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Abstract. Group neuroimaging studies of the cerebral cortex benefit
from accurate, surface-based, cross-subject alignment for investigating
brain architecture, function and connectivity. There is an increasing
amount of high quality data available. However, establishing how differ-
ent modalities correlate across groups remains an open research question.
One reason for this is that the current methods for registration, based on
cortical folding, provide sub-optimal alignment of some functional sub-
regions of the brain. A more flexible framework is needed that will allow
robust alignment of multiple modalities. We adapt the Fast Primal-Dual
(Fast-PD) approach for discrete Markov Random Field (MRF) optimi-
sation to spherical registration by reframing the deformation labels as a
discrete set of rotations and propose a novel regularisation term, derived
from the geodesic distance between rotation matrices. This formulation
allows significant flexibility in the choice of similarity metric. To this end
we propose a new multivariate cost function based on the discretisation
of a graph-based mutual information measure. Results are presented for
alignment driven by scalar metrics of curvature and myelination, and
multivariate features derived from functional task performance. These
experiments demonstrate the potential of this approach for improving
the integration of complementary brain data sets in the future.

1 Introduction

Automated and accurate registration of the cortical sheet is an increasingly im-
portant topic of neuroimaging methods research. However, the use of volumetric
registration approaches in functional studies is sub-optimal, since functional ar-
eas are often spaced much further apart across the two-dimensional surface than
is represented in volumetric space, because of the cortical folds.

Spherical registration algorithms [IJ2] simplify the cortical matching problem
by inflating the surface to a two dimensional sphere. Current approaches pre-
dominantly use measures of sulcal depth or mean curvature (folding) to perform
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the cross-surface matching. This leads to a reasonable first approximation of
brain alignment, but is limited by the fact that significant variability in cortical
folding manifests across populations [3].

A more fundamental caveat of morphologically driven alignment is that cor-
tical folding imperfectly reflects functional sub-divisions[3]. The fundus of a sul-
cus does not generally align with the boundary between two functional regions.
Since the ultimate goal of inter-subject registration is to match functional regions
across subjects, matching anatomies yields only an approximation.

Connectivity-based alignment [4] has been proposed as an additional means
for driving registration. Connections may be a more direct correlate of brain
function than local morphology. However, it is unclear how well we can estimate
connections that are relevant to drive registration. Another alternative is to use
functional (task) activation data to drive registration, though at the cost of
increasing data requirements and incomplete brain coverage.

It is unlikely that any single measure of brain structure or function will be
sufficient for consistent, whole brain, and functionally accurate inter-subject reg-
istration. A multimodal approach is likely to yield significant improvements, but
requires a more flexible registration framework that is adaptable to multivariate
correlates of functional, structural and connectional brain data.

Discrete optimisation approaches to image registration constitute such a flex-
ible framework. They were first proposed by Glocker et al [5] who converted a
B-spline free-form deformation model [6] into a discrete setting. Discrete sets of
deformation labels were assigned to the control points of the B-spline model,
and the problem was re-formulated using graph cuts [7]. Alternative approaches
that do not tie the framework to use of the free-form deformation model have
also been proposed by [89].

Discrete methods in general offer advantages in terms of reduced sensitiv-
ity to local minima combined with a fast and efficient optimisation approach
that provides flexibility by not restricting the choice of similarity measure. Here,
we introduce a multivariate mutual-information measure derived from entropic
graphs [I0ITT]. These measures were first proposed for use in volumetric registra-
tion by [10] in order to allow fast estimation of multivariate mutual information
without the need for costly estimations of high dimensional histograms. To our
knowledge, ours is the first application of multivariate matching within the dis-
crete optimisation framework.

One restriction of the MRF-based optimisation framework is that the regular-
isation term must be reformulated in terms of pair-wise edge potentials between
neighbouring vertices. This can limit the choice of regulariser to measures de-
rived from the first order derivatives of the deformation warp, which are not
invariant to scaling or rotations. Alternative methods have been proposed in
[12/13]. Here we propose a new regularisation potential based on the geodesic
distance between rotation matrices. This is not a metric and therefore we benefit
from applying Fast-PD optimisation of the MRF, proposed in [I4JI5] and first
used for registration by Glocker et al in [5].
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In the next section we provide an overview of the new Multimodal Surface
Matching (MSM) approach and its reformulation to fit the spherical coordinate
system. Results are presented using simulated data, univariate measures of sulcal
depth and curvature, and finally multivariate features derived from functional
task performance.

