accuracy 

(r=0.27;p=0.03) suggesting that those who performed better on the task more readily utilized 

model-based strategies. This relationship was not observed between βMF and task 

performance (r=−0.05;p=0.68).

3. Reaction Time—We analyzed second-stage median reaction times (RT) as another 

indicator of learning of the transition model, a necessary component for model-based choice 

(Figure 3). Importantly, model-based decisions are informed by transition expectations, and 

to the extent subjects anticipate events according to a learned transition model, second-stage 
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RTs following rare transitions may be slower than RTs following common transitions 

(reflecting expectancy violations). Model-free decisions, by contrast, do not utilize transition 

expectations. Thus, differences in the second-stage RT between transition types are 

consistent with model-based learning during decision-making (Deserno, et al., 2015). In our 

data, the model-based weighting factor, βMB, correlated with the subject-level RT 

differences for rare compared to common transitions (r=0.615; p<0.001). A repeated-

measures ANOVA revealed a significant main effect of transition on RT, where choices 

following a rare transition were slower than those following common transitions 

(F=38.60,p<0.001). Contrary to our hypotheses, the interaction between transition type and 

diagnostic group was not significant (F=1.64,p=0.2). However, when analyzing the simple 

effect of RT within each group separately, we found that the size of the transition effect for 

the CN group (η2
partial=0.272) was over twice the size of the SZ group (η2

partial=0.102) 

consistent with lower model-based decision-making in SZ. Finally, a significant partial 

correlation was found between RT slowing following rare versus common transitions and 

IQ, holding diagnostic group constant (r = 0.30;p=0.02) providing converging evidence for 

the aforementioned relationship between IQ and model-based control. We also examined the 

relationship between RT slowing and N-Back performance as another maker of intellectual 

functioning and found these variables to be significantly related (r=0.38; p<0.02). Finally, no 

significant relationship was found between RT slowing and self-reported or clinician-rated 

negative symptoms (BNSS total and BNSS Avolition/Anhedonia Subscale).

Discussion

The goal of the current experiment was to assess reliance on model-based and model-free 

learning in SZ. Consistent with our hypotheses, SZ patients demonstrated reduced model-

based learning compared to controls, suggesting either diminished motivation or diminished 

capacity for utilizing internal models of the environment during decision-making. In 

contrast, model-free estimates did not differ between groups. Supplementary analyses of 

second-stage reaction times provided evidence that subjects in both groups exhibited 

knowledge of the transition model. In general, participants took longer to respond for 

second-stage choices preceded by rare compared to common transitions. That these 

expectancy effects are detectable even in SZ suggests that these subjects understood the task 

instructions and model structure, and that their deficits in model-based choice behavior may 

relate to the use of this information to guide action. However, this effect (though not 

significantly different) was almost twice as large in the controls, suggesting a more robust 

effect of model-based learning for controls. Model-based learning correlated positively with 

measures of intellectual functioning (IQ and N-Back) in both SZ patients and controls. 

Furthermore, even though the groups did not differ significantly on IQ, supplementary 

analyses showed that IQ absorbed some, but not all, of the variance associated with 

diagnostic group. Specifically, group differences in model-based learning were still trend-

level when accounting for IQ, suggesting that aspects of psychosis may influence model-

based learning estimates above and beyond differences in IQ. These results were similar 

when controlling for n-back performance. Finally, the hypothesis that model-based and 

model-free learning estimates would be related to negative symptom severity was not 
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robustly supported, although some evidence did suggest that reduced model-free learning 

was associated with greater levels of self-reported anhedonia.

The current result of reduced model-based and intact model-free learning in SZ is consistent 

with several recent reports that have examined the role of higher-order cognition in reward 

learning. For example, Collins et al., showed working-memory impairments (a strong 

correlate of model-based learning) entirely accounted for impairments on a RL task in SZ 

(Collins, et al., 2014). Similarly, Strauss et al. found that SZ choice-behavior was best-fit by 

a standard actor-critic model, putatively driven by ventral striatal prediction-error signaling, 

a conceptually similar mechanism to model-free learning (Strauss et al., 2015). In a recent 

report by our group (Culbreth, Gold, Cools, & Barch, 2015), we found that choice behavior 

of SZ patients on a reward-learning task was related to hypoactivation of a fronto-parietal 

network of brain regions (strongly tied to model-based learning), whereas striatal regions did 

not show relationships to task behavior. Such prior reports are consistent with our findings of 

intact model-free but reduced model-based decision-making in SZ, and also consistent with 

the relationship between model-based behavior and N-Back performance seen in the current 

study. Further, our results are also consistent with previous reports, which have examined the 

external correlates of model-based and model-free learning in healthy subjects. For example, 

as shown for cognitive control, working memory, and IQ (Gillan, et al., 2016; Otto, et al., 

