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Following decades of research involving hundreds of human neuro
imaging studies, a consensus view has emerged suggesting that a core 
set of brain regions is centrally involved in implementing a wide variety 
of distinct task demands1–3. This functional system includes portions of 
lateral prefrontal cortex (LPFC), posterior parietal cortex (PPC), ante
rior insula cortex and medial prefrontal cortex, and has been variously 
termed the cognitive control network or system2, the multipledemand  
system1 and the taskpositive network4. We focused on a major com
ponent of this system (consisting primarily of LPFC and PPC), the 
FPN. A fundamental mystery surrounding this system, and the FPN in 
particular, is how it can meaningfully contribute to such a wide variety 
of task demands. This computational mystery is compounded by the 
fact that the FPN is most active1,5 during the implementation of novel 
and nonroutine tasks that, by definition, the system could not have 
been shaped by practice or evolution to specifically implement.

We examined the hypothesis that the FPN is capable of such func
tional adaptation because it is composed of flexible hubs: brain regions 
that flexibly and rapidly shift their brainwide functional connectivity 
patterns to implement cognitive control across a variety of tasks5,6. 
We tested this hypothesis using recent methodological advances in 
human neuroimaging, including multitask cognitive testing7, task
state functional connectivity8, graph theory9 and machine learning10, 
that allowed us to test for flexible hub properties in the FPN. In par
ticular, our central approach was to adapt functional magnetic reso
nance imaging (fMRI) methods that are typically used to characterize 
functional connectivity during the resting state (that is, patterns of 
interregion temporal correlations) to determine whether such func
tional connectivity patterns are reliably modulated across a large set 
of cognitive task states.

The flexible hub account builds on the previously described guided 
activation framework11 (which was derived in turn from the biased 

competition account12). The guided activation framework describes 
how topdown signals originating in LPFC (representing current task 
goals) may implement cognitive control by biasing information flow 
across multiple largescale functional networks. The guided activation 
framework was developed primarily to explain how current cognitive 
goals overcome conflict from previous habits. The flexible hub theory 
builds on the guided activation theory by extending this mechanism 
to account specifically for novel task control and by broadening this 
mechanism to the entire FPN, rather than restricting it to the LPFC 
portion of the network.

We distinguished the FPN from other brain networks that may also 
be involved in cognitive control functions. This is based on recent 
analyses using graph theory that suggest that at least five distinct 
subnetworks are associated with cognitive control9,13: the FPN, the 
cinguloopercular control network, the salience network, the ventral 
attention network and the dorsal attention network. We focused on 
the FPN for two reasons. First, the FPN includes the LPFC (the focus 
of the guided activation theory) as a central component. Second, the 
flexible hub theory predicts that most adaptive taskcontrol flexible 
hubs likely exist in the FPN, as evidence suggests that the FPN is espe
cially active (relative to other networks) during situations requiring 
highly adaptive task control5,14.

Notably, the flexible hub theory expands on the guided activa
tion framework by proposing two specific systemslevel neural 
mechanisms that may enable adaptive task control: global variable 
connectivity and compositional coding (Fig. 1). Global variable con
nectivity refers to the possibility that some brain regions flexibly shift 
their functional connectivity patterns with multiple brain networks 
across a wide variety of tasks. Compositional coding refers to the 
 possibility of a systematic relationship between connectivity patterns 
and task components (for example, rules), allowing wellestablished 
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Extensive evidence suggests that the human ability to adaptively implement a wide variety of tasks is preferentially a result of the 
operation of a fronto-parietal brain network (FPN). We hypothesized that this network’s adaptability is made possible by flexible hubs: 
brain regions that rapidly update their pattern of global functional connectivity according to task demands. Using recent advances in 
characterizing brain network organization and dynamics, we identified mechanisms consistent with the flexible hub theory. We found 
that the FPN’s brain-wide functional connectivity pattern shifted more than those of other networks across a variety of task states and 
that these connectivity patterns could be used to identify the current task. Furthermore, these patterns were consistent across practiced 
and novel tasks, suggesting that reuse of flexible hub connectivity patterns facilitates adaptive (novel) task performance. Together,  
these findings support a central role for fronto-parietal flexible hubs in cognitive control and adaptive implementation of task demands.
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 representations to be recombined, and therefore reused, in novel task 
states to enable transfer of knowledge and skill across tasks. Together, 
these two mechanisms describe a distributed coding system that pro
vides for an efficient means of implementing a wide variety of task 
states while also providing the means for novel task control, the ability  
of humans to quickly perform new tasks based on instruction alone 
(which we have previously referred to as rapid instructed task  
learning, RITL5).

Existing evidence is consistent with the hypothesis that global 
variable connectivity and compositional coding are two promi
nent properties of the FPN. First, several studies have found that 
LPFC alters its functional connectivity according to the current task 
state15,16. However, these findings were primarily limited to either 
withinFPN connectivity changes across a small number of tasks17,18 
or FPN connectivity changes with other networks as a function of 
working memory load or content (for example, maintaining faces 
versus scenes) rather than task rules19–21. In contrast with these prior 
approaches, we utilized a recently developed cognitive procedure that 
permutes 12 task rules into 64 novel task states7 to test for FPN flex
ible connectivity across a large set of tasks (Fig. 2). To illustrate this 
procedure, consider, for example, that one of the 64 tasks combines 
the ‘SAME’, ‘SWEET’ and ‘LEFT INDEX’ rules and can be described 
as “If the answer to ‘is it SWEET?’ is the SAME for both words, press 
your LEFT INDEX finger.” For this task, the stimuli ‘grape’ (sweet) 
and ‘apple’ (sweet) would indicate a left index finger button press, as 
they are both sweet. In contrast, ‘leaf ’ (not sweet) and ‘candy’ (sweet) 
would indicate a left middle finger button press (the other finger on 
the same hand), as they are not both sweet. With four rules for each 
of three types, 64 tasks (4 × 4 × 4) are possible.

The utilization of 64 tasks composed of a dozen rules across three 
qualitatively distinct domains (logical decision, sensory semantic and 
motor response) allows for stronger inferences regarding the general 
properties of task implementation than has been possible in previous 
work. Furthermore, the use of a large set of tasks makes it possible to 
estimate the distribution of functional connectivity patterns across 
many task states. We used this approach to test whether global vari
able connectivity is a general (across many task contexts) and prefer
ential (relative to other networks) property of the FPN, the first key 
prediction of the flexible hub theory.

