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The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and
function and their variability in healthy adults. This review summarizes the data acquisition plans being
implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins
and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic
data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked
fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoenceph-
alography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data
quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and opti-
mize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and im-
proved MR pulse sequences.

© 2012 Elsevier Inc. All rights reserved.
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Introduction

Recent advances in neuroimaging, including many that are dis-
cussed in this special issue, have made it feasible to examine human
brain connectivity systematically and across the whole brain in
large numbers of individual subjects. Progress in the nascent field of
connectomics led NIH in 2009 to announce a Request for Applications
for the Human Connectome Project (HCP), with an overarching
objective of studying human brain connectivity and its variability in
healthy adults. In September, 2010, grants were awarded to two
consortia (http://www.neuroscienceblueprint.nih.gov/connectome/).
One is a 5-year grant to a consortium of ten institutions in the United
States and Europe, led by Washington University and the University
of Minnesota (the ‘WU-Minn HCP Consortium’). This consortium aims
to study brain connectivity and function with a genetically-
informative design in 1200 individuals using four MR-based modali-
ties plus MEG and EEG. Behavioral and genetic data will also be ac-
quired from these subjects. The second is a 3-year grant to a
consortium led by Harvard/MGH and UCLA to develop an advanced
MR scanner for diffusion imaging.

A deeper understanding of human brain connectivity and its var-
iability will provide valuable insights into what makes us uniquely
human and what accounts for the great diversity of behavioral ca-
pacities and repertoires in healthy adults. It will provide a critical
baseline of knowledge for future studies of brain connectivity dur-
ing development and aging and in myriad neurodevelopmental,
neuropsychiatric and neurological disorders. Also, the data acqui-
sition strategies and analysis methods developed under the aus-
pices of the HCP will be freely shared and will benefit many
other projects. Increasing both the commonality and the sensitiv-
ity of methods used to characterize human brain connectivity
across different studies will enhance our ability to detect subtle
links between genetics, human brain connectivity patterns, and
behavioral variation.

Despite their great promise, all of the modalities that can be
applied to in vivo human connectomics currently have serious limita-
tions in their sensitivity, accuracy, and resolution (Van Essen and
Ugurbil, 2012). Hence, during Phase I of the grant (until the summer
of 2012) the WU-Minn HCP consortium is making a major effort to
improve the methods of data acquisition and analysis. This includes
a new 3T MRI scanner designed to improve the quality and resolution
of connectivity data, as well as a new 7T scanner, both of which will
capitalize on major improvement in MR pulse sequences. This initial
phase will be followed by a 3-year period of data acquisition from
the main cohort (Phase II). The combination of methods refinement
followed by extensive data acquisition makes the HCP a unique enter-
prise compared to several other large-scale imaging efforts that are
also underway (see Discussion).

This review focuses on the data acquisition aspects of the HCP,
given their critical importance for the endeavor. After a brief over-
view of the HCP objectives, we describe the subject cohort and be-
havioral measures, followed by the hardware configuration and
data acquisition strategies for each of the main imaging modalities.
Already there have been significant methodological advances that
provide grounds for optimism about the data quality that will be
attainable. Approaching near-optimal solutions will be very chal-
lenging given the large number of factors and parameters needing
evaluation. We provide examples of our general approach to this
problem.
Overview of the HCP

Fig. 1 provides a high-level view of our plans for data acquisition
in Phase II of the project. Data will be acquired from 1200 subjects,
comprising young adult sibships of average size 3–4, including
twins and their non-twin siblings. Each subject will spend 2 days at
WashU for behavioral assessment, blood draw for eventual genotyp-
ing, and multiple MR scanning sessions (4 sessions, with 3 lasting
1 h). The WashU scans will be carried out using a customized 3T
Connectome Scanner adapted from a Siemens Skyra (Siemens AG,
Erlanger, Germany); a subset of 200 subjects will also be scanned at
UMinn using a new 7T scanner (MR hardware section). On both the
3T and 7T systems, the MR scans will use advanced pulse sequences
to acquire dMRI, R-fMRI, and T-fMRI, plus T1w and T2w anatomical
scans. T-fMRI scans will include a range of tasks aimed at providing
broad coverage of the brain and identifying as many functionally dis-
tinct domains and cortical parcels as possible.

A subset of 100 subjects will also be studied with combined MEG/
EEG at St. Louis University (SLU); if possible, some of these will be in
the group also scanned at 7T. MEG and EEG provide much better tem-
poral resolution (milliseconds instead of seconds) but lower spatial
resolution than MR (MEG/EEG section).