2013; Otto, et al., 2014), we also found higher-order cognitive metrics correlating with 

model-based decision-making. Taken together, such results suggest a critical link between 

higher-order cognitive deficits and value-based decision-making in SZ.

While the current results demonstrate a clear relationship between reward learning and 

higher-order cognition in SZ, we failed to see robust correlations between model-based 

learning and negative symptoms, though we did see a relationship between individual 

differences in model-free learning and self-reported anhedonia. It is not entirely clear to us 

why we did not also see a relationship between model-based learning and negative 

symptoms. However, these results are conceptually consistent with a recent report, which 

used an identical task in a large non-clinical sample and failed to find correlations between 

model-based learning and the negative symptom traits of schizotypy (Gillan, et al., 2016). 

One possible explanation is that the stimulus-response relationships in the current task 

design rely on working memory and cognitive control in order to learn and leverage the 

transition matrix during decision-making. Thus, it is possible that these cognitive demands 

limited our ability to observe a more direct relationship to individual differences in negative 

symptoms. Consistent with this interpretation, many previous studies that have demonstrated 

a significant relationship between negative symptoms and reward learning have implemented 

somewhat simpler task designs where stimulus-response learning might require less 

involvement of higher-order cognitive processes compared to the current design (Gold et al., 

2012; Shurman, Horan, & Nuechterlein, 2005; Waltz, Frank, Wiecki, & Gold, 2011; Waltz 

& Gold, 2007). Further, several recent reports examining reward-learning in SZ which also 

used paradigms that might engage cognitive control relatively more strongly have also failed 

to show correlations between task performance and negative symptoms. This is consistent 

with the hypothesis that the role of higher order cognitive processes in decision-making 

deficits may be somewhat independent of negative symptoms (Collins, et al., 2014; 

Culbreth, et al., 2015; Strauss, et al., 2015).
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While no significant correlations between model-based learning and negative symptoms 

were observed in the current report, we did observe a positive correlation between hedonic 

capacity and model-free learning estimates, suggesting that those SZ patients with higher 

levels of anhedonia demonstrate reduced model-free learning. This finding is consistent with 

previous literature showing that reduced ventral striatal prediction error signaling (a 

mechanism proposed to underlie model-free learning) is robustly correlated with negative 

symptom severity (Juckel, Schlagenhauf, Koslowski, Filonov, et al., 2006; Juckel, 

Schlagenhauf, Koslowski, Wüstenberg, et al., 2006).

Though our results support our hypothesis of a specific deficit in model-based decision-

making in SZ, it is worth considering why premorbid IQ and working memory capacity may 

explain some between-group variance. First, we included such measures into our study 

design to better understand covariates of model-based learning and provide converging 

evidence with previous reports, not to suggest that such factors should be controlled for to 

establish an effect of diagnostic group. Controlling for such variables to establish an 

independent effect of diagnostic group is ill informed as this would remove schizophrenia-

related variability from the data (Meehl, 1971). There are multiple longitudinal studies 

suggesting that premorbid IQ is associated with conversion to psychosis (Agnew-Blais, et 

al., 2015; David, et al., 1997). Thus, the interpretation that IQ explains the group differences 

we observed in model-based learning neglects previous data suggesting that IQ is a causally 

related to the pathogenesis of SZ. We instead view the findings regarding individual 

difference relationships between working memory, IQ, and model-based learning estimates 

to be an attempt to better understand factors that might be contributing to such a group 

difference. In the case of these data, it appears that the reductions in model-based learning 

seen in SZ may be due, in part, to reduced functioning of higher-order cognitive processes, 

such as working memory. One intriguing possibility may be that core deficits in model-

based learning contribute to decreased performance on IQ-type assessments; however, 

further research is needed to explore such hypotheses.