The global variable connectivity mechanism suggests that FPN may 
exhibit functional connectivity with many brain networks as a means 
of facilitating the rapid coordination of information that is neces
sary for adaptive task control. Considered broadly, this hypothesis 
is consistent with a variety of findings suggesting that the human 
brain exhibits ‘smallworld’ properties as a result of the existence of 
hub regions with extensive connectivity22. Considered more specifi
cally, FPN regions have been shown to have among the highest global 
connectivity in the brain during resting state23 (that is, they had the 

highest wholebrain mean functional correlation), suggesting the FPN 
contains hub regions. Supporting this conclusion, of all the major 
brain networks, the FPN was found to have the most broadly distrib
uted acrossnetwork functional connectivity9. Furthermore, it was 
recently shown that individual differences in the global connectivity 
of a specific LPFC region in the FPN correlate with cognitive control 
abilities and intelligence6, suggesting that high global connectivity in 
the FPN is important for adaptive task control. However, these results 
were based on static restingstate functional connectivity estimates 
(that is, interregion correlations estimated as single values across a 
long time period, during which cognitive state was unconstrained by 
task demands). As such, it is not yet known whether the connectivity 
of the FPN varies systematically, and in a truly global manner (that 
is, with all other brain networks), across task states. We tested this 
prediction of the flexible hub theory using graph theoretical methods 
that are typically used to estimate functional connectivity of static 
networks, but instead applied them to dynamic networks (that is, 
taking into account shifts in connectivity across task states).

Compositional coding has been proposed as a key flexible hub 
mechanism underlying the human ability to learn novel tasks 
extremely rapidly5 via reuse of task elements across task contexts24–26. 
This mechanism is likely dependent on the simultaneous segregation  
(representing separate rules) and integration (representing task 
relevant relations among the rules) of task information among brain 
regions27. This would allow neural activity and connectivity pat
terns (representational components) that are refined and strength
ened during practice to then be reused during novel task contexts 
(that is, a novel combination of components) to facilitate transfer of 
task knowledge and skill, and thus performance, in such contexts. 
Global variable connectivity in FPN may facilitate such transfer 
processes via integration of multiple practiced components (that is, 
distributed task rule representations) that have never been used in  
combination before.

Previously, we found evidence of compositional coding in the FPN 
(specifically in LPFC), using multivariate pattern analysis (MVPA) 
to confirm that activity patterns present during task rule performance 
can be used to accurately classify these rules and that these activity pat
terns transfer from practiced to novel task contexts24. However, these 
findings were limited to only one task rule domain (logical decision 
rules) and involved activity rather than connectivity patterns. Recent 
advances in the use of MVPA with taskstate functional connectivity10 
allowed us to more directly test the flexible hub theory by evaluating 
whether connectivity patterns map systematically to task states. In 
addition, we tested whether the practicedtonovel transfer of activity 
patterns in LPFC observed in our prior work could be extended more 
broadly to characterize taskstate functional connectivity patterns 
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a bFigure 1 Conceptual illustration of task-control flexible hubs in the FPN. 
(a,b) Task-control flexible hubs are schematically illustrated as brain regions 
in the FPN that exhibit global variable connectivity (a) and compositional 
coding (b). These mechanisms may explain how the FPN contributes to a 
wide variety of tasks. Global variable connectivity is depicted by the shifting 
connectivity pattern (red lines connecting FPN to other brain networks) 
across multiple networks across the two example tasks. Compositional 
coding (enabling task skill transfer) is depicted by the reuse of a subset of 
the red connectivity pattern corresponding to the reuse of the ‘press left 
button’ task component. These mechanisms would likely allow the FPN to 
meaningfully contribute to a wide variety of task contexts by allowing rapid 
reconfiguration of information flow across multiple task-relevant networks 
via reuse of previously learned sets of connectivity patterns.
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across the full set of task rule domains  
(logical decision, sensory semantic and  
motor response rules) and across the entire 
FPN as an integrated network.

To carry out these investigations, we relied 
on advances in techniques for identifying the 
brain’s functional networks and the regions that comprise these net
works. Specifically, it is now possible to partition the brain into a 
set of intrinsic functional networks independent of any particular 
task state9,28. We used a previously described network partitioning 
scheme9 that identifies the FPN as one of ten major functional net
works in the human brain (Fig. 3a), independently of the current data 
set and the 64 task states. We then estimated taskstate functional 
connectivity patterns among the regions that comprise these networks 
(Fig. 3b) to test for the existence of flexible hubs in the FPN. Flexible 
hubs were identified as regions with functional connectivity patterns 
that met two key criteria: consistent variability across many task states 
and consistent variability across many brain networks. This is in con
trast with most previous definitions of hubs, which involve static or 
nondynamic (restingstate functional or anatomical connectivity) 
estimates of global connectivity and therefore do not address the pos
sible taskdependent dynamics of these highly connected regions22,23 
(although there has been some characterization of hub dynamics dur
ing resting state29).