The behavioral measures will span a broad range in the domains of
cognition, emotion, perception, and motor function (Behavioral
measures section). They will be drawn mainly from the NIH Toolbox
but will be supplemented by a number of complementary additional
measures. Blood samples from all subjects will be used for genotyping
in year 5, at which time full-genome sequencing may be affordable
(Genetics section).

http://www.neuroscienceblueprint.nih.gov/connectome/


Fig. 1. Schematic summary for acquiring imaging, behavioral, and genetic data using MR and MEG/EEG scanners at three HCP data acquisition sites. Left: Behavioral testing, blood
draws for genotyping, and scanning on a 3T Skyra will be carried out on 1200 healthy adults at Washington University (WashU). Center: Major data acquisition modalities are in-
dicated in the center column; for task-fMRI and behavior, major domains are listed. Top right: A subset of 200 subjects will be scanned on a 7T Skyra at the University of Minnesota
(UMinn). Bottom right: A subset of 100 subjects will be scanned using magnetoencephalography (MEG) and perhaps electroencephalography (EEG) at St. Louis University (SLU).
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Extensive efforts to refine many aspects of data analysis are un-
derway for each modality, as will be discussed in future publications.
Another major thrust is to implement a robust and user-friendly in-
formatics platform to support data management and data mining
(Marcus et al., 2011).

In principle, it would be valuable to collect data from additional
noninvasive imaging modalities (e.g., PET and NIRS). However,
given overall budget constraints this would require reducing the
total number of subjects studied. The strategy we adopted reflects a
trade-off and balance between (i) acquiring as much information as
is feasible using multiple modalities related to brain connectivity
and function, and (ii) having a subject population sufficiently large
to systematically explore the neurobiological and genetic bases of
individual variability in brain circuitry and behavioral phenotype.

Study subjects

A key objective is to understand inter-individual variability of
brain circuits, including its genetic bases and its relation to behavior,
rather than merely aiming to determine the average, or typical con-
nectivity in healthy adults. This will be achieved by sampling
300–400 young adult sibships of average size 3–4, with most of
these sibships including a MZ or DZ twin pair. All subjects will be be-
tween 22 and 35 years old, an age range chosen to represent healthy
adults beyond the age of major neurodevelopmental changes and be-
fore the onset of neurodegenerative changes. While the HCP will be
cross-sectional, many participants will be drawn from ongoing longi-
tudinal studies (Sartor et al., 2011; Edens et al., 2010); they will have
extensive previous assessments, particularly with respect to history
of the presence or absence of emotional and behavioral problems.
This will allow us to recruit a sample of relatively healthy individuals
free of a prior history of significant psychiatric or neurological ill-
nesses. Our goal is to capture a broad range of variability in healthy
individuals with respect to behavioral, ethnic, and socioeconomic di-
versity. We will define ‘healthy’ broadly, to avoid having an unduly
narrow ‘supernormal’ case series that might not be representative of
the population at large. We will exclude sibships with individuals
having severe neurodevelopmental disorders (e.g. autism), documen-
ted neuropsychiatric disorders (e.g. schizophrenia or severe recurrent
depression) or neurologic disorders (e.g. Parkinson's disease), but will
include individuals who are smokers, are overweight, or have a histo-
ry of heavy drinking or recreational drug use without having experi-
enced severe symptoms (Supplemental Table S1 lists the full set of
inclusion and exclusion criteria under consideration). This strategy
will enable future connectivity studies on psychiatric patients, many
of whom smoke, are overweight, or have subclinical substance
use behaviors, to be compared to connectivity data on HCP ‘healthy
individuals’ having similar profiles. Twins born prior to 34 weeks
gestation and non-twins born prior to 37 weeks gestation will be ex-
cluded. This acknowledges the higher incidence of prematurity in
twins and focuses on exclusion of individuals born very prematurely.
Our initial screening will include a detailed questionnaire developed
explicitly for the HCP to determine presence or absence of the inclu-
sion/exclusion criteria. This will be followed by an additional exten-
sive, reliable, and valid psychiatric interview, the Semi-Structured
Assessment for the Genetics of Alcoholism (SSAGA, Bucholz et al.,
1994), to confirm the absence of significant psychiatric illness. This
will also allow us to include information about subthreshold psychi-
atric symptoms in the database, as analyses of such data may be of
interest to many researchers.

