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ABSTRACT
BACKGROUND: Midbrain dopaminergic neurons code a computational quantity, reward prediction error (RPE),
which has been causally related to learning. Recently, this insight has been leveraged to link phenomenological and
biological levels of understanding in psychiatric disorders, such as schizophrenia. However, results have been mixed,
possibly due to small sample sizes. Here we present results from two studies with relatively large sample sizes to
assess ventral striatum (VS) RPE in schizophrenia.
METHODS: In the current study we analyzed data from two independent studies, involving a total of 87 chronic
medicated schizophrenia patients and 61 control subjects. Subjects completed a probabilistic reinforcement-learning
task in conjunction with functional magnetic resonance imaging scanning. We fit each participant’s choice behavior
to a Q-learning model and derived trialwise RPEs. We then modeled blood oxygen level–dependent (BOLD) signal
data with parametric regressor functions using these values to determine whether patient and control groups differed
in prediction error–related BOLD signal modulations.
RESULTS: Both groups demonstrated robust VS RPE BOLD activations. Interestingly, these BOLD activation
patterns did not differ between groups in either study. This was true when we included all participants in the analysis,
as well as when we excluded participants whose data was not sufficiently fit by the models.
CONCLUSIONS: These data demonstrate the utility of computational methods in isolating or testing underlying
mechanisms of interest in psychiatric disorders. Importantly, similar VS RPE signal encoding across groups suggests
that this mechanism does not drive task deficits in these patients. Deficits may instead stem from aberrant prefrontal
or parietal circuits associated with maintenance and selection of goal-relevant information.
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Schizophrenia (SZ) is associated with a diminished ability to use
reward history to adaptively guide behavior. These deficits have
been shown across a wide variety of tasks and have been
associated with important aspects of the illness (1). Although
previous studies have established a broad reward-learning deficit
in SZ, most rely solely on standard tasks metrics (e.g., task
accuracy) and neuroimaging approaches, which do not always
clearly delineate underlying psychological and neural mechanisms.
This limits etiological understanding of the specific neural circuits,
neurotransmitters, and cognitive/emotional processes that give
rise to these deficits. Methods in computational psychiatry hold
the particular advantage of specifying such broadly defined
deficits by isolating underlying mechanisms of interest.

Importantly, reward-learning impairment could reflect a number
of underlying mechanisms. For example, it could emerge from
abnormal representations of the expected value of actions, or from
disrupted signaling of mismatches between expected and
obtained outcomes, i.e., reward prediction errors (RPEs) (2,3).
Reinforcement learning is a powerful framework for quantifying
and linking such mechanisms to underlying biology (4). For
example, a robust finding in the animal literature is that RPEs
are coded by the phasic firing of midbrain dopaminergic neurons
& 2016 Society of Biological Psychiatry. Published by Elsevier Inc
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(5). More recently, human functional magnetic resonance imaging
(fMRI) studies have demonstrated RPE encoding in the ventral
striatum (VS) (a target region of midbrain dopaminergic neurons)
extending findings observed in animals (6,7). These findings have
been instrumental because they link adaptive learning to dopami-
nergic signaling through an intermediate computational mecha-
nism (RPE signaling). In the current article, we aim to demonstrate
how methods in the field of computational psychiatry, particularly
reinforcement-learning algorithms, hold particular promise in
clarifying the role of specific mechanisms potentially contributing
to reward-learning impairments. Specifically, we use two relatively
large samples to examine the integrity of neural indicators of RPE
in SZ (8–10).

Dopamine dysregulation is associated with SZ, including
increased striatal dopamine neurotransmission and synthesis
capacity (11,12). Increased baseline dopaminergic activity in
SZ has been proposed to introduce computational noise in the
reinforcement-learning system, blunting RPE signaling and
resulting in poor reward learning (13,14). This hypothesis is
bolstered by evidence that pharmacological manipulations
increasing dopamine tone in control (CN) participants yield
blunted VS RPE signals (15). SZ has also been associated with
. All rights reserved.
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chaotic dopamine firing along with elevations in baseline
dopaminergic activity (13). These abnormal firing patterns are
thought to simulate inappropriate RPE signaling to otherwise
nonsalient, neutral stimuli and may underlie the formation of
delusions (13,16). The idea that abnormal VS RPE signaling
might cause events to be perceived as unduly salient is an
intriguing hypothesis, linking phenomenological and biological
domains of understanding in SZ.