In summary, we hypothesized that the FPN would involve greater 
variable connectivity across networks and across tasks than other 
networks. Furthermore, we expected that these connectivity changes 
would map systematically to the currently implemented task compo
nents. We examined compositional coding by first testing whether 
connectivity patterns encoded the similarity relationships between 
tasks, and then testing whether these distributed connectivity pat
terns could be used to reliably decode which task was being per
formed. Lastly, we examined whether such adaptive connectivity 
patterns could be used to implement practicedtonovel transfer 
in task state classification. Confirmation of the presence of both 
global variable connectivity and compositional coding in the FPN 
would provide strong support for the idea that this brain network 
implements core flexible hub mechanisms. As such, we hoped to 
provide a more comprehensive account of how the human brain, 
via interactions between the FPN and other brain networks, 
might enable cognitive control across a wide variety of distinct  
task demands.
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Figure 2 The permuted rule operations 
behavioral procedure, in combination with 
recent advances in task-state connectivity 
methods, allows detection of flexible 
connectivity across a wide variety of task states. 
The procedure was designed to efficiently 
visit a variety of task states (60 novel and 
four practiced previously per subject) while 
controlling for extraneous factors across those 
task states (for example, input and output 
modalities, task timing, and stimuli). Tasks were 
defined as unique combinations of rules, such 
that the same stimuli would elicit a distinct set 
of cognitive operations across distinct tasks. 
We included 12 rules across three qualitatively 
distinct domains, allowing for a well-controlled 
sampling of a moderately sized space of 
possible task states spanning multiple cognitive 
(logical decision rules), sensory (sensory 
semantic rules) and motor (motor response 
rules) processes. Participants were over 90% 
accurate for both novel and practiced tasks7.
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FPN (fronto-parietal)
CON (cingulo-opercular)
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DAN (dorsal attention)
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Figure 3 Graph theoretical brain network partition and context-dependent 
functional connectivity estimation. (a) Network partition of 264 putative 
functional regions described previously9. The ten major networks 
(node communities) are labeled on the right. (b) The linear regression 
model equation (gPPI8) used to estimate context-dependent functional 
connectivity (between each pair of the 264 regions) while controlling for 
mean activation and context-independent functional connectivity. S is the 
‘seed’ region’s time series and T is a given task’s timing (convolved with 
a hemodynamic response function). S × bin(T) is the seed time series 
multiplied by the binary version of a given task’s timing (all values above 
0 set to 1), which results in the simple linear regression fitting of one 
region’s time series to another during each task context. Similar to the 
standard definition used for resting-state functional connectivity MRI46, 
functional connectivity is defined here as the linear association between 
two brain regions’ neural activity time series (likely reflecting direct or 
indirect communication), measured indirectly here using blood oxygen 
level–dependent fMRI (Online Methods). 
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RESULTS
Global variable connectivity in the FPN
Previous research has shown that the global connectivity of FPN 
regions is among the highest found in the entire brain6,23. However, 
these studies were based on static restingstate functional connectivity 
estimates, and it remains unknown whether this widespread connec
tivity is flexibly updated according to task demands. Other studies 
have shown that some FPN regions shift their functional connections 
across task conditions15. Notably, these studies included only a small 
number of other regions and task conditions (typically two). Such 
analyses can be useful for demonstrating simple regiontoregion cor
relation changes (Supplementary Fig. 1), but inferences are limited 
regarding the general flexible connectivity properties of the FPN.  
Our task procedure visited 64 distinct task states, allowing us to esti
mate distributions of contextdependent functional connectivity to 
facilitate broader inferences. The flexible hub theory predicts that the 
FPN should involve extensive variable connectivity across a variety of 
task states and a variety of networks. We tested this hypothesis by sum
marizing distributions of contextdependent functional connectivity 
across the 64 task states across the networks shown in Figure 3a.

To summarize these distributions, we created a new graph theoret
ical measure similar to global brain connectivity (that is, normalized 
weighted degree centrality)23, termed global variability coefficient 
(GVC), which summarizes the overall variability in connectivity pat
terns. The GVC is defined as the mean of the functional connectivity 
variability (across the 64 tasks) across all of a region’s connections 
(Fig. 4a). Specifically, for each subject, we computed a 264 × 264 × 64 
matrix representing betweenregion contextdependent connectivity 
for each of the 264 brain regions in each of the 64 task states. The 
s.d. across the third dimension estimated the ‘variable connectivity’ 
for each connection. We then averaged this measure across all of 
each region’s 263 connections (the second dimension) to yield each 
region’s GVC. Finally, we averaged the GVCs of the regions in a given 
network to determine the network GVC, which summarizes that 
network’s connection strength changes with all other brain regions. 
Our specific goals were to develop a graph theoretical measure that 
both quantifies a property highly related to the theoretical concept 
of global variable connectivity and is relatively simple (relative to 
alternative possibilities) to facilitate interpretation and commu
nication of findings using the measure. In contrast with reporting 
many taskspecific network configurations, the use of this measure 
facilitates identification of the general property of interest, global 
variable connectivity.

As predicted, the FPN had the highest GVC (Fig. 4b and 
Supplementary Table 1), with its GVC value being significantly 
higher (P < 0.05, false discovery rate (FDR) corrected for multiple 
comparisons) than that of each of the other brain networks. To further 
assess whether FPN had notably high GVC, we also calculated a kind 
of baseline GVC, the mean GVC across the entire brain (averaging 
over all 264 regions), and found that the FPN’s GVC was significantly 
higher (wholebrain = 0.36, FPN = 0.40, t14 = 9.37, P = 2.086 × 10−7). 
Furthermore, we found that these effects replicated across the three 
rule dimensions (Supplementary Table 2), indicating that no single 
rule type drove the observed effects. These results were also replicated 
when using a Pearson correlation method and a covariance method 
(computing interregion Pearson correlations or covariances after 
regressing out mean task activity; Supplementary Tables 3 and 4)  
instead of our primary methodological approach (which involved 
generalized psychophysiological interaction, gPPI), suggesting 
these results are robust across functional connectivity methods. 
Notably, the GVC results were also independent of mean task activa
tion and stable (contextindependent) functional connectivity, given 
that mean activity, contextindependent connectivity and context
dependent connectivity were modeled such that they were statistically 
independent components in the statistical model (Online Methods 
and Fig. 3b). Furthermore, FPN was not the only network showing 
high activity across the 64 tasks (for example, the dorsal attention 
and cinguloopercular control networks were often engaged as well; 
Supplementary Fig. 2), indicating that GVC was not driven by acti
vation or coactivation of regions. Together, these results strongly 
support the hypothesis that the FPN consistently changes functional 
connectivity with a variety of regions across a variety of tasks.

We next sought to provide more direct evidence that the variable 
connectivity patterns observed in the FPN were truly global in nature, 
rather than driven by very large changes in a small subset of FPN 
(for example, within network) connections. To examine this issue, 
we used another graph theoretical measure, the participation coef
ficient30, which estimates the uniformity of connections (in this case, 
connection variability) across all networks. Note that this measure 
is typically applied to static (restingstate functional or anatomical 
connectivity) networks, but here we applied it to dynamic (variable 
connectivity) networks. Consistent with the hypothesis that the FPN 
consists of flexible hubs (that is, regions with variable connectivity 
patterns that are truly global), we found that this network had the 
highest mean participation coefficient of all of the examined brain 
networks (Fig. 5a). This finding was robust across various means of 

Figure 4 GVC, a measure of global variable 
connectivity, is highest for the FPN. (a) We 
developed a measure to identify the highly 
global and flexible functional connectivity 
predicted by the flexible hub theory.  
A distribution of functional connection strengths 
across 64 task states was estimated for each 
region-to-region connection and the variability 
(s.d.) was then averaged across all of a given 
region’s connections. The distributions of an 
FPN region’s (LPFC region in Supplementary 
Fig. 1; Talairach coordinates: −45, 7, 24) 
connectivity with a visual network region (left) 
and a motor network region (right) for a single 
subject are shown as representative examples. 
The histograms summarize the spread of the 64 functional connectivity estimates in terms of connection strength (x axis = seven bins of connection 
strength, y axis = count of task states with a given connection strength). (b) Each network’s GVC (mean of each network’s regions’ variable connectivity 
with all 264 regions). The error bars illustrate the inter-subject s.e.m. The FPN had significantly (P < 0.05, FDR corrected) higher GVC than all of the 
other networks. Code for computing GVC is available at http://www.mwcole.net/cole-etal-2013/.
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calculating participation coefficient (that is, across thresholds defin
ing connections included in the calculation; Supplementary Table 5; 
and when using Pearson correlations or covariances to estimate the 
functional connections; Supplementary Tables 6 and 7).