The utility of twin pairs in furthering our understanding of the
causes of human variation extends beyond estimating the contribu-
tion of genetic differences to individual variation (for classic early
studies, see Eaves, 1982 and Martin et al., 1997; for a discussion of
statistical analysis approaches, see Neale and Cardon, 1992). MZ
twinning occurs randomly, so MZ twin pairs should capture the full
range of genetic variability in a population. These twin pairs are ge-
netically nearly identical; while they may share many aspects of rear-
ing history and socioeconomic background, they also have within-
pair variance due to differences in environmental exposures, stochas-
tic processes and measurement error. Accordingly, assessment of
MZ twin pairs on its own is valuable in three distinct respects. (i) It
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provides a within-pair contrast for effects of environmental exposure
or physical or physiologic state (e.g. in pairs discordant for smoking,
overweight/obesity, or diabetes). (ii) It provides a lower-bound esti-
mate of the test–retest reliability of various HCP measures. (It is a
lower bound because it reflects only genetic effects plus environmen-
tal effects shared by the twin pairs; however, it is especially valuable
in experiments that for technical reasons are non-repeatable.) (iii) It
provides an estimate of the covariance structure of multiple measures
that is uncontaminated by individual-specific stochastic and mea-
surement error effects.

Dizygotic twin pairs are as genetically related as ordinary full sib-
lings, but they share their childhood environment to a much greater
extent than do siblings of different ages. When added to MZ twin
data, DZ twin data thus allow estimation of the extent to which geno-
type, shared environment, and non-shared influences each contribute
to variation in traits. In multivariate analysis, this extends to under-
standing why traits A and B co-vary. The inclusion of additional sib-
lings along with twins provides a further increase in statistical
power for resolving genetic and environmental influences
(Posthuma and Boomsma, 2000). These basic applications may be
elaborated to test for genotype×environment interaction effects,
where genetic influences are modified as a function of environmental
exposure or experimental manipulation; conditional effects (e.g. how
smoking status may affect connectivity patterns); and to test for cer-
tain strong directional models (event A leads to event B, rather than
vice versa) (Neale and Cardon, 1992).

Genetics

Participants will provide blood samples that will be used to create
cell-lines and for DNA extraction, with these resources available to
other qualified investigators. In the final year of the project, we will
genotype samples from all study participants. The genotyping meth-
od will be chosen from those available at that time, with the goal of
obtaining the maximum amount of data given budgetary constraints;
this may include full-genome sequencing. HCP genetic data will allow
investigators to look for the effects of specific genetic variants (as
identified in powerful large-scale genome-wide association studies
of clinical or behavioral phenotypes) on brain connectivity patterns
in healthy adults. As one example, it will be interesting to see wheth-
er differences in brain connectivity patterns are associated with ge-
netic variants that contribute to the risk of developing Alzheimer's
disease later in life (e.g. ApoE e4). The HCP data may also enable di-
rect discovery of gene variants that affect brain connectivity patterns,
especially if the HCP core protocol is replicated across multiple stud-
ies worldwide. Overall, our use of a twin-family study paradigm to
analyze individual variation in brain connectivity will facilitate pro-
gress in understanding the genetic bases of individual differences in
connectivity, and their covariation with normal behavior.

Behavioral measures

HCP's behavioral measures will provide important phenotypic
data to compare with brain imaging and genetics. Our goal is to
cover as many domains of behavior as feasible within 2–3 h of testing
outside of the scanner. Our base set of assessment tools will be the
NIH Toolbox, which is being developed as a brief, well-validated as-
sessment of the domains of cognition, emotion, motor function and
sensation that can be used with healthy individuals from childhood
through older age (see http://www.nihtoolbox.org). This will include
domains of cognition (verbal IQ, working memory, executive func-
tion, attention, language, and processing speed), emotion (negative
affect, positive affect, stress and coping, and social relationships),
motor function (locomotion, dexterity, strength, and endurance),
and sensation (hearing, taste, touch and smell). To facilitate cross-
project comparisons, we plan to incorporate additional measures
similar or identical to those used by other large-scale data acquisition
projects measuring brain function, structure, and connectivity that
are non-overlapping with the NIH-Toolbox measures. These include
measures of attention, episodic memory, visual spatial processing,
and emotional face processing as used by Gur et al. (2010); the
Achenbach Adult Self Report (Achenbach et al., 2005), as used in the
NKI-Rockland project (http://fcon_1000.projects.nitrc.org/indi/pro/
nki.html); and a variant of matrix reasoning as a measure of fluid in-
telligence and the NEO-FFI-60 measure of personality (McCrae and
Costa, 2004), as used in a study on cognitive aging (R. Buckner, per-
sonal communication). Finally, we plan to include the Farnsworth
test of color vision, the Mars test of visual contrast sensitivity, the
EVA test of visual acuity, and a measure of impulsivity (delay dis-
counting) (Estle et al., 2006). Supplemental Table S2 lists all measures
we plan to acquire (Toolbox and non-Toolbox).