Several studies have examined RPE signaling in SZ (17).
These studies have yielded mixed findings, with some reports
demonstrating decreased VS RPE signaling for SZ patients
compared with CN participants (18–20), and others not
(21–25). There are several reasons why these reports may be
mixed. First, there may be heterogeneity in the phase of illness
studied: Some reports recruited first-episode unmedicated
patients (19,20) and others chronic medicated patients
(21–25), with some evidence suggesting that blunted VS
RPE signaling may be more pronounced in unmedicated
patients (20,26). This literature is also hampered by small
sample sizes, with most studies recruiting fewer than 20
subjects per group (18,21–24,26). These small samples are
problematic because positive findings with small samples
represent estimates of effect sizes with high uncertainty (27).
Another issue is heterogeneity in methods used to quantify VS
RPE signaling. Some reports have examined VS RPE signaling
by performing blood oxygen level–dependent (BOLD) con-
trasts between task conditions (18,22–25), for example, con-
trasting trials where reward was expected from trials where
reward was unexpected. However, such approaches may lack
sensitivity, as RPE magnitudes are not calculated on a trial-by-
trial basis. In contrast, others have fit participant choice behavior
to a reinforcement-learning algorithm to generate trialwise
prediction error (PE) estimates (19–21). Finally, for those studies
that implemented reinforcement-learning algorithms, few studies
have performed tests to ensure that these models fit choice
behavior significantly better than chance (19,21,22). This con-
sideration is important, as parameter estimates from poor-fitting
individuals are difficult to interpret and may be misinterpreted as
aberrant RPE signaling. In summary, evidence is mixed for VS
RPE signaling as a mechanism for reward-learning dysfunction
in SZ, particularly for chronic medicated patients.

In the current study, we utilized computational approaches
to examine VS RPE signaling in two independent samples of
chronic medicated outpatients with SZ and CN participants,
testing the assertion that aberrant VS RPE signals underlie
reward-learning dysfunction. We used a probabilistic reversal
learning (PRL) task that has been well validated in the basic
and clinical science literatures (20,28–30). To examine trialwise
PE we fit each participant’s choice behavior to a Q-learning
model, and entered trialwise PE values as regressors in our
imaging analyses to index VS reactivity (20).
METHODS AND MATERIALS

Participants

Participants were recruited from two independent study sites:
Washington University in St. Louis (WUSTL) (SZ patients 5 58,
CN participants 5 40) and the Maryland Psychiatric Research
Center at the University of Maryland School of Medicine
Biological Psychiatry: Cognitive Neuroscience and Neuroi
(SZ patients 5 35; CN participants 5 23). Data from each of
these samples using conventional fMRI analyses were pre-
sented in Culbreth et al. (28) and Waltz et al. (30), respectively.
Each site received approval from their respective institutional
review boards, and all subjects provided informed consent. In
the Maryland sample, 6 SZ patients and 2 CN participants
were excluded due to poor task performance; however, no
participants were excluded due to excessive movement (see
the Supplement). In the WUSTL sample, 1 SZ patient and 4
CN participants were excluded due to excessive movement
during scanning (movement based on root mean square was
greater than 0.2 across the run), yielding final sample sizes of
93 and 50 across sites.

Clinical Assessments

Diagnoses were determined using the Structured Clinical
Interview for DSM-IV-TR (31). Negative symptoms were
assessed using the Scale for the Assessment of Negative
Symptoms (SANS) (32). Positive and disorganized symptoms
were assessed using the Scale for the Assessment of Positive
Symptoms (33) at WUSTL, and the Brief Psychiatric Rating Scale
(34) at Maryland. All participants passed a drug screen. General
intellectual functioning was assessed at both sites using the
Wechsler Test of Adult Reading (35).

Probabilistic Reversal Learning Task

Similar PRL tasks were presented at the two sites, both in
conjunction with fMRI scanning (see the Supplement). On
each trial of the task, two abstract visual patterns are shown to
participants, one commonly (80%) and one rarely (20%)
rewarded. Participants are not told these precise percentages.
Subjects are instructed to guess which pattern is most likely to
yield reward. They are instructed that occasionally the reward
contingencies reverse and the alternative stimulus is associ-
ated with a high probability of reward. The chosen response is
highlighted upon response and participants are given feed-
back (correct or incorrect) on each trial. Each run consists of
an initial acquisition where participants learn values for each
choice. After the reward contingencies are learned—that is,
participants met a performance threshold of selecting the
correct response eight of 10 previous trials in the WUSTL and
nine of 10 in the Maryland sample—contingencies reversed.
Probabilistic negative feedback is implemented such that a
correct response for each trial receives negative feedback 20%
of the time. All subjects practiced the task prior to scanning.
Participants won bonus money for increased task accuracy.