Future Directions

Our study provides precise, computational evidence for diminished model-based learning in 

SZ. Moreover, our results suggest directly testable hypotheses about dysfunction, in SZ, in 

neural systems thought to support model-based RL. Previous literature suggests three likely 

biological targets for such a deficit: abnormalities in presynaptic dopamine in the ventral 

striatum (Deserno, et al., 2015), lateral prefrontal cortex functioning (Deserno, et al., 2015; 

Gläscher, et al., 2010), or cortico-striatal connectivity (Deserno, et al., 2015). Studies 

addressing these biological functions will allow researchers to specify the neural structure of 

the RL deficit in SZ, and may yield biologically-informed targets for novel interventions.

While the current study provides robust evidence for diminished model-based decision-

making in SZ, more work is need to understand why SZ patients show reductions in model-

based learning. Importantly, model-based behavior relies on a number of underlying 

cognitive and affective processes, and further work will be needed to disentangle such 

processes in order to understand why SZ is associated with reductions in model-based 

learning. Several possibilities exist, such that SZ patients may: 1) have difficulties generating 
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complex internal models of task environments 2) generate inaccurate models of task 

environments 3) generate models more slowly 4) be able to generate internal models but fail 

to exert the cognitive effort required to produce such models. Thus, follow up studies will be 

needed to more accurately characterize the nature of reduced model-based decision-making 

seen in the current report in order to understand differential patterns in healthy and 

psychiatric populations.

Finally, it remains to be seen how deficits in model-based and model-free learning may 

manifest across psychiatric disorders (e.g., depression, anxiety disorders). In a recent article, 

Gillan et al., assessed model-based learning in a large general population sample and 

collected a number of self-reported symptom measures (including depression, schizotypy, 

anxiety, etc.) They found that model-based learning did not vary as a function of depressive 

symptoms or the negative symptoms in schizotypy. In contrast, they found that model-based 

learning was negatively related to symptoms of compulsion, intrusive thought patterns, and 

substance abuse, suggesting that disorders characterized by obsessive behavior and intrusive 

thinking might be the most likely to exhibit deficits in model-based learning. While the 

Gillan et al study provided a large sample and assessed symptom severity in multiple 

domains, it was a non-clinical sample and it is possible that that behavior in individuals 

meeting full criteria for psychiatric disorders might differ. Thus, future research is needed to 

more thoroughly evaluate model-based learning across diagnostic boundaries in clinical 

populations.

Limitations

The current study has several limitations. First, we did not explicitly assess whether 

individuals with schizophrenia understood the task instructions and the transition structure. 

We believe that the significant second-stage RT differences between rare and common 

transitions coupled with the trend-level model-based learning effect in a HLM including 

only the patient group suggests that schizophrenia patients understood the transition function 

and task instructions (see supplemental materials), but were more specifically impaired at 

leveraging this information to guide decision behavior. Furthermore, extensive instructions 

were given pertaining to the nature of the task and the importance of the mapping between 

first and second stage states (see supplemental materials). Second, we did not collect 

measures of positive and disorganized symptoms. This was done for two reasons: we were 

trying to make the session relative short for participants, and our participants were stable 

outpatients with relatively low levels of positive symptoms and relatively little variation in 

positive symptoms, reducing the likelihood that they would show meaningful relationships 

to task variables. Third, while we found a robust relationship between IQ and model-based 

learning, it should be noted that our IQ measure, WTAR, is concise measure and thus cannot 

index particular cognitive domain that may be driving this relationship. However, our n-back 

analyses suggest that working memory may be one cognitive domain particularly important 

in model-based learning. Finally, the majority of our SZ sample was currently taking anti-

psychotic medications, which may have altered reward-related responses. However, no 

correlations between olanzapine equivalents and task parameter estimates were significant.
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Summary

The goal of the current experiment was to assess reliance on model-based and model-free 

learning in SZ. We found evidence for reduced model-based behavior in SZ patients, 

suggesting either that individuals with SZ have diminished capacity or diminished 

motivation to utilize internal models of the environment for goal-directed behavior. These 

findings are consistent with reports showing that SZ patients have deficits in processing 

domains that support model-based learning such as cognitive control and working memory 

capacity. Our results were also specific in that there was no group difference in model-free 

estimates suggesting that basic, habitual RL is unaltered in SZ. Importantly, our findings 

motivate investigations into specific cortico-striatal systems that likely mediate diminished 

model-based behavior in SZ. Such investigations will deepen our understanding of etiology, 

and facilitate the discovery of targeted, novel interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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General Scientific Summary