The broad spectrum of behavioral information acquired from all
HCP subjects will enable many types of comparison and correlation
between behavior and brain connectivity (functional, structural, and
electrophysiological). For example, behavioral measures can be used
to identify factors or eigenvectors of common variability across sub-
jects, which are then correlated with measures of connectivity. This
can be done within a cognitive domain, as in working memory (e.g.
Hampson et al., 2006), or across domains and connectivity patterns,
as in comparing motor behavior to measures of connectivity across
networks such as motor and attention (Carter et al., 2010). An alter-
native strategy is to test whether specific patterns of brain connec-
tivity co-vary in a meaningful way with behavioral measures. For
example, some studies have emphasized a correlation with global
measures of connectivity (Chiang et al., 2009; van den Heuvel et al.,
2009). It will be important to explore how behavioral performance
relates to a variety of connectivity measures, including: ‘dense con-
nectome’ representations at the level of voxels and surface vertices;
‘parcellated connectome’ representations of connectivity between
cortical and subcortical parcels defined anatomically and/or function-
ally; different approaches for estimating the connectivities them-
selves (e.g., “functional” vs. “effective” connectivity measures
(Friston et al., 2003)); and graph-theoretical representations at the
level of brain networks and subnetworks (Bullmore and Sporns,
2009). Accordingly, it is important that the HCP informatics platform
provides access to connectivity data at each major level of analysis,
including voxelwise time-course data (Marcus et al., 2011).

MR hardware

To obtain the best possible MR data quality while scanning many
subjects for the HCP, we decided to pursue a dual path involving cus-
tomized 3T and 7T scanners. 3T systems are the more mature and
robust platforms, compatible with the need to scan a large number
of subjects. 7T systems offer advantages, especially for the resting
and task-based fMRI studies, but also for diffusion-based techniques
if sufficiently short echo times can be achieved for diffusion weight-
ing. However, 7T platforms are less mature and more challenging to
work with, and are thus incompatible with an ambitious data collec-
tion strategy. Accordingly, our plan is to scan all 1200 subjects at 3T,
and 200 of them also at 7T. Both scanners will be modified to improve
performance compared to what is available on a standard platform.
There is also a possibility of imaging some HCP subjects using a new
10.5T whole body scanner that the CMRR at UMinn is building
through support from a separate NIH grant. However, whether the
HCP is able to scan at this ultrahigh field will depend onwhen the sys-
tem becomes operational and key scanning protocols implemented.

New Connectome 3T scanner
Our design for the Connectome 3TMRI scanner took into consider-

ation issues of reliability, subject comfort, and potential risks inherent
in new hardware development. Unique features of the Connectome

http://www.nihtoolbox.org
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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Fig. 2. Relative SNR at the central k space point in diffusion imaging with 150, 100, 70,
and 40 mT/m maximum gradients relative to maximum achievable with 300 mT/m
when TE is minimized using the available gradient amplitude, calculated for white
matter at different b-values ranging from 500 to 10,000.
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3T involve the gradients and the RF-receive hardware. Diffusion im-
aging (dMRI) benefits from high gradient amplitudes that can shorten
the diffusion encoding period and thus increase SNR. Multichannel
receive capability is critical to parallel imaging techniques that are
being developed in this project to significantly reduce whole brain
data acquisition times both for fMRI and for dMRI (see below).

We considered several options for achieving gradient amplitudes
higher than the 40 mT/m available on standard Siemens 3T scanners.
Over the range from 40 mT/m to 300 mT/m the SNR gains depend
nonlinearly on the b-value as well as the gradient strength. Fig. 2
demonstrates simulated SNR values achievable with a Stejskal–
Tanner pulsed gradient diffusion sequence modeled assuming infinite
slew gradients. Due to the sequence's G2 Tp3 non-linear dependence of
b-value, stronger gradients (G) do not proportionately reduce pulse
width (Tp) or the minimum possible echo time (TE) on which SNR
is dependent.1 The relative SNR (normalized to 100% for 300 mT/m)
depends on the b-value. However, even for very ambitious b values
(104 s/mm2), 100 mT/m maximum gradient strength provides ~70%
of the SNR achievable relative to a 300 mT/m maximum.