Behavioral Data Analysis

Independent-samples t tests were conducted to determine
group differences in the number of errors committed and the
number of reversals achieved. The initial acquisition phase of
each run was also analyzed to determine the number of trials
participants needed to learn the reward contingencies.

Computational Modeling of Behavior

We fit a standard Q-learning model to individual choice
behavior. For each trial (t), this model estimates the value (Q)
of each action (i). The action value of the chosen action is
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updated iteratively by a PE, which represents the difference
between the expected value of that outcome (Qi(t)) and the
observed outcome (r), which was coded 1 or 0 for positive and
negative feedback, respectively. The learning rate parameter
(α) that fit best to each participant’s choice behavior reflects
the degree to which previous reinforcement outcomes affect
subsequent Q values.

Qiðt11Þ 5 QiðtÞ 1 aðrðtÞ 2 QiðtÞÞ
The probability of selecting one stimulus over another was

then computed using the softmax function:

PAðtÞ 5
e

QAðtÞ
β

e
QAðtÞ

β 1 e
QBðtÞ

β

Where β, the softmax temperature, reflects the stochasticity
of the softmax function. Thus, higher β values indicate
exploration (i.e., choosing the lower Q-value option) and low
β values indicate exploitation (i.e., choosing the higher value
option).

Finally, to determine participants that adequately fit the
computational model we conducted analyses to determine if
the predictive probability of each individual’s choice behavior
under the Q-learning model was greater than chance, similar
to Schlagenhauf et al. (20).

fMRI Data Analysis

Images were acquired for both samples using a 3T MR
scanner (see the Supplement for preprocessing). To examine
the neural correlates of trialwise PEs (derived from the
Q-learning model with subject specific learning rates), we
implemented a general linear model with a parametric design.
We modeled each trial without separating cue and outcome. In
this design, the BOLD activation during each trial was
modulated by subject-specific trialwise PE magnitudes and
convolved with a canonical hemodynamic response function
to provide an amplitude-modulated regressor in the general
linear model. Between-group whole-brain comparisons were
then conducted to determine differences in PE-related BOLD
activation patterns using independent-samples t tests. Whole-
brain analyses were corrected for multiple comparisons
(WUSTL: p 5 .006, cluster size 5 945 mm3; Maryland:
voxelwise threshold p 5 .005, cluster size 5 675 mm3), as
determined by Monte Carlo simulations to achieve a signifi-
cance level of p 5 .05, correcting for multiple comparisons
over the whole brain. Regions demonstrating significant
effects in the fMRI analyses were then correlated with task
and symptom variables. Finally, to test specific hypotheses
about hypoactivation of VS RPE signaling in SZ we conducted
a volume of interest (VOI) analysis using an 8-mm sphere
(center: 610, 8, –4).

Power Analysis

Each sample yielded approximately 80% power to detect a
medium effect of diagnostic group on VS RPE signaling
(Cohen’s d 5 0.7). Further, when combining both samples
we had 98% power to detect such effect sizes, and 83%
power to detect a Cohen’s d 5 0.5. Thus, we had adequate
power to detect effect sizes previously reported in the
476 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
literature (18,20,26); however, we did not have adequate
power to detect small effect sizes.
RESULTS

Sample Characteristics

Table 1 shows participant demographic information and task
behavior. As previously presented in both samples, the SZ
group was slower learning the initial reward contingencies,
displayed decreased accuracy, and achieved fewer reversals
compared with CN participants (28,30).

Computational Modeling of Behavior

In the WUSTL sample, the computational model fit SZ choice
behavior poorer than CN as measured by negative log like-
lihood (Table 2). However, the two groups demonstrated
similar learning rates and exploration parameter values after
removing outliers (63 SDs). When assessing whether the
predictive probability of each participant’s data was signifi-
cantly greater under the Q-learning model than under a chance
model, we found that 10 CN and 35 SZ did not fit the
Q-learning model significantly better than they did the chance
model. Poor-fit participants demonstrated worse task per-
formance and decreased intellectual functioning than did
good-fit participants, but no differences in symptoms were
observed (see the Supplement).