This study uses a recent reinforcement-learning framework to specify deficits in reward 

learning in schizophrenia. We show that while individuals with schizophrenia display 

intact slow, habitual learning processes, they have a reduced ability to make decisions 

using future consequences of actions.
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Figure 1. 
A. Sample trial diagram: binary choice at stage one (spaceships) leads probabilistically to 

one of two second stage states (aliens) each with two choices that probabilistically result in 

reward/no-reward (treasure). B. Task structure: Each stage one choice has a common or rare 

transition to each of the second stage states.

Culbreth et al. Page 20

J Abnorm Psychol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
First-stage choice behavior (coded as stay/shift) averaged across individuals within each 

group.

Note: Error Bars are presented as standard errors.
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Figure 3. 
Second-stage reaction time by transition type for each group

Note: Error Bars are presented as standard errors.
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Table 2

Coefficients predicting response repetition from the previous trial outcome, the transition type, and diagnostic 

group.

Coefficient Estimate (SE) p-value

Intercept 1.51 (0.13) <0.001

Reward 0.49 (0.07) <0.001

Rarity 0.06 (0.04) 0.097

Group 0.10 (0.12) 0.46

Reward × Rarity 0.26 (0.06) <0.001

Rarity × Group −0.01 (0.03) 0.681

Reward × Group 0.09 (0.07) 0.177

Reward × Rarity × Group −0.11 (0.06) 0.049

Note: Error bars are presented as standard errors
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Table 3

External Correlates of model-based and model-free learning

Brief Negative Symptom Scale (BNSS)

Coefficient Estimate (SE) p-value

Intercept 1.63 (0.17) <0.001

Reward 0.61 (0.11) <0.001

Rarity 0.02 (0.06) 0.67

BNSS −0.03 (0.01) 0.03

Reward × Rarity 0.12 (0.07) 0.09

Reward × BNSS −0.007 (0.008) 0.40

Rarity × BNSS 0.0003 (0.004) 0.085

Reward × Rarity × BNSS 0.006 (0.005) 0.24

IQ

Coefficient Estimate (SE) p-value

Intercept 1.51 (0.13) <0.001

Reward 0.50 (0.07) <0.001

Rarity 0.06 (0.04) 0.10

Group 0.12 (0.11) 0.28

IQ 0.02 (0.009) 0.07

Reward × Rarity 0.25 (0.05) <0.001

Reward × IQ 0.004 (0.005) 0.49

Rarity × IQ 0.004 (0.003) 0.13

Reward × Rarity × IQ 0.014 (0.004) <0.001

Snaith-Hamilton Pleasure Scale (Hedonic Capacity)

Coefficient Estimate (SE) p-value

Intercept 1.51 (0.13) <0.001

Reward 0.50 (0.07) <0.001

Rarity 0.06 (0.04) 0.09

Group 0.12 (0.11) 0.28

SNAITH 0.03 (0.01) 0.09

Reward × Rarity 0.26 (0.06) <0.001

Reward × SNAITH 0.02 (0.008) 0.03

Rarity × SNAITH 0.003 (0.004) 0.50

Reward × Rarity × SNAITH 0.01 (0.01) 0.11

Note: Coefficients predicting response repetition from the outcome of the previous trial, the transition type, and negative symptoms (BNSS total 
score), WTAR estimated full scale IQ, and the Snaith-Hamilton Pleasure Scale. Models including Snaith and IQ were tested across both groups. 
The model including BNSS was included only the SZ group
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Table 4

Parameter Estimates from Hybrid Model

Parameter Schizophrenia Control p-value

βMF 0.79 (0.17) 0.66 (0.10) 0.94

βMB 0.57 (0.34) 1.28 (0.40) 0.04

βstage2 1.03 (0.22) 1.40 (0.20) 0.14

α 0.61 (0.06) 0.65 (0.06) 0.96

ρ 1.08 (0.16) 1.01 (0.16) 0.69

NLL 198.17 (7.77) 195.90 (9.73) 0.95

Note: βMF: model-free parameter; βMB: model-based parameter; βstage2: stage-2 inverse temperature; α: learning rate; ρ: perseveration 
parameter; NLL: negative log likelihood.
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