Based on these considerations, we chose a gradient configuration
that can achieve a maximum gradient strength of 100 mT/m using
existing and tested hardware components. Specifically, we are using
a Siemens 3T Skyra scanner modified to include a Siemens SC72 gra-
dient coil that has been used extensively in 7T scanners, where its
maximum gradient strength is 70 mT/m. This will be further in-
creased to ~100 mT/m using gradient amplifiers with higher current
output, adapted from the Siemens 1.5T Aera scanner. This design en-
tails only low technical risk and is well suited to our HCP objectives.

Alternative available de novo designs that theoretically could
approach 300 mT/m are technically demanding and at risk of notmeet-
ing key performance characteristics (e.g. eddy currents, nonlinearities,
1 Calculations were performed using 3T T2 for white matter, relative to b=0 for the
minimum achievable TE in a Stejskal and Tanner spin echo sequence with one refocus-
ing pulse. Ramp times were ignored for these calculations. The minimum δ (see dia-
gram) was calculated for a given b, G and d (note: Δ=δ+d) by solving
0 ¼ b− 2π⋅42:58� 10−3⋅G⋅δ

� �
⋅10−3⋅ 2δ=3þ dð Þ where b is s/mm2, δ and d in ms and

G in mT/m. The minimum TE=2δ+MinTE, where MinTE=minimum TE achievable
with δ=0, d=0, which was taken to be 15ms based on existing sequences with partial
Fourier acquisition. SNR is calculated using the biexponential diffusion approximation and
SNRμ 0:75e−bDF þ 0:25e−bDS

� �
e− 2δþMinTEð Þ=T2 where DF and DS are fast and slow apparent

diffusion constants, respectively, (assumed to be 0.8×10−3 and 1×10−4 mm2/s) with
corresponding fractional pool sizes of 0.75 and 0.25 (taken from Ronen et al., 2005), with
d=6ms. White matter 3T T2 was assumed to be 70 ms (Stanisz et al., 2005).
stability, duty cycle, safety etc.). The SC72 has excellent eddy current
performance in its standard configuration in an 82 cm bore magnet
and should perform even better in the 90 cm bore 3T magnet. The
Skyra scanner has 64 receiver channels, for use with a commercial
32-channel head coil and with customized arrays having larger
number of coils that will be designed at CMRR and explored for
improved SNR and acceleration.

7T scanner
The (new) UMinn 7T is also equipped with SC72 gradients

and will have 32 channels initially, but will be upgraded to 64
channels before 7T scanning on the main cohort commences. The
system will have third-order shims, which will improve EPI quality.
RF coils will consist of multichannel receive and transmit arrays to
be built at CMRR.

MR data acquisition

Important advances in pulse sequences will benefit three MR
modalities (dMRI, R-fMRI, and T-fMRI) and are described in Pulse
sequence improvements section. This description is followed by sub-
sections on modality-specific aspects of MR data acquisition.

Pulse sequence improvements
The primary approach to fMRI and diffusion imaging for connec-

tivity studies involves single shot imaging using EPI. Since its initial
application, EPI scan times for whole brain coverage have not sub-
stantially decreased. Progress in shortening the EPI acquisition time
for spatial encoding (Pruessmann et al., 1999; Sodickson et al.,
1999; Griswold et al., 2002; Liang et al., 2003) only modestly reduces
acquisition time for whole brain coverage. This modest reduction is
because each slice incorporates a physiological contrast preparation
period that can equal or exceed the time employed for collecting
the EPI echo train. A major objective of the HCP is to achieve rapid
whole-brain image acquisition with high spatial resolution for both
diffusion imaging and fMRI.

Our approach to reducing scan time capitalizes on the simulta-
neous excitation of multiple brain slices and sharing diffusion or
BOLD preparation among all slices excited. This is accomplished
with multiple receivers and multiband excitations (Larkman et al.,
2001), as developed for fMRI by the UMinn group (Moeller et al.,
2010), and with SIR, involving acquisitions of multiple slices adjacent
in time but in the same echo train (Feinberg et al., 2002). These can
be combined into Multiplexed EPI (Feinberg et al., 2010). Acquiring
many slices in the time of a single EPI echo train (or marginally longer
echo train when SIR is employed) and a single contrast preparation
period, permits sub-second whole brain coverage at 2 or 3 mm isotro-
pic resolution (Fig. 3), yielding improved resting state fMRI results
(see R-fMRI acquisition strategies section), and substantially reduced
acquisition times for dMRI. These advances will benefit both diffusion
and fMRI data directly through higher data acquisition rates, without
serious losses in SNR, and indirectly, by reducing the total number of
diffusion gradient pulses per whole brain scan, allowing more time
for gradient coil cooling when very high b-values are used.