2 MRF-Based Optimisation for Spherical Registration

2.1 Discrete Optimisation and Fast-PD

Discrete registration methods redefine the image as a weighted graph G(P, E,w)
formed from control point nodes (P), edges (F), and weights (w), and solve the
optimisation in the form of a Markov Random Field labelling. This approach
limits the movement of any vertex point p to a set of discrete displacements dlr
determined by a predefined label set L = {a,b.....}. For spherical registration
these displacements may be governed by a finite set of rotations (Fig . [J).
The optimal deformation can be found by minimising the following energy
function:
COST => cp(lp)+ > wpV(lp:ly) (1)

peP (p.9)€E

This is formed from a similarity term c,(l,) and a weighted wp, penalisation
term V(,,1,), which limits the extent to which neighbouring vertices (p, ¢) can
be assigned different displacement labels (I,, I;). The penalisation term controls
regularisation of the deformation. The key advantage of the MRF formulation
is that any similarity metric may be used.

Volumetric methods, such as [BI§] propose using a low-resolution control point
grids or regular sampling of the image space to define the nodes in G. In this way
image similarity, for each label a, is approximated by factorizing the expression
for whole image similarity into cliques, as:

Yocolly) =D D lxi —xp)(sim(F(xi), M((x; +d%))) (2)

pEP peEPiEN

This sums over pair-wise similarities between points in the moving mesh M ((x;+
d?) (transformed by the proposed deformation d*) and their neighbours within
the fixed/target image F'(x;), for all data points in the neighbourhood of control
point p. The fi(x; — x,) is a weighting term controlling the zone of influence of
each control point. In this instance, 7(x; — X,) is either 0 or 1.

There are several methods for solving the MRF problem, amongst which
are the well-known graph cut [7] and max-flow min-cut algorithms, used of-
ten in computer vision for image restoration and segmentation. In [5] the au-
thors use the Fast-PD algorithm, proposed by Komodakis et al [I4/T5] which
takes advantage of the primal-dual schema of linear programing to derive an
efficient approximation. For full comprehensive details of the algorithm we re-
fer to [I4I15]. However, the main advantages is that it generates fast solutions
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that can be shown to be close to the global optimum even for pair-wise poten-
tial terms which are not metrics. That is, potentials can be used that do not
have to satisfy the conditions V(a,b) = 0 Va = b ; V(a,b) = V(b,a) > 0 and
V(a,b) =V (b,a) < V(a,c)+ V(c,b).

2.2 Deformation Labels and the Control Point Grid

In this framework, spherical registration is driven using a series multi-resolution
control point grids. Currently three regular icosahedrons of order 3-5 (161, 642
and 2542 vertices) are used, with respective mean vertex distances (MV D) of
26.7mm, 13.8mm and 6.9mm. Similarity is estimated by dividing all vertices of
the original mesh into sets of cliques as for eq.[2l Interpolation of the control point
warp to the original surface mesh is performed using spline-based interpolation.

Image data is downsampled to a 10,000 vertex regular mesh (MV D = 3.5mm)
to speed up the sampling of the image space. In general, this is a reasonable ap-
proximation as the original volumetric image data will typically be of a resolution
between 1mm for structural data and 3mm for functional data. Downsampling is
performed using Gaussian interpolation, which enables simultaneous smoothing
of the data. Note, although higher resolution control point and image grids can
be used with minimal additional computational overhead, these were not found
to improve the results of the data in this paper.

Deformation labels are defined via a simple and approximate solution to sam-
pling on the sphere: a higher resolution icosahedron grid is projected below each
control point and used to define the sampling grid (see Fig.[Il). MRF labels are
represented as discrete rotations between the control point and the vertices of
the higher resolution sampling grid. For a sampling grid formed from an icosa-
hedron 2 orders higher than the control point grid, there is typically between
10 and 20 labels per control point. The spacing between labels at the highest
resolution level is roughly 1mm.

At each level the maximum sampling distances, and thus biggest possible con-
trol point deformation, is set to 0.4 * MV D. This ensures diffeomorphic warps by
forcibly preventing mesh folding. However, this also means that it is not guaranteed
that optimal alignment can be reached within one cycle of labelling. Therefore, the
algorithm iterates over several cycles of labelling at each resolution. As the MRF
will be optimised for the label set after each cycle, the label set iterates between
using the vertices and barycentres of the faces of the sampling grid to prevent the
registration getting trapped in local minima. After each stage the deformation is
projected to the image grid and the control point grid is reset.