To further test the robustness of this result, we also analyzed FPN’s 
variable connectivity with each network separately (rather than sum
marize FPN’s variable connectivity across all networks in a single 
value). Specifically, we examined the pairwise variable connectivity 
between each of the ten brain networks to provide an index of the 
specific networktonetwork variable connectivity. We then compared 
the networktonetwork variable connectivity values that included the 
FPN with those involving other networks (Fig. 5b) using the mean 
networktonetwork variable connectivity as a baseline. We found 
that variable connectivity between the FPN and each of the other 
nine brain networks was significantly higher than this baseline value  
(P < 0.0001, FDR corrected). Moreover, the FPN was the only network 
to show this effect. It is worth noting that these results also indicate 
that the 64 tasks were varied enough to drive the FPN to shift con
nectivity with every other brain network.

Lastly, we tested the hypothesis that individual FPN regions 
also have the flexible hub properties that were observed at the net
work level (Supplementary Fig. 3 and Supplementary Table 8). 
Indeed, we found that 10 of the 25 FPN regions had significantly 
greater GVCs than the wholebrain mean (P < 0.05, FDR corrected). 
Furthermore, as with the FPN as a whole, nine of these regions had 
greater variable connectivity with every network relative to each 
network’s global or mean variable connectivity (P < 0.05, FDR  
corrected). Notably, these ten regions were in several major  
anatomical subdivisions of the FPN (anterior LPFC, dorsal LPFC, 
posterior LPFC and PPC), supporting the existence of flexible  
hub regions throughout the FPN.

Compositional coding in FPN connectivity patterns
The second mechanism proposed by the flexible hub theory is that 
the FPN’s functional connectivity patterns are systematic and struc
tured, using compositional coding to represent overlapping cognitive 
components. Compositional coding in connectivity patterns would 
allow for immediate transfer of knowledge and skills (represented in 

the connectivity patterns) into new task contexts5. As an initial test 
of such systematic connectivity, we examined whether the similarity 
among task states was reflected in similarity among FPN functional 
connectivity patterns. We examined this prediction using represen
tational similarity analysis31, a form of MVPA. Representational  
similarity analysis has typically been applied to fMRI activity patterns, 
but here we applied it to functional connectivity patterns.

Our data set is particularly well suited for representational sim
ilarity analysis given the innate similarity structure among the 64 
tasks. Specifically, each task was related to each other task by two 
overlapping rules (for example, SAME – SWEET – LEFT INDEX 
versus SECOND – SWEET – LEFT INDEX), one overlapping rule, 
(for example, SAME – SWEET – LEFT INDEX versus SECOND –  
SWEET – RIGHT MIDDLE) or no overlapping rules (for example,  
SAME – SWEET – LEFT INDEX versus SECOND – GREEN – RIGHT 
MIDDLE). Thus, we could create a 64 × 64 matrix with a single 
number (0, 1 or 2) in each cell summarizing the pairwise similarity 
among the 64 tasks. We could also create such a matrix summariz
ing the similarity among FPN connectivity patterns using a standard 
similarity and distance metric (Spearman’s rank correlation). Only the 
FPN connections with the highest variability (specifically, 25 × 263 =  
6,575 connections thresholded by top percentage of s.d. across the 
64 tasks) were analyzed to determine whether even highly variable 
connections contain systematic task information, a key assumption of 
the previous analyses. Consistent with this possibility, using a number 
of different variable connectivity thresholds (five thresholds, top 10% 
to 2%, in 2% increments), we observed that the effect was robust in 
all but the highest threshold (P = 0.006, 0.002, 0.001, 0.005 and 0.14, 
Spearman’s rank correlation, permutation tests; Fig. 6). Furthermore, 
the relationship was consistently positive, suggesting that the FPN’s 
contextdependent connectivity throughout the brain, rather than 
varying solely as a function of noise, varied systematically as a func
tion of the task being performed.

We next tested the compositional coding hypothesis more directly. 
We hypothesized that, if FPN connectivity patterns were system
atic and structured, they should provide information regarding the 
 current cognitive task state. As such, we tested whether task state 
could be decoded using MVPA methods, based on the particular 

Figure 5 FPN’s variable connectivity is  
truly global. (a) To rule out the possibility  
that FPN’s high GVC was driven by high 
variability of a small subset of connections,  
we estimated across-network variable 
connectivity (participation coefficient) for each 
network. Similar to GVC, FPN’s participation 
coefficient of variable connectivity was highest 
(P < 0.05, FDR corrected) across the ten 
networks (the results for the top 2% variable 
connectivity are shown; Supplementary Table 5).  
This suggests that FPN’s variable connectivity  
is truly global. The error bars illustrate the 
inter-subject s.e.m. (b) Pairwise mean variable 
connectivity between networks was examined. 
Variable connections are highlighted that were 
significantly (P < 0.05, FDR corrected) greater 
for one of the networks included in a given link 
than the GVC of the other network included in that link. For example, the FPN-DMN link was highlighted because FPN’s mean variable connectivity with 
the DMN was significantly greater than the DMN’s mean variable connectivity with the entire brain (that is, its GVC). Note that variable connectivity 
from the Pearson correlation analysis (Supplementary Table 3) was used for illustration given that this method provides connectivity estimates that are 
identical in both directions (that is, to and from seed and target regions). The three lines in the legend are the minimum, median and maximum variable 
connectivity strengths. The FPN’s variable connectivity with each network was significantly greater than every network’s GVC (that is, the mean over 
each network’s connections with all 264 regions), providing confirmation that this is truly a global effect.
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 connectivity pattern instantiated during that state. Note that our pro
cedure provides a powerful test of this hypothesis, in that participants 
were engaged in a set of 64 distinct tasks, thereby providing a large 
and challenging task space for classification. Indeed, prior MVPA 
approaches to fMRI cognitive task decoding have typically involved 
only twoway classification problems, and, even with this, have typi
cally achieved only modest accuracies relative to chance10,24. To test 
for compositional coding of functional connectivity representations, 
we trained MVPA classifiers (linear support vector machines) in a 
hierarchical manner, with separate classifiers trained to do fourway 
classification in each of the three task rule domains (logic, sensory 
or motor). These classifiers were then combined to identify the indi
vidual task states (that is, a 64way classification).