Another important technical consideration involves various dis-
tortions that can plague subsequent analyses if not adequately cor-
rected. Field map scans will be acquired and used to correct fMRI
images for distortions arising from magnetic field inhomogeneities.
For dMRI, pulse sequences that traverse k space in opposite phase
encoding directions will be acquired and used to calculate and elimi-
nate the image distortions (Andersson et al., 2003).

dMRI strategies
The MR hardware and pulse sequence developments described

above have significant implications for the diffusion imaging strate-
gies to be used by the HCP. Accelerated imaging will enable collection
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Fig. 3. The M-EPI pulse sequence compared with conventional EPI. Top left: EPI pulse sequence generates a single slice image during each readout train, which is repeated for each
slice to scan the whole brain. The multiband technique replaces the single slice excitation pulse with multiband (MB) pulses to excite several slices simultaneously, which are then
unaliased using array coil sensitivity profiles. As such, far fewer repeats are required to scan the whole brain. Bottom left: Multiplexed-EPI (M-EPI) pulse sequence combines the SIR
approach with the MB technique: SIR consecutively excites s slices (s=3 is shown in the pulse sequence diagram with pulses in red, blue and green) and reads them out in a single
echo train, separated in time. Using MB pulses to simultaneously excite m slices instead of exciting each single slice in the SIR approach produces the M-EPI sequence, with a “slice
acceleration” of (s×m) leading to (s×m) number of slices collected in a single echo train. Right: Each column shows four (of 60) slices from a whole brain (2 mm isotropic reso-
lution) 3T data set obtained with the M-EPI technique, shown with the (s×m) acceleration factors ranging from 4 to 12.
Adapted with permission from Feinberg et al. (2010).
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of many hundreds or even thousands of diffusion-encoded data
points per voxel. The customized gradient coils on the Connectome
3T will enable acquisition of high b-value data while reducing the
usual SNR trade-off. Because such data have not previously been ac-
quired in human subjects, Phase I of the HCP will entail extensive
piloting and testing by the diffusion imaging team on both 3T and
7T datasets.

We aim to identify a diffusion imaging acquisition and recon-
struction protocol that will (a) provide veridical reconstructions of
fiber orientations in a physical phantom; (b) provide high multi-
orientation sensitivity and low uncertainty in regions of crossing
fibers in vivo; (c) provide high test–retest reliability over the
whole brain; and (d) provide accurate connectivity data when com-
pared to expectations from macaque tracer studies and from same-
subject functional connectivity derived from R-fMRI (R-fMRI
acquisition strategies section). Among the many decisions that
must be made, the most significant are the choice of diffusion-
encoding scheme, for maximizing orientation sensitivity, and the
choice of spatial resolution, which involves a trade-off between the
accuracy of orientation peaks and the sensitivity to crossing fibers
and minor pathways. We will evaluate and compare diffusion encod-
ing schemes that sample k-space using single or multiple spherical
shells, with the parameters of each scheme pre-optimized. Testing
on the customized 3T Skyra, which commenced in the fall of 2011,
will aim to efficiently narrow down the primary choices using mul-
tiple criteria as described above. This will be followed by fine-
tuning of acquisition parameters.

In conjunction with data acquisition improvements, we are per-
forming extensive evaluation and optimization of diffusion imaging
reconstruction methods. The availability of high resolution and
high SNR data will open up new possibilities. For example, we are
extending multi-fiber fitting algorithms to account for (i) more com-
plex fiber architectures, such as fanning and bending fibers and (ii)
more complex data types, such as multi-q-shell or Cartesian acquisi-
tions (Aganj et al., 2010). These new techniques will be evaluated
against established techniques such as compartment modeling
(Behrens et al., 2007), spherical deconvolution (Tournier et al.,
2004), and Diffusion Spectrum Imaging reconstructions (Wedeen
et al., 2008).
R-fMRI acquisition strategies
As illustrated already (Pulse sequence improvements section), im-

portant advances in pulse sequences have emerged from early HCP
efforts. This includes combining two EPI accelerations that in combi-
nation markedly reduce TR (Feinberg et al., 2010). The reduction in
TR (to less than a half second, i.e., much less than T1) decreases the
SNR in each individual fMRI image, but with respect to final time se-
ries statistics, the increased number of timepoints more than com-
pensates for this. The expected overall SNR change is a gain of
10–15%. However, for high-dimensional multiple regressions (such
as that implicit in a high-dimensional functional parcellation using in-
dependent component analysis), we found an increase in effective
SNR of 60% when reducing TR from 2.5 s to 0.4 s, because of the
importance of the temporal degrees of freedom in such analysis. A
similar gain (and for similar reasons) may occur in some network
modeling analyses, such as those involving partial correlation
(Smith et al., 2011) to estimate ‘direct’ network connections.