2.3 Regularisation

Regularisation in discrete optimisation methods has conventionally been im-
posed by pair-wise potentials calculated from the distance between the defor-
mations assigned to neighbouring points: V(I,,1,) = A(|d'» — d'a|). However, in
methods such as this where registration iterates over several cycles of MRF op-
timisation, symmetric pairwise potentials are unsuited as they cannot capture
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Fig. 1. The sampling (blue) and control point grids (black). Sampling points vary be-
tween the vertices and the barycentres (red points) of the high res grid. Max sampling
distance is 0.4 times the control point spacing. Rotation matrices, estimated between the
control point and each of the sampling points, are used to define the deformation labels.

the properties of the previous warps. Estimates of the deformation from pre-
vious iterations (R,, R,) can be used to provide a full regularisation over time
as: V(lp,1;) = M|Rpd» — Rydle]) [5]. Nevertheless, this automatically renders
any distance non-metric as the penalisation need no longer be same for points
assigned the same label: V(l,,1,) #0if I, =1,.

In the spherical registration format, it is no longer desirable to project defor-
mations as Cartesian deformation vectors, as the deformation is constrained to
the spherical surface, and thus the space is not Euclidean. Instead we choose to
represent the deformation labels as rotation matrices defined using the Rodrigues
rotation formula:

R]l;’ =TI+ sinfy, [k, ]« + (1 — cos@lp)(klpkz; -1, (3)

where, the axis k;, = x;, X x,; and angle 6;, of rotation for label I, are estimated
using the initial x, and final point of the rotation x (Fig.d)). [k;,]x is the cross
product matrix.

This form is also conveniently linked to the definition of a geodesic distance be-
tween rotation matrices: dy(A, B) := ||[log(A"B)||r = ||[kab]x 0as||F, where ||.||
represents the Frobenius norm and d, (A, B) is proportional to the angle of differ-
ence (04p) between the rotation matrices. This allows warps from previous itera-
tions to contribute to the estimation of the pairwise potential. As the control point
grid is reset each time, the past deformation of each control point p is estimated
from the warped imaged data, and summarised by rotation matrix R,,. The full ro-
tation matrix for the combined deformation can then be estimated as A = Ré” R,,

and compared against the full deformation of its neighbour B = Réq R,.

3 Multivariate Similarity Measures

A significant advantage of the flexibility of the MRF framework is that it is
straightforward to replace scalar similarity terms with a multivariate measure.
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Therefore, our framework can incorporate a multivariate measure such as the
estimate of mutual information known as a-entropy, derived by [I0] from en-
tropic graphs. Rényi, or a-entropy is a generalisation of Shannon’s entropy of
the form: Hy(z) = | log(3>;, p%), where z is a random variable. Entropic
graphs are any graph whose normalised total edge weight is a consistent esti-
mator of a-entropy. These include the minimal spanning tree (MST) and the
k-nearest neighbour (kNN) graph.

The basic principle is as follows: if each point in the fixed image is described
by a multivariate feature vector z/(x;) = [z{(xz)zg((xl)] of dimension d, and
the equivalent point in the moving image is z™(x; + d), then a graph-based
measure of mutual information may be calculated from the kNN graph as:

A I 1 Ny Ffm K
a—MI(nyzmvzfm):afllogNaZ \/Zf (4)
] Fi Fz’m

For:

k
rf ="l (xi) — 27 (xin)] (5)

n=1
k

I =" (2" (xi + d) — 2™ (xin +d%)| (6)
n=1
k

rim = Z |2/ (x4, % + A7) — 277" (xp, Xin + )| (7)
n=1

Here, z/™ is the result of concatenating the feature vectors from the fixed and
moving image at the transformed position (x; +d“). Zy, Z,,,, and Zy,, represent
the set of feature vectors for each kNN graph, v = d(1 — «) and « are user de-
fined tuning parameters, and Euclidean distances are estimated between feature
vectors. Currently each feature is given a equal weighting when estimating the
cost. However, given that the end goal is to combine complementary data sets,
each of which are shown to be consistent across subjects in different areas, this
term could be replaced by a weighted sum of squares.

Approximate k-nearest neighbours are calculated using [16]. This method has
been shown to lead to a significant boost in speed in solving for k, provided a
small error in the graph estimation is tolerable. For this purpose approximate
neighbours are sufficient as the principal goal of using the a-MI measure to drive
the registration is to ensure that the spatial distribution of image features is the
same for source and target meshes.

4 Validation

In this section we test the algorithm on scalar image data and use a simulation
to show the algorithm performs as well as the state of the art in this respect.