In the Maryland sample, the computational model was
shown to have a poorer fit to patient choice behavior, relative
to CN participants (Table 2). The exploration parameter differed
between groups. However, both groups demonstrated similar
learning rates. Eleven SZ participants did not fit the Q-learning
model significantly greater than they did the chance model in
the Maryland sample. Poor-fit participants demonstrated worse
overall task performance, but no differences in symptoms or
intellectual functioning were observed between good- and
poor-fitting SZ participants (see the Supplement).

Neural Correlates of PE

In both samples, SZ and CN groups displayed robust VS RPE
signaling in a whole-brain analysis (Figure 1, Tables 3 and 4).
Further, no significant between-group differences in RPE-
related BOLD activations were found in the VS or other regions
(Tables 3 and 4). These results remained consistent when
performing analyses using a VS VOI (for WUSTL, right VS:
Cohen’s d 5 –0.43; left VS: Cohen’s d 5 –0.03; for Maryland,
left VS: Cohen’s d 5 –0.2; right VS: Cohen’s d 5 –0.08;
for combined, left VS: Cohen’s d 5 –0.3; right VS: Cohen’s
d 5 –0.03) with positive values indicated greater activation for
CN participants.

Supplementary Bayesian analyses revealed that the null
hypothesis, no difference in VS RPE signaling between
groups, was 2–5 times more likely compared with the alter-
native [right VS: Cohen’s d 5 0.5; left VS: Cohen’s d 5 0.3;
taken from Radua et al. (17)] for each sample. Further, when
combining our samples we found that our data was 4–5 times
more likely under the null hypothesis, providing moderate
support for the null (see Supplemental Table S1).
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Table 1. Participant Demographic, Clinical, Self-Report Measures, and Task Behavior

WUSTL Sample Maryland Sample

Variables CN SZ CN SZ

Demographics

Age, years 36.6 6 9.2 37.0 6 8.6 39.6 6 10.5 39.6 6 10.0

Male 52.8 66.7 71.4 82.8

Non-Caucasian 66.7 61.4 33.3 37.9

Personal education, years 14.2 6 2.1 13.0 6 2.2 15.1 6 2.1 13.4 6 1.7

Parental education, years 12.8 6 1.5 12.9 6 3.2 14.2 6 3.3 14.2 6 3.4

Medication Status

Atypical antipsychotics NA 75.4 NA 100.0

Typical antipsychotics NA 5.3 NA 0.0

Typical and atypical NA 7.0 NA 0.0

Not medicated NA 12.3 NA 0.0

Clinical Rating (Item Average)

General psychiatric (BPRS) NA NA NA 1.9 6 0.3

Positive (BPRS) NA NA NA 2.5 6 1.3

Positive (SAPS) NA 0.7 6 0.7 NA NA

Disorganization (SAPS) NA 0.4 6 0.4 NA NA

Negative (SANS) NA 1.2 6 0.6 NA 1.5 6 0.9

Intellectual Function

WTAR scaled score 98.7 6 16.1 95.1 6 16.6 109.7 6 11.7 101.3 6 17.1

Task Behavior

Reversals 13 6 9.1 8.4 6 7.8 7.3 6 1.3 4.5 6 2.9

Number of errors 133.1 6 48.6 149.5 6 44.5 87.3 6 18.1 122.7 6 37.0

Initial acquisition trials 23.5 6 15.2 31.7 6 15.0 14.0 6 3.0 21.7 6 8.7

Values are mean 6 SD or %.
BPRS, Brief Psychiatric Rating Scale; CN, control; NA, not applicable; SAPS, Scale for the Assessment of Positive Symptoms; SZ,

schizophrenia; WTAR, Wechsler Test of Adult Reading; WUSTL, Washington University in St. Louis.

Biological
Psychiatry:
CNNIPrediction Error Signaling in Schizophrenia
To increase our confidence that the VS activity we observed
in previous analysis was indexing RPE signaling (as opposed
to a value signal), we conducted analyses in which both
trialwise RPE magnitude and trialwise Q-value magnitude of
the stimulus that the participant chose were simultaneously
entered as predictors of BOLD activity (see the Supplement).
We found robust VS activation as a function of RPE magnitude
when controlling for Q-value magnitude, providing support for
our interpretation that this striatal activation is at least,
partially, indexing trialwise RPE magnitude. Results were
similar when excluding poor-fit participants.