To validate our approach, we began with a simple analysis.  
We examined the motor network (rather than FPN) with the expec
tation that this network could be used to successfully decode motor 
response rules, but not the other two task rule dimensions (chance =  
25% in the fourway classification of each task rule dimension).  
As expected, classification accuracy for the motor network was 
at or below chance for logic (26.7%) and sensory (23.3%) rule  
dimensions, but was significantly above chance for the motor rule 
dimension (41.7%, P = 0.001).

We repeated this analysis for the FPN, restricting its connections to 
the motor network for motor rules (given a priori expectations), but 
including the FPN’s wholebrain connectivity for logic and sensory 
rules (Fig. 7). As predicted, the FPN’s connectivity patterns could be 
used to decode all three rule dimensions: logic = 33.3% (P = 0.040), 
sensory = 31.7% (P = 0.077) and motor = 40% (P = 0.003). We next 
combined these three FPN classifiers (logic, sensory and motor) to pre
dict which of the 64 tasks was being performed (64way classification). 
This is a very difficult classification (as noted above, most classifica
tions in neuroscience have been twoway classifications), with chance 
accuracy being just 1.56%. The classification was successful with 5% 
accuracy (P = 0.013). Although this accuracy is low, its statistical sig
nificance nonetheless demonstrates the ability to identify task informa
tion in FPN connectivity patterns. We conducted exploratory analyses 
to determine whether other brain networks showed decoding accuracy 
that was equal or higher than the FPN, and none did. Given our a priori 
hypotheses focusing on FPN and concerns about multiple comparisons 
testing (that is, familywise error inflation), we did not further pursue 
classification on the basis of fullbrain connectivity patterns.

Notably, a particular aspect of the classification analysis supported 
the possibility that FPN connectivity patterns represent task informa
tion compositionally. Specifically, classification was achieved by train
ing the classifier on the basis of connectivity patterns present during 
novel task performance (that is, the first time each participant had 
ever performed that task), but then testing it during performance of 
practiced tasks (that is, a small set of tasks for which each participant 
was highly familiar). Because the classification was accomplished by 
training and testing on novel and practiced tasks separately, these 
results demonstrate transfer of compositional connectivity patterns 
across practiced and novel tasks.

Previous analyses of our data set revealed that there was a sig
nificant increase in the ability to learn the novel tasks relative to 
initial learning of the practiced tasks24, suggesting that there was 
transfer of task skill and knowledge from practiced to novel tasks. 
Furthermore, these prior analyses established that there were only 
minimal differences in rule difficulty24, such that difficulty differ
ences were unlikely to drive the present effects. Our analysis also used 
an acrossparticipant approach10 (one functional connection estimate 
per condition per participant) such that idiosyncratic differences in 
perceived difficulty32 were highly unlikely to have driven the results. 
Together, these results suggest that the FPN’s global connectivity pat
terns represent task information, are compositional and transfer from 
practiced to novel task contexts.

Sensory semantic
Chance = 25%

(GREEN versus LOUD versus
SOFT versus SWEET)

Logical decision
Chance = 25%

(SAME versus JUST ONE versus
SECOND versus NOT SECOND) 

Motor response
Chance = 25%

(L. INDEX versus L. MIDDLE versus 
R. INDEX versus R. MIDDLE) 

64-task classi�cation
Chance = 1.56%

(Logic + semantic + motor)

Result:
33%

Result:
32%

Result:
5%

Result:
40%

All classifications:
Trained on novel tasks,
tested on practiced tasks

Figure 7 Decoding of task identity from FPN’s 
context-dependent connectivity patterns. Using 
MVPA methods applied to functional connectivity, 
three separate four-way classifiers (logic, sensory 
and motor) were trained with FPN connectivity 
patterns during novel tasks and tested with 
FPN connectivity from practiced tasks. All three 
classifiers were above chance. These classifiers 
were then combined to decode each of the 64 
tasks (for example, SAME + GREEN + LEFT 
INDEX). Classification was again above chance 
(P < 0.05), a notable result given the challenging 
nature of the 64-way classification (chance 
accuracy = 1.56%). The results support the 
second mechanism of the flexible hub theory, 
compositional connectivity, by suggesting that 
FPN connectivity patterns are transferred across 
practiced and novel task contexts. L, left; R, right.
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DISCUSSION
Recent metaanalyses of functional neuroimaging results have revealed 
that certain distributed brain networks are consistently engaged across 
a wide variety of cognitively demanding task states1. This suggests 
that there may be a distributed cognitive control system (including 
the FPN) that implements domaingeneral functions, in addition to 
wellknown specialized systems (for example, sensory/motor and 
memory networks) for implementing relatively circumscribed func
tions. Recent evidence suggests that the FPN has extensive global 
connectivity (that is, its regions are hubs)23, suggesting that it may 
gain its multifunction ability by flexibly interacting with a variety of 
functionally specialized networks throughout the brain. We tested 
this possibility in the context of the flexible hub theory using recent 
advances in human neuroimaging methodology.

We tested two specific mechanisms of the flexible hub theory. First, 
the theory suggests that FPN has highly flexible and variable connec
tivity throughout the brain, allowing the FPN to coordinate multiple 
networks during task performance. Confirming this hypothesis, we 
found that the FPN had the highest GVC, an index of global variable 
connectivity, of all of the major brain networks. This pattern was 
robust: it was present in individual FPN regions, regardless of which 
functional connectivity measure we used to calculate GVC, and was 
also found using a different graph theoretical measure of global con
nectivity, the participation coefficient. Second, the flexible hub theory 
suggests that the FPN exhibits compositional coding in its connec
tivity patterns, such that these patterns are systematically related to 
cognitive task states and the relationships between states. Confirming 
this hypothesis, we found that brainwide FPN functional connectiv
ity patterns across 64 task states encoded the similarity relationships 
between tasks, could be used to identify task states and transferred 
from practiced to novel tasks.