Additional increases in acceleration factors are anticipated, but
they are likely to yield diminishing returns, because distortions and
reconstruction artifacts may increase, while the temporal sampling
becomes much faster than useful temporal information available in
the (hemodynamically blurred) fMRI timeseries. On the other hand,
there may be additional valuable gains, including an improved ability
to model and remove physiological artifacts (Glover et al., 2000) in-
cluding head motion (Power et al., 2012); improved ability to
model nonstationarities (temporal variation) in the network struc-
ture (Chang and Glover, 2010); improvement in estimating higher-
order statistics for network modeling (Shimizu et al., 2006); and
richer modeling of the temporal dynamics of R-fMRI fluctuations
and in the interactions between different functional areas (Smith
et al., 2012).

As with dMRI, the effort to optimize R-fMRI acquisition parame-
ters for Phase II data acquisition will require choices among many
competing factors that will differ for 3T and 7T scanners. It will entail
careful choice of pulse sequence parameters along with ‘standard’
parameters such as spatial and temporal resolution, echo-time (TE),
bandwidth, MB and SIR slice acceleration factors, and within-slice
parallel acceleration factor (which have different effects on g-factors
and the use of partial-k-space). The interdependencies can be
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complex, and the choices for single parameters can involve tradeoffs.
For example, one TE might give better overall SNR, whereas a differ-
ent value might show better signal localization in tissue vs. local larg-
er veins. A key objective will be to achieve sub-second TR while
minimizing EPI distortion and dropout, and maximizing SNR and
spatial resolution. Endpoints by which the results will be judged
will include maximization of the number of functional parcels that
can be reproducibly distinguished from one another, as well as the re-
producibility of the network connections (between these parcels)
that are then estimated. These R-fMRI distinctions can also be related
to functional distinctions (Smith et al., 2009). Other decisions involve
different kinds of tradeoffs: for example, the longer the imaging ses-
sion the better, from the point of view of imaging data quality and
the ability to sample dynamics of functional connectivity. However,
this must be balanced against subjects' compliance and load, given
the many modalities of data acquisition.

T-fMRI acquisition strategies
Our primary goals in including task-related fMRI measures

(T-fMRI) are to (i) help identify as many “nodes” (functionally dis-
tinct brain parcels) as possible that can guide, validate, and interpret
the results of the connectivity analyses that will be conducted on
R-fMRI and dMRI data; (ii) provide task-activation data that can be
combined with MEG data to better understand information flow
within networks; (iii) allow comparison of network connectivity in
a task context to connectivity results generated using R-fMRI; and
(iv) to understand the relative utility of T-fMRI and R-fMRI in predict-
ing individual differences in behavior and genetic influences. To
accomplish these goals, we are developing a battery of tasks that
can identify node locations in as wide a range of neural systems as
feasible within realistic time constraints (~60 min in Phase II). In
Phase I, we are piloting a larger number of tasks than we anticipate
being able to use in Phase II. We will compare the sensitivity, reliabil-
ity and brain coverage afforded by these tasks to arrive at a final
T-fMRI battery that balances optimizing the psychometric properties
of the activation measures (i.e., high reliability and sensitivity are
necessary for individual difference and genetic analyses) with behav-
ioral validity and interpretability. Phase I piloting includes measures
of visual-motor processes (retinotopy, motor strip mapping, biologi-
cal and non-biological motion), as well as a range of cognitive (work-
ing memory, episodic memory, language, attention, stimulus category
representations) and affective/social processes (emotion recognition,
reward and punishment based decision making, and social cognition).
When possible, we are piloting tasks that allow us to assess multiple
networks simultaneously. For example, we have developed a working
memory task that uses different categories of stimuli. This enables
collapsing across stimulus type to identify working memory related
networks, and separately collapsing across memory loads to identify
brain regions that respond differentially to different stimulus types.
In choosing tasks to pilot in Phase 1, we emphasized ones with exist-
ing evidence of suitability as localizers in individual subjects, or evi-
dence for their reliability across subjects or within subjects across
time. We also emphasized paradigms suitable for optimized blocked
designs to achieve maximum efficiency. Supplemental Table S3 lists
the tasks currently being piloted.