To assess the contribution of model fit to the previous
results, we separated SZ and CN groups into subgroups of
individuals whose choice behavior fit the model better than
chance and individuals whose behavior did not (for WUSTL,
SZ good fit: n 5 23; SZ poor fit: n 5 35; CN good fit: n 5 30;
Table 2. Parameter Estimates and Fit Indices of Computationa

WUSTL Sample

SZ CN

Negative Log Likelihood 263 ± 70 229 ± 82

Learning Rate (α) 0.58 ± 0.3 0.60 ± 0.4

Exploration (β) 1.13 ± 1.2 1.65 ± 1.5

Pseudo-R2 0.17 0.30

Values are mean ± SD.
CN, control; SZ, schizophrenia; NA, not applicable; WUSTL, Washingto

Biological Psychiatry: Cognitive Neuroscience and Neuroi
CN poor fit: n 5 10; for Maryland, SZ good fit: n 5 18; SZ poor
fit: n 5 11; CN good fit: n 5 23; CN poor fit: n 5 0). At WUSTL,
robust VS RPE signaling was found for good-fit CN and SZ as
well as poor-fit SZ, but not poor-fit CN. At Maryland, robust VS
RPE signaling was found for good-fit CN and SZ, but not for
poor-fit SZ (see the Supplement). However, when examining
group differences in VS RPE signaling no significant differ-
ences were found between poor-fitting and good-fitting sub-
jects in either sample.

Correlates Between Clinical Variables and VS RPE
Signaling

In the WUSTL sample, no significant correlations were found
between RPE signaling and negative symptoms (SANS total,
left VS: r 5 –.132, p 5 .56; right VS: r 5 –.047, p 5 .83),
l Model

Maryland Sample

p Value SZ CN p Value

.04 220 ± 31 187 ± 25 .001

.79 0.56 ± 0.2 0.63 ± 0.1 .17

.1 1.77 ± 0.6 1.14 ± 0.5 .001

NA 0.18 0.29 NA

n University in St. Louis.
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Figure 1. Prediction error signaling
in the ventral striatum. Top row:
Washington University in St. Louis
sample control (CN) and schizophre-
nia (SZ) participants. Bottom row:
Maryland sample CN and SZ
participants.
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positive symptoms (Scale for the Assessment of Positive Symp-
toms total, left VS: r 5 .14, p 5 .54; right VS: r 5 –.12, p 5 .61),
task variables (reversals achieved and accuracy), antipsychotic
dose, or model fit. In the Maryland sample, significant correlations
were observed between VS RPE signaling and negative symp-
toms (left VS and SANS total: r 5 –.377, p 5 .044; right VS
and the sum of SANS avolition and anhedonia scores: r 5 –.405,
p 5 .029; left VS and the sum of SANS avolition and anhedonia
scores: r 5 –.447, p 5 .015; Figure 2). A significant positive
correlation was also observed between left VS RPE activation and
positive symptoms (Brief Psychiatric Rating Scale psychosis
factor: r 5 .405, p 5 .029). However, these correlations did fail
to meet more stringent multiple comparison correction (p 5 .05/
145 .003). No significant correlations were found among VS RPE
activations and task variables (reversals achieved and accuracy),
antipsychotic dose, or model fit.

DISCUSSION

The goal of this report was to leverage computational approaches
to examine the contribution of VS RPE signaling to reward-learning
deficits in SZ. Thus, we conducted neuroimaging analyses, with
parametric regressors generated from trial-by-trial RPE values
derived from computational models of behavior. As previously
reported, SZ patients showed poorer task performance in both
samples (28,30). Contrary to previous reports (18–20,22), however,
as a group, both SZ and CN displayed robust VS RPE activations.
478 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
Further, as a group, we found no significant differences in VS RPE
activation between SZ patients and CN participants. These results
were consistent across whole-brain and VS VOI analyses, as well
as when controlling for computational model fit. VS RPE signals
did not show strong relationships to antipsychotic dosage or task
performance. However, correlations between symptom severity
and VS RPE magnitude were observed in the Maryland sample.

What may explain the discrepancies between our group
level results and previous reports of abnormal VS RPE signals
in SZ patients (18–20,22)? First, several previous reports
(18,19,21,22) of VS RPE signaling involved tasks without
contingency reversals [although see Schlagenhauf et al. (20)].
In PRL tasks, the most salient PEs tends to be negative given
rarity of negative feedback. Recent evidence suggests abnor-
mal positive but intact negative PE signaling in SZ patients
(22). Thus, differences may have been observed if we had
utilized a task more sensitive to positive PE signaling. Further,
our claims generalize to RPEs only and not to other forms of
PEs known to be disrupted in SZ (i.e., causal PE signaling in
dorsolateral prefrontal cortex) (36). Second, our samples
included chronic medicated patients, whereas several studies
reporting blunted VS RPE signaling have examined antipsy-
chotic naive patients (19,20) [however, see Morris et al. (18)
and Koch et al. (22)]. Acute psychosis is associated with
increased striatal dopamine neurotransmission, increased
dopamine synthesis capacity, and chaotic dopaminergic firing
eptember 2016; 1:474–483 www.sobp.org/BPCNNI
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Table 3. Prediction Error–Related Blood Oxygen Level–Dependent Activations for Washington University in St. Louis Sample