Our findings have several limitations that will be important to 
address in future research. For instance, we used a necessarily imper
fect set of putative functional regions, identified by a previous study 
using metaanalysis and functional connectivity9. We chose to use 
these regions given evidence that voxeldefined (that is, using all vox
els as nodes) and anatomydefined (that is, based on gyri and sulci) 
cortical regions do not align well with functional regions, which can 
inappropriately alter graph theoretical and functional connectivity 
MVPA findings33,34. A related limitation is the inclusion of only the 
major brain networks, resulting from possibly imperfect graph theo
retical community detection, such that regions from some poten
tially smaller networks (for example, gustatory and olfactory networks 
or subcortical networks) were not included. Nonetheless, with 264 
regions distributed throughout the brain, this set is likely a sufficient 
approximation at this time, especially given that it approaches the 
number of distinct functional regions theoretically postulated to be 
present in the human brain (around 300)35. Still, it will be important 
for future work to replicate these findings as the set of identified 
functional regions and networks becomes more accurate.

The relatively low (but statistically significant) classification accu
racies identified in the decoding analyses are another potential limi
tation. However, support for the tested hypothesis, compositional 
coding of FPN functional connectivity, depends on the presence of 
information that is decodable across task contexts (as indicated by the 
statistical significance, rather than the absolute accuracies, of those 
classifications). Furthermore, the classification results are consist
ent with the representational similarity analysis (Fig. 6), which also 
supports the compositional coding hypothesis. Finally, there are rea
sons to expect the classification accuracies to be relatively low. For 
instance, in contrast with our 4way and 64way classification results, 

the majority of task rule classifications of fMRI activity and functional 
connectivity reported in prior studies have been easier twoway clas
sification problems10,36, and even these classifications have only per
formed modestly above chance. Indeed, to the best of our knowledge, 
our classification was the most difficult task rule classification of brain 
data to date, and the classification accuracy was proportionally higher 
than that of previous attempts (for example, approximately threefold 
higher than chance for the 64way classification). Increasing task rule 
classification accuracy is clearly an important challenge for nearterm 
research. Future work may be able to increase connectivitybased 
classification accuracies of task rules by using, for instance, optimized 
classification algorithms or more distinct task states (here, each clas
sification discriminated among rules of the same task dimension).

The similarity among the 64 task states is another potential limita
tion, as all 64 tasks involved some uniform attributes (for example, 
task timing, and input and output modality) that might have led to 
more acrosstask consistency in activation and connectivity patterns 
than a more distinct set of tasks would have. However, such uniform 
similarity was actually designed to control for things such as task tim
ing and input and output modality to isolate task states independently 
of brain state changes resulting from these lower order properties. 
Furthermore, the analyses tested for differences, rather than uniform 
similarity, in connectivity patterns across tasks, such that this uni
form similarity could not have led to false positives. Although having 
some uniform similarity could, in theory, have driven involvement 
of the FPN across all 64 tasks, such widespread involvement of the 
FPN has been well documented across much more distinct tasks14,37. 
Finally, involvement of regions across all 64 tasks, whether as a result 
of uniform task similarity or not, was not sufficient to lead to the 
observed flexible hub mechanisms given that the dorsal attention, 
ventral attention, salience and cinguloopercular control networks 
exhibited activity levels comparable to that of the FPN across all or 
most of the 64 tasks (Supplementary Fig. 2), but did not show the 
same level of connectivity pattern variability.

The involvement of five cognitive controlrelated networks across a 
wide variety of tasks begs the question of what each of these networks 
might contribute to task performance. We have provided a tenta
tive answer to this question for the FPN by reporting evidence for 
two mechanisms of the flexible hub theory. It may be that the other 
cognitive control networks contribute to a variety of tasks by imple
menting a number of distinct control processes, such as stable (rather 
than adaptive) task control and maintenance14, conflict detection38, 
arousal and salience39, or spatial attention40. It will be important for 
future research to characterize both the integration and specialization 
of these networks in implementing different aspects of task control, 
in addition to testing for the existence of other kinds of flexible hubs 
(for example, stable task control flexible hubs or attentional control 
flexible hubs).

Cognitive control permeates nearly every aspect of our lives and its 
disruption results in profound lifealtering deficits41,42. Our results 
extend several prominent theories of cognitive control11,12 by test
ing their predictions in a more generalizable form, identifying FPN 
variable connectivity across a variety of tasks and across a variety of 
brain networks. Furthermore, the flexible hub theory expands these 
frameworks to include flexible task control, including the highly adap
tive behavior of firsttrial task learning5, in addition to expansion of 
flexible hub neural mechanisms to the entire FPN (rather than LPFC 
alone). These results are consistent with findings in the macaque 
suggesting individual FPN neurons are highly adaptive in their 
representations43,44, as well as recent evidence that local functional 
connectivity is highly flexible in dorsal LPFC, shifting according to 
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current task demands45. Our findings suggest that an important way 
forward will be to identify correspondences between the systemslevel 
flexible hub mechanisms that we observed and local neuronal mecha
nisms in flexible hubs (and among FPN regions) that may regulate 
switching of global connectivity patterns according to task demands. 
Such a multilevel theoretical framework would move us substantially 
closer to the ultimate goal of understanding how the brain implements 
the ability to adaptively control one’s own behavior.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Participants. 15 righthanded participants (eight male, seven female), aged 19– 
29 years (mean age = 22 years) were included in this study. Note that this sample 
size is similar to those used in previous publications using withinsubject experi
mental manipulations with fMRI. Results from highly distinct analyses of this 
data set were reported previously7,24. The participants were recruited from the 
University of Pittsburgh and the surrounding area. Participants were excluded if 
they had any medical, neurological or psychiatric illness, any contraindications  
for MRI scans, were nonnative English speakers or were lefthanded. All partici
pants gave informed written consent.

Task procedure. The fMRI experiments consisted of performing the permuted 
rule operations (PRO) cognitive procedure7. The PRO procedure combines a set 
of rule components in many different ways, creating dozens of complex task sets 
that are each novel to participants (Fig. 2). The procedure was presented using 
EPrime software47.

Four logical decision, four sensory semantic and four motor response rules 
were used in the procedure. Each task consisted of one rule from each of these 
categories, allowing the creation of 64 (4 × 4 × 4) distinct tasks by permuting the 
possible rules. Of these tasks, four (counterbalanced across participants) were 
practiced (30 blocks, 90 trials each) during a 2h behavioral session 1–7 d before 
the neuroimaging session. These practiced tasks were chosen for each subject 
such that each rule was included in exactly one of the four tasks, ensuring that 
all rules were equally practiced. This also ensured that rule identity was control
led for across novel and practiced tasks (that is, only rule combinations differed 
across the conditions). During the neuroimaging session, half of the miniblocks 
consisted of the practiced tasks and half of novel tasks, randomly interleaved. 
With ten runs total per participant, each novel task was presented in one mini
block and each practiced task was presented in 15 miniblocks.