Like R-fMRI, T-fMRI is likely to benefit considerably from low-TR
data acquisition. For example, improved temporal resolution should
aid in discerning differences in the time course of task activation/de-
activation according to brain region and/or task (e.g., Nelson et al.,
2010). The choice of T-fMRI pulse sequence parameters along with
‘standard’ parameters such as spatial and temporal resolution will
involve many of the same considerations as for R-fMRI (R-fMRI acqui-
sition strategies section). We will capitalize on the improvements
that are identified for R-fMRI early in Phase I by using the same acqui-
sitions for T-fMRI (after confirming with a subset of T-fMRI tasks that
the final acquisition protocol works well for task and not just rest).
Measures for evaluating acquisition parameters will include assess-
ments of the robustness, spatial extent, and reproducibility of signifi-
cant task activations and deactivations.

Anatomical MRI acquisition strategies
Conventional structural MRI using T1w scans provide an essential

anatomical substrate for visualizing brain structures, generating sub-
cortical segmentations, and reconstructing cortical surfaces. We will
also combine anatomical T1w and T2w scans, using the T1w/T2w
ratio to map myelin content across the cortical surface and thereby
distinguish many architectonic areas non-invasively (Glasser and
Van Essen, 2011). This method works with standard 3T 1 mm isotro-
pic T1w and T2w images, but we will explore whether higher resolu-
tion images improve architectonic delineations. Additionally at 7T, we
will aim to use a similar strategy to map cortical myelin content at
0.6 mm isotropic resolution or higher. Myelin maps will complement
other MR modalities in localizing cortical areas in individual subjects
and in providing a substrate for improved intersubject registration.

MR scan duration
To obtain the highest quality imaging data feasible for each MR

modality, multiple scan sessions are planned for each subject during
the 2-day visit. The session structure currently being piloted includes
a set of structural scans (20 min total), one diffusion imaging session
(1 h), and two 1 h fMRI sessions (each 30 min resting-state followed
by 30 min task-fMRI). Participants will be asked if they are willing to
undergo an additional voluntary scan session of up to 1 h; this will be
used to re-acquire data on any scans that failed to pass initial QC and/
or to carry out additional scans using advanced acquisition protocols
that might be very informative even if carried out on a modest num-
ber of individuals.

MEG/EEG

Non-invasive electrophysiological recording will be carried out in
addition to MR scanning and behavioral and genetic testing on 100
subjects (some of whom may also have MR scans at 7T as well as
3T). MEG/EEG is complementary to fMRI in that it provides a window
onto the neurophysiological processes underling sensory, motor, and
cognitive functions at a temporal scale inaccessible to fMRI. The Blood
Oxygen Level Dependent (BOLD) signal detected in fMRI reflects
neuronal activity only indirectly; owing to the temporal dynamics of
neurovascular coupling (the hemodynamic response function), peak
sensitivity to neural activity modulations is on a time scale of seconds
(Hathout et al., 1999). In contrast, MEG and EEG respectively detect
external magnetic fields and scalp potentials arising from neuronal
activity within the brain with millisecond-level temporal resolution.
However, the spatial specificity of non-invasive electrophysiology is
worse than that of fMRI. Neural sources at the brain surface may be
localized with a precision on the order of a few mm, but securely
assigning responses to one of multiple simultaneously active genera-
tors requires that they be separated by several cm (Mosher et al.,
1993). Moreover, MEG sensitivity is largest for parts of the brain
within several cm of the sensors; the mesial and inferior cortical sur-
faces as well as subcortical structures including thalamus and stria-
tum are largely inaccessible. Despite the limited spatial resolution,
the richness of temporal information obtained by MEG/EEG enables
assessment of how brain rhythmical activity relates to resting and
task-evoked connectivity. All these characteristics influence how
MEG and EEG data will be integrated with T-fMRI and R-fMRI data,
as well as the methods by which cortical parcellation can be applied
to these temporally dense signals.

Both R-MEG and T-MEG electrophysiology data will be acquired
at SLU using the Magnes 3600 (4D Neuroimaging, San Diego, CA)
equipped with 248 magnetometers, 23 MEG reference channels (5
gradiometer, and 18 magnetometer) and 64 EEG Voltage Channels



2 This is based on estimates of 19 billion cortical neurons (Azevedo et al., 2009),
150 trillion cortical synapses (Pakkenberg et al., 2003), and 472 cm3 (4.7×104 mm3)
cortical gray matter volume (Van Essen et al., 2011).

3 The human corpus callosum has 2×108 axons (Aboitiz et al., 1992) and a cross-
sectional area of 570 mm2 (Rauch and Jinkins, 1996), yielding ~3.5×105 axons per
mm2. Human cerebral white matter has a volume of ~700 cm3 (7×105 mm3) (Azevedo
et al., 2009; Pakkenberg et al., 2003), and ~150,000 km of aggregate axonal