Region Vol (mm) BA x y z CN SZ CN-SZ

Frontal

Left middle frontal gyrus 2997 6 –38 –3 46 –2.6532a –2.7165a –0.4664

Left superior frontal gyrus 3429 6 –12 2 67 –3.152a –3.0218a –0.5873

Left precentral gyrus 1728 9 –44 21 34 –3.5627a –2.3151a –0.6984

Right paracentral lobule 5103 31 5 –31 44 1.6304 3.6285a –1.0928

Right middle frontal gyrus 2619 9 39 28 29 –4.5824a –1.7199a –2.0543a

Right middle frontal gyrus 4779 6 42 6 45 –3.4866a –2.0265a –1.1371

Right superior frontal gyrus 13500 8 2 15 49 –4.7239a –3.1633a –1.7488a

Temporal

Left inferior temporal gyrus 4887 37 –50 –65 1 1.5956 4.543a –1.099

Right middle temporal gyrus 4374 37 51 –59 2 1.9313a 3.8982a –1.1048

Parietal

Left precuneus 2943 31 –10 –61 21 0.817 4.0002a –1.7432a

Left inferior parietal lobule 5049 40 –59 –35 33 2.5657a 4.7808a –0.9932

Right precuneus 2511 31 9 –52 34 1.2488 3.4923a –0.939

Right inferior parietal lobule 4347 40 63 –34 29 2.5262a 4.6371a –0.9624

Cingulate

Left anterior cingulate 1998 24 –3 38 0 1.5471 3.603a –0.5447

Left anterior cingulate 3078 24 0 18 22 1.9084a 2.1456a –0.5008

Right cingulate gyrus 2025 8 23 20 24 3.3659a 2.6404a 0.592

Insula

Left insula 4077 13 –34 16 7 –3.1586a –0.9892 –1.1964

Right insula 2079 13 39 15 10 –3.9067a –2.0955a –1.7585a

Striatum

Left putamen 18360 –20 –1 6 3.8084a 4.9123a –0.7236

Right caudate 3078 22 –24 22 1.9049a 3.6445a –0.4097

Right putamen 11421 16 3 6 5.4539a 5.8313a 0.0761

Right claustrum 6993 33 –7 12 2.0469a 4.4293a –1.1575

Thalamus

Left thalamus 5508 –25 –25 7 1.812a 4.1495a –1.0366

Right thalamus 432 3 –18 21 2.5351a 3.795a –0.559

Occipital

Left superior occipital gyrus 1836 19 –44 –78 26 2.4556a 3.0894a 0.0523

Left middle occipital gyrus 5670 19 –28 –89 15 2.3829a 3.6727a –0.4318

Left fusiform gyrus 2889 18 –25 –89 –16 1.7909a 3.8984a –0.9688

Right middle occipital gyrus 3240 18 26 –90 12 1.7231a 3.1759a –1.1256

BA, Brodmann area; CN, control; SZ, schizophrenia; Vol, volume.
aSignificant at p , .05.
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patterns (11,12). Atypical antipsychotics have been hypothe-
sized to normalize these altered aspects of neurotransmission
through dopamine receptor antagonism (37). Indeed, reports
have shown that neural correlates of reward processing,
particularly reward anticipation, are improved after adminis-
tration of atypical antipsychotics (38–40). Thus, atypical anti-
psychotics may normalize striatal dopaminergic signaling,
contributing to the robust VS RPE activation we see, at a
group level, in the current report. Another way of viewing this
discrepancy is that RPE signaling disruption may play and
important role in the emergence of psychosis but less of a role
in its maintenance.

Although both groups displayed robust VS RPE signaling,
SZ patients demonstrated poorer performance on the PRL
task, suggesting an alternative mechanism contributing to
Biological Psychiatry: Cognitive Neuroscience and Neuroi
behavioral deficits. PRL tasks are known to involve salience
network regions such as insula and task positive regions such
as the ventrolateral prefrontal cortex and dorsal anterior
cingulate (41). In addition, successful performance on PRL
tasks likely involves the explicit learning of rules and engage-
ment of dorsal prefrontal and parietal regions. Thus, PRL may
not be optimal for detecting subtle differences in implicit/
procedural and, therefore, more basal ganglia–driven learning.
As such, it is possible that group behavior deficits in PRL
performance stem, in part, from the disruption of prefrontal
and parietal circuitry implemented in maintaining task repre-
sentations (42–44). In fact, considerable evidence suggests
that reward-learning deficits in SZ emerge when tasks become
complex, requiring increased resources to maintain value and
rule representations (22,29,45–48). In a conventional imaging
maging September 2016; 1:474–483 www.sobp.org/BPCNNI 479
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Table 4. Prediction Error–Related Blood Oxygen Level–Dependent Activations for Maryland Sample

Region Vol (mm3) BA x y z CN SZ CN-SZ

Frontal

Left medial frontal gyrus 857 10 –7 55 10 3.8230a 2.7020a 1.1490

Left middle frontal gyrus 888 10 –31 44 –4 3.1790a 4.2100a –0.3410

Left middle frontal gyrus 1299 6 –29 –6 52 –3.1070a –2.9860a –0.6270

Left frontopolar cortex 4739 6 –20 28 54 3.8210a 3.4140a 0.6320

Right dorsomedial PFC 7226 6 4 13 53 –3.2940a –3.1300a –0.8960

Left precentral gyrus 864 4 –57 –9 23 2.8880a 2.6700a 0.7660

Parietal

Left postcentral gyrus 1279 40 –57 –30 20 3.2470a 2.5250a 1.1880

Right superior parietal lobule 2309 7 21 –51 63 4.8740a 2.1580a 2.1070a

Left angular gyrus 3679 39 –46 –65 25 2.6770a 3.1640a –0.0450

Right angular gyrus 847 39 49 –71 23 3.2050a 2.3940a 0.9860

Cingulate

Left posterior cingulate 28434 31 –2 –43 27 3.1340a 3.9350a 0.0020

Insula

Left anterior insula 2680 13 –34 22 6 –3.4020a –3.0610a –1.1150

Right anterior insula 3284 13 35 20 8 –3.8430a –3.0940a –1.1840

Striatum

Left caudate/putamen 27550 –25 –4 4 4.2920a 4.3120a –0.2930

Right caudate/putamen 38846 29 –6 8 4.1930a 4.2600a 0.3260

Occipital

Right middle occipital gyrus 786 37 43 –61 –3 3.1920a 2.8070a 0.6140

Cerebellum

Left cerebellum 770 –19 –45 –53 3.6490a 4.6900a 0.3430

BA, Brodmann area; CN, control; PFC, prefrontal cortex; SZ, schizophrenia; Vol, volume.
aSignificant at p , .05.
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analysis of the current data (28) we found that group differ-
ences in behavior on a PRL task were related to hypoactiva-
tion of a frontoparietal network of brain regions, whereas
striatal regions were not. Waltz et al. (30) and Walter et al. (23)
reported similar findings demonstrating hypoactivation of an
480 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
executive control network of brain regions for SZ patients
during performance of reward-learning tasks. Furthermore,
Waltz et al. (49) found that neural abnormalities associated
with outcome processing in SZ were largely cortical. In short,
evidence suggests that much of the impairment exhibited by
Figure 2. Relationship between ventral striatal
(VS) reward prediction error signaling and nega-
tive symptoms. Item scores from the Scale for the
Assessment of Negative Symptoms (SANS) were
averaged for this analysis. WUSTL, Washington
University in St. Louis.
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SZ patients on PRL tasks may stem from a problem of
outcome-driven learning, and not from a problem of feedback
processing per se, and as a consequence, aberrant prefrontal
circuitry appears to make a robust contribution to reward-
learning deficits reported in chronic medicated patients.

This distinction between striatal and prefrontal mechanisms
has recently been defined under two distinct computational
learning rules, model based and model free, which collectively
guide decision making (50,51). In model-free learning, the
values of actions are learned by increasing the value of
previously rewarded actions. This form of learning has been
most closely tied to VS RPE signaling (52,53). Alternatively,
model-based learning relies on prospective information such
as the future consequences of actions to guide decision
making. This form of learning has been associated with the
dorsolateral prefrontal cortex (54) and ventromedial and orbital
frontal cortices (54–56), in addition to the VS (52,56), and
shows strong relationship to higher-order cognitive abilities
(57). Our group recently implemented a task assessing model-
based versus model-free learning and used computational
approaches to quantify the relative contributions of both of
these value-learning mechanisms (52) in medicated SZ
patients. At a group level, we found that patients were similar
to CN participants in their use of model-free learning (suggest-
ing intact VS RPE signaling) but displayed reductions in
model-based learning suggesting a deficit in the maintenance
of rule and task representations (58). Interestingly, model-free
learning estimates were negatively correlated with self-
reported anhedonia, suggesting interaction between striatal
and prefrontal mechanisms in high negative symptom
patients. Further exploration with such computational frame-
works will be instrumental in further specifying mechanisms of
reward dysfunction in SZ.

Although we did not find group differences in VS RPE
signaling in either sample, we did find a correlation between
increased negative symptom severity and VS RPE signal
hypoactivation, as well as increased positive symptoms and
exaggerated VS RPE signaling in the Maryland sample. The
inconsistency between samples may be due to numerically
greater negative and positive symptom severity of patients in
the Maryland sample. Importantly, this relationship between
negative symptom severity and VS RPE magnitude converges
with several other reports finding relationships between VS
hypoactivation during reward-processing tasks and negative
symptoms (18,25,30,39,59,60). This finding also points to the
possibility that both striatal and prefrontal mechanisms may
be involved in PRL deficits in high negative symptom patients.
Such findings are consistent with the aforementioned report
by our group assessing model-based and model-free learning.
Further understanding how striatal and prefrontal mechanisms
integrate to produce reward-learning impairment remains an
important question for future research.

Applications to Other Datasets

Although the current report utilized a particular reinforcement-
learning modeling framework (Q-learning) to examine task data
(PRL) in a particular population (SZ), the approach imple-
mented in the current investigation is broadly applicable.
A myriad of reward-learning tasks exist in the basic and
Biological Psychiatry: Cognitive Neuroscience and Neuroi
clinical science literatures for which data analysis could be
enriched through fitting choice behavior to computational
models. Such models have a number of advantages, as they
allow for the estimation of unobservable aspects of reward
learning such as PE magnitude and the expected value of
options on a trial-by-trial basis. Quantifying these aspects of
reinforcement learning, particularly those closely tied to biol-
ogy, allows for new windows into the etiology and underlying
mechanisms of psychiatric disorders. The current approach
may also prove useful in understanding how reward dysfunc-
tion may vary across diagnostic boundaries, or in differentiat-
ing mechanisms associated with certain phases of illness.

Limitations

Our neuroimaging design (rapid event related), as well as the
lack of jittered timing between choice and feedback, makes
parsing component reward signals difficult in this study. Thus,
it is possible that the VS signals we indexed contained
component reward signals or motor signals unrelated to
RPE. However, analyses including both value signals and
RPEs into the same model did provide some specificity for
RPE-related VS activation (see the Supplement). Second, PRL
tasks may not be the most suitable paradigm in eliciting purely
model-free VS RPE signaling as adequate task performance
likely involves substantial model-based contributions. Third,
although Q-learning algorithms have been used in many
previous reports to index VS RPE in SZ (26,61,62), such
algorithms may be limited in their account of choice behavior
for PRL tasks as they fail to account for implicit task structure.
Thus, more sophisticated models may have revealed group
differences. Finally, although not specific to the current report,
concerns have been raised regarding the sensitivity of BOLD
activation to computationally derived regressors (63). For
example, Wilson and Niv (63) demonstrated that assigning
arbitrary learning rate values to individual subject data and
deriving trialwise RPEs does not drastically change results when
regressing trialwise VS RPE onto the BOLD signal. This insensi-
tivity can make interpreting group differences challenging.
Although our design has a large number of trials, a factor that
may mitigate these insensitivities, our results may still be affected
by such inherent limitations of model-based imaging approaches.

Summary

We used a reinforcement-learning framework to examine the
contribution of VS RPE to reward dysfunction in SZ. Contrary
to previous reports in unmedicated patients (20,26), we found,
in two large samples, that although patients demonstrated
worse task performance compared with CN participants, they
did not demonstrate abnormal VS RPE signaling. One alter-
native mechanism for reward-learning dysfunction is disrup-
tion of prefrontal and parietal regions critically implemented in
the maintenance of task representations. Future studies utiliz-
ing tools such as model-based reinforcement-learning algo-
rithms are needed to assess the contribution of these
mechanisms to reward learning in SZ.
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