The semantic rules consisted of sensory semantic decisions (for example, “is it 
sweet?”). The logical decision rules specified how to respond based on the seman
tic decision outcome(s) for each trial (for example, are the two items the same in 
sweetness?). The motor response rules specified which finger to use to respond 
based on the logical decision outcome. The task instructions made explicit refer
ence to the motor response for a ‘true’ outcome (for example, right index finger), 
and participants knew (from the practice session) to use the other finger on the 
same hand (for example, right middle finger) for a ‘false’ outcome.

Task miniblocks included instruction encoding and three trials. Each mini
block began with a task type cue, indicating whether the upcoming task was 
novel (thin border) or practiced (thick border), followed by three instruction 
screens. The order of the instructions following the task type cue was consistent 
for each participant, but counterbalanced across participants. Asterisks filled in 
extra spaces in each instruction screen to control for differences in total visual 
stimulation across task rules. Each stimulus was presented for 800 ms with a 
200ms interstimulus interval. Interevent intervals (that is, between instructions 
and each of the three trials) were randomly varied between 2 and 6 s, whereas 
inter–miniblock intervals randomly varied between 12 and 16 s. There were 
12 miniblocks per run, with six novel task miniblocks and six practiced task 
miniblocks each. All task miniblocks were included in all analyses, as there was 
at least one accurate trial per miniblock for all participants.

mRI data collection. Image acquisition was performed on a 3T Siemens Trio 
MRI scanner. 39 transaxial slices were acquired every 2,000 ms (field of view = 
210 mm, echo time = 30 ms, flip angle = 90°, voxel dimensions = 3.2 mm3) with 
a total of 216 gradient echoplanar imaging volumes collected per run (across 
ten runs). Siemens’ implementation of GRAPPA (generalized autocalibrating 
partially parallel acquisition) was used to double the image acquisition speed. 
Threedimensional anatomical MPRAGE (magnetization prepared rapid acqui
sition gradient echo) images and T2 structural inplane images were collected for 
each subject before fMRI data collection.

fmRI preprocessing. Preprocessing was performed using AFNI48 and 
Freesurfer49. Preprocessing consisted of standard functional connectivity pre
processing (typically performed with restingstate data), with several modifica
tions given that analyses were performed on taskstate data. Similar to standard 
functional connectivity preprocessing23, we performed slice timing correction, 
motion correction, normalization to a Talairach template, removal of nuisance 

time series (motion, ventricle and white matter signals, along with their deriva
tives) using linear regression, restriction of data to a gray matter mask (dilated by 
one voxel) and spatial smoothing in the gray matter mask (6mm full width at half 
maximum). Unlike standard restingstate functional connectivity preprocessing, 
whole brain signal was not included as a nuisance covariate (given current con
troversy over this procedure50), and a lowpass temporal filter was not applied 
(given the likely presence of task signals at higher frequencies than the relatively 
slow restingstate fluctuations). Freesurfer was used to identify ventricle, white 
matter and gray matter anatomical structures for each participant.

Functional connectivity estimation. Taskstate functional connectivity was  
estimated between each pair of the 264 functional brain regions of interest. 
Contextdependent connectivity was estimated using a linear model equivalent 
to the general linear model (GLM) typically used in fMRI analysis with several 
additional regressors. There were three kinds of regressors per linear model: one 
task regressor per condition convolved with a subjectspecific hemodynamic 
response function (equivalent to the regressors in a typical GLM), a context
independent connectivity regressor consisting of the entire time series of the seed 
region across all task conditions and interblock periods and a contextdependent  
connectivity regressor for each task condition consisting of the seed region’s time 
series only during the time that the subject was performing the task of interest 
(with a subjectspecific hemodynamic lag included). Thus, the estimated func
tional connectivity during each task condition was statistically independent of 
mean activation during that task condition and overall contextindependent 
functional connectivity (Fig. 3b).

This approach was equivalent to a simplified version of the recently developed 
gPPI approach8. We had four primary reasons for using gPPI. First, it was found 
using a biologically realistic simulation that PPIs are more sensitive than Pearson 
correlations for detecting taskstate connectivity changes51. Second, relative to 
Pearson correlation changes, PPI changes better reflect changes in linear associa
tion (rather than signaltonoise, which can change as a result of changes in noise 
across conditions)52. Third, the inclusion of task regressors reduces the chance 
that the functional connectivity estimates were driven by simple coactivation 
(that is, activation of multiple regions during a task without interregional com
munication). Fourth, unlike the classic PPI implementation, gPPI allows for an 
unlimited number of task conditions to be modeled simultaneously. This was 
especially important given the need to model 64 tasks and/or 12 rules (four rules 
at a time) per subject. We used inhouse software implemented in MATLAB 
2008b (MathWorks) to calculate the gPPIs. We simplified the gPPI procedure by 
eliminating the ‘deconvolution’ step8, given that it has not been empirically shown 
to improve PPI estimates and that we used a miniblock design (the deconvolu
tion step was primarily developed for eventrelated designs). This step is also 
not used in PPI analyses implemented with FSL software53, making the current 
analysis approach quite similar to the standard FSL PPI method. One important 
improvement here, however, was the true zeroingout of the noncurrent task 
periods (by not meancentering the task regressors) to ensure removal of non
current task (for example, rest) period fluctuations from the PPI regressors, and 
thereby improve sensitivity to true PPI effects.

The linear model equation used to simultaneously estimate task activity,  
contextindependent connectivity and contextdependent connectivity was

y = β0S + β1T1 + … + β64T64 + β65 (S × bin(T1)) + … + β129 (S × bin(T64))

where y is the target region’s time series, S is the source region’s time series, β is the 
leastsquares linear estimate, T is the task timing for a given task (convolved with 
a subjectspecific hemodynamic response function) and bin(T) is a binarized ver
sion of the task timing (that is, time points with values greater than 0 were set to a 
value of 1). Contextindependent connectivity was estimated with the β0 regres
sor and task activity was estimated with regressors β1 − β64; contextdependent  
connectivity was estimated with regressors β65 − β129. Note that an additional 
baseline regressor (all 1s) was also included, as is standard for linear modeling. 
Also note that the task activity regressors were constructed by modeling each 
event (in miniblocks), with durations of 4 s (2 repetition times) for instruction 
events and 2 s (1 repetition time) for trial events.