Multimodal Surface Matching: Fast and Generalisable Cortical Registration 481

Table 1. Comparing the new Multimodal Surface Matching method against the state
of the art. Performance is judged in terms of Dice overlap results for simulated data,
and run times for real data (averaged over 14 test sessions).

FreeSurfer Spherical Demons ~ MSM
Dice Overlap N/A 0.892 + 0.002 0.922 £0.002
Speed > lhr 2 min 4 min

We test the performance of the algorithm against FreeSurfer [I] and Spherical
Demons (SD) [2], measuring success in terms of speed and generalisability to new
data sets. Given that curvature metrics have been shown to be highly variable
across the population, and in the absence of any better neurological marker of
ground truth, we use a simulated test case to quantify alignment. We then extend
the comparison to standard measures of sulcal depth and curvature, as well as a
new data set composed of estimates of cortical myelination [I7] to provide more
concrete evidence that the algorithm performs well on real data.

4.1 Simulated Deformations

A test case (Fig. 2l a), with colour patches each representing a different scalar
value, was created and then transformed by applying a known deformation, in
order to generate a target (Fig. 2 b). The deformation was obtained through
registration of real image data to the fsaverage template using the FreeSurfer al-
gorithm. The discrete optimisation approach was run for three resolution levels,
with 5 internal iterations at each level. At each internal iteration the algorithm
reset the control point grid and recalculated the label set as described in sec-
tion The data cost term was estimated using cross correlation. We found
the framework largely insensitive to the choice of regularisation parameter. The
results of the registration (fig. 2lc) were compared with those obtained from ap-
plying Spherical Demons (fig. 21 d), run using the default parameters. FreeSurfer
was not used as it could not be adapted to accept non-curvature data.

The accuracy of each approach was assessed using the mean Dice overlap of
the sampling patches (Table [I top row). In general, although both approaches
estimate the affine component of the registration correctly, Spherical Demons
fails to capture the majority of the non-linear deformation fig. 2l d). Some inves-
tigation showed this to be linked to the regularisation; controlled by modifying
the number of times a smoothing kernel is applied to the deformation warp in
the second step of the Demons algorithm. Setting the number of smoothing iter-
ations to one managed to capture some, but not all, of the remaining non-linear
warp.

4.2 Experiments on Real Data

For the next experiment we used 10 subjects (four with repeat sessions) acquired
as pilot data for the WU-Minn Human Connectome Project (HCP). The HCP
(http://humanconnectome.org) is collecting a large and comprehensive database
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a) Source b) Target c¢) Spherical Demons d) Discrete

Fig. 2. Simulation. Colours represent scalar values in the range 0-4 with borders show-
ing partial volume values

Convexity Curvature Myelin

I9JINGI0I ]

suowo(J S

Fig. 3. Results of univariate registration. Top row: cross-subject mean atlases generated
by convexity-driven FreeSurfer alignment. Centre row: averaged results after driving
Spherical Demons using (from left to right) convexity, curvature and myelin data.
Bottom row: results of registration using MSM. MSM driven myelin alignment pulls
out structures (circled) that are not present after convexity-driven FreeSurfer or myelin-
driven Spherical Demons alignment. The MT+ region is much stronger after myelin
driven MSM (white arrow).
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of neuroimaging data, including high resolution diffusion, task and resting state
functional MRI. For each subject MRI scans were obtained over 3 sessions. Pilot
data used here includes structural MRI and five task FMRI (tfMRI) scans (work-
ing memory, motor, biological motion, language, and social cognition), acquired
using multiband acquisition at 2mm isotropic.

The bottom row of Table [I] displays the speed of the different algorithms.
Unlike MSM and Spherical Demons, which use multi-resolution control-point
grids, FreeSurfer estimates a dense displacement field for every vertex in the
high resolution mesh (~ 160K vertices). Thus it is much slower. FreeSurfer is
also limited to registration of sulcal-depth measures as this is seen to be less
sensitive to inter-subject variability in folds.

The top row of Fig. 3 shows group-average maps of sulcal depth (yellow =
gyral, near the exterior of the brain; blue = buried cortex), curvature (yellow =
gyral folds; blue = sulcal fundi), and myelin maps (ratio of T1- and T2-weighted
scans) after registration to FreeSurfers fsaverage surface. In contrast to the sulcal
depth and curvature maps, which only reflect cortical shape, the myelin maps
[19] highlight regions of functional significance, including the primary sensory
areas and the motion sensitive area MT+-.

Fig. 3 also shows results from univariate registration using Spherical Demons
(middle row) and MSM (bottom row; parametrised as for section [L1]) driven
by the three different data sets ( sulcal depth/curvature/myelin). In each case,
registration is initialised by affine alignment of the subjects’ native sulcal depth
surfaces to the fsaverage template. The results of the non-linear component of
the convexity (left column) and curvature (middle column) driven alignment
compare well to the FreeSurfer averages. However, myelin-driven MSM pro-
duces a much sharper average than can be achieved through sulcal depth-driven
FreeSurfer registration, or myelin-driven Spherical Demons alignment.

5 Multimodal Surface Matching

We now test the performance of the algorithm on multivariate data and present
results using a novel dataset derived from functional task performance. The

Original group Z statistic Group 7 statistic after MSM

Fig. 4. Group Z statistic images for the working memory task, before and after regis-
tration. After MSM, cluster size grows and absolute value of the peak statistic (pink
circle) increase from 4.49 to 5.54.
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full set of five tasks collected in the pilot HCP protocol was used. tfMRI data
were corrected for volumetric image distortions, registered to standard structural
space, mapped to the cortical surface, and regularized by surface-constrained
smoothing (2mm FWHM). Statistical analysis was performed using the FEAT
tool from FSL [18] whereby task time courses were regressed against the vertex-
wise time series using a general linear model (GLM). Z statistic images estimated
for the parameters of interest of each task (in this instance 37 correlates of mean
activity) were concatenated into one feature vector for each vertex. Z values were
squared to downweight the contribution of low intensity, noisy variations when
estimating of the image similarity.

A registration target was chosen at random from the dataset in the absence
of a suitable average target. Registration was initialised using convexity-driven
affine alignment and then driven using the task features over 3 resolution levels,
again with 5 iterations at each level. At each level the a-entropy measure was
estimated using gamma of 1 as recommended in [I0]. The k-nearest neighbour
graphs were estimated for 10 neighbours at each level and a 10% error in the
neighbour calculation was allowed.

Following tfMRI-constrained registration, a group level general linear model
(GLM) was used to look for improvements in alignment across the group. Fig.
@ shows good improvements in the size and peak statistics of the clusters for
the working memory task after MSM. Fig. Bl shows results for myelin maps
(top row) transformed using the warp estimated for the task data. The source
myelin map is initially not well aligned to the target myelin map (see white
reference contour), but becomes better aligned, especially in occipital cortex
(left on the surface), after registration. The transformed tfMRI activation for
the social task (Fig. bottom row) is also better aligned in occipital cortex even
though this particular tfMRI activation differs markedly between the source and
target individuals. Further work will explore the potential for using independent
components derived from resting state fMRI analyses.

6 Discussion

The advent of large data collection projects such as the HCP and UK Biobank
means that it has never been more important to provide schemes for fast and
accurate matching of a wide range of brain imaging data. However, current
methods for cortical surface matching are insufficient, as they are limited to
matching scalar measures of cortical shape. In this paper we propose a new,
fast and highly generalisable surface registration approach based on discrete
optimisation.

The use of discrete optimisation offers significant flexibility to choice of simi-
larity measure, and through the fast-PD framework it is possible to incorporate
non-metric regularisation penalties. To this end we have proposed a new smooth-
ness penalty for spherical registration based on penalising the geodesic distance
between the rotation matrices that define the deformation labels. We find this
generates remarkably smooth warps. Nevertheless, regularisation based on first
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Source Transformed Source

Fig. 5. The results of transforming myelin data using task-driven registration. White
dots show the boundaries of structures in the target myelin map. Bottom row: the
social task fMRI features before and after registration.

order smoothness penalties, as used here and in [5] are limited as they penalise
linear transformations [I3]. Therefore future work will explore the potential for
higher order smoothness terms as proposed in [13].

To our knowledge this is the first discrete registration method that has used
multivariate features. Our preliminary analysis suggests that alignment can be
improved using features from a battery of functional tasks, and that it has po-
tential both for increasing the statistical power of functional experiments and
improving alignment of other functionally correlated datasets.

Further improvements should be attainable by harnessing complementary in-
formation from multiple modalities. Myelin maps have features which are con-
sistent across subjects in regions that are highly variable in cortical folding.
In addition, neuronal fibres provide the structure which underpins functional
communication. Thus combined estimates of structural (via diffusion tractogra-
phy) and functional connectivity (via resting-state fMRI) also have significant
potential.
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