One potential limitation, which is an issue for all current taskstate  
functional connectivity fMRI methods, is the possibility that some coactivation 
was falsely attributed to connectivity. The key problem is that simple activation 
of two noninteracting regions will lead to a linear association (that is, a positive 
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connectivity estimate) as a result of similarity of the hemodynamic response 
shape across regions. We used the standard PPI approach to dealing with this 
issue, including task condition timings (the same timing as would be included 
in a GLM) as covariates when estimating connectivity. Given that this approach 
requires highly accurate activity estimates, we obtained a separate hemodynamic 
response function for each individual (based on the average of the finite impulse 
response functions of two visual and two motor regions across all visual and 
motor task events) to more accurately estimate mean activity in each region and 
help rule out coactivation as a confound (Supplementary Fig. 4). Note that, 
although regions differ in their hemodynamic responses, most hemodynamic 
variability is a result of intersubject differences54, suggesting that our approach 
likely accounted for much of the hemodynamic variability. Furthermore, inter
region hemodynamic variability is unlikely to cause false positives given that co
activation leads to false positive connectivity only in so far as regions have similar 
hemodynamic response shapes. It will nonetheless be important for future studies 
to explore approaches for completely ruling out coactivation as a confound.

A simpler approach was also used for contextdependent connectivity ana
lyses. This involved modeling mean activity for all 64 conditions in a GLM run 
on each of the 264 regions separately, then calculating pairwise Pearson cor
relations (subsequently Fisher’s z transformed) among the residual time series, 
separately for each task condition, from those GLMs. Finally, as an even simpler 
approach, we also computed connectivity estimates based on covariance alone 
(that is, Pearson correlation without normalizing by each region’s time series s.d.). 
Both of these alternative approaches yielded similar results as the gPPI approach 
(Supplementary Tables 3, 4, 6 and 7). The graph theoretical estimates for each 
of the 264 regions across the three ways of estimating functional connectivity are 
provided in Supplementary Table 9. The gPPI approach was used in the main 
analyses due to evidence that PPIs are more sensitive to functional connectivity 
changes than correlations51 and because gPPIs include a contextindependent 
covariate that may account for static and intrinsic connectivity (which was not 
of interest in the present study).

graph theoretical analyses. We used MATLAB for graph theoretical analyses. 
This involved inhouse software and the Brain Connectivity Toolbox55. Code for 
computing GVC is available at http://www.mwcole.net/coleetal2013/. Analyses 
were run on the gPPI beta estimates (and, separately, using Pearson correlations 
or covariances). Unless stated otherwise, all null hypothesis statistical tests were 
conducted using paired (by subject) twosided t tests. We tested whether the data 
were normally distributed using QQ plots before running t tests. We sought 
to use a principled network partition based on an independent data set using 
restingstate (that is, task independent) functional connectivity to use a network 
partition unbiased by the current data set and unbiased by the current or any 
other particular task states. Thus, network identification was based on the regions 
and community detection reported previously9.

The 264 regions are 10mm diameter spheres centered on the coordinates 
reported previously9. Those coordinates are the centers of putative functional 
areas (and subcortical and cerebellar nuclei), defined by multiple task fMRI 
metaanalyses56 and by a resting state functional connectivity MRI parcellation 
technique57.

Previously9, several partitions of the 264 regions into highly correlated groups 
of nodes called communities were reported. We used a summary set of node 
assignments based on the previous results9, using all of a node’s assignments 
into communities across two independent data sets and all thresholds reported 
previously9. A consensus assignment was made manually for each node based on 
the consistency of a node’s community assignment across groups and thresholds. 
Preference was given to assignments from the analyses on only the strongest 
correlations. These consensus assignments were made without knowledge of a 
node’s identity (location) or the identity of the assignment (the corresponding 
brain network). These consensus assignments are described elsewhere13 and 
are available at (http://sumsdb.wustl.edu/sums/directory.do?id=8293343&dir_
name=power_Neuron11).

This consensus assignment resulted in 13 communities, with two communities 
(one exclusively in cerebellum and another with unknown functionality) excluded 

and two motor and somatosensory communities combined (the ‘hand’ and ‘face’ 
primary motor networks) based on strong consensus of a unified primary motor 
system. This resulted in ten network communities. Note that all analyses involved 
functional connectivity between each of the ten networks of interest and all 264 
regions (that is, all networks).

mVPA. Representational similarity analyses were carried out using previously 
described methods31. Specifically, Spearman’s rank correlation was used as a 
similarity and distance metric to identify similarity among task connectivity pat
terns (including thresholded sets of all FPN connections with all 264 regions). 
This same similarity metric was also used to compare the connectivity similarity 
matrix (averaged across subjects) with the task similarity matrix (quantifying the 
number of rules shared across tasks). Permutation tests were used (1,000 permu
tations each; randomizing both matrices) to test for statistical significance of the 
relationship between the two similarity matrices across the variable connectivity 
density thresholds (top 10% to 2%, in 2% increments).

Linear support vector machines using LIBSVM58 in MATLAB were used for 
the pattern classification analyses. Classifiers were trained and tested across sub
jects (one gPPI beta value per task rule per subject) given recent success with 
acrosssubject MVPA when classifying taskstate connectivity10. Training and 
testing data were kept separate (to avoid circularity) by training on rules from 
novel tasks and testing on practiced tasks. Standard acrossfeature normalization 
(separately for each observation) was applied by subtracting the acrossfeature 
mean and dividing by the acrossfeature s.d. Classification significance was 
assessed using permutation tests (1,000 permutations of random training and 
testing label orders). The 64way task classification used the three rule classifiers 
(trained on novel tasks), with a correct task classification requiring that all three 
rule classifications were correct for a given practiced task.

Note that it was necessary to train with the novel tasks because (for each sub
ject, counterbalanced across subjects) each rule was always confounded with two 
others for the practiced tasks, such that separate estimates were not possible. In 
other words, the variety of rule combinations across each subject’s 60 novel tasks 
allowed for separate estimates of each of the 12 rules (ideal for classification train
ing), whereas the small number of rule combinations across each subject’s four 
practiced tasks only allowed for classification tests to determine the presence of a 
task rule among others. Note that the inference, that FPN functional connectivity 
patterns are consistent across practiced and novel tasks, would be the same had 
the classifiers been trained on practiced and tested with novel tasks.
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Erratum: Multi-task connectivity reveals flexible hubs for adaptive task  control
Michael W Cole, Jeremy R Reynolds, Jonathan D Power, Grega Repovs, Alan Anticevic & Todd S Braver
Nat. Neurosci.; doi:10.1038/nn.3470; corrected online 5 August 2013

In the version of this article initially published, in the sentence following the equation in Online Methods, an â character was substituted for the b. 
The error has been corrected in the HTML and PDF versions of the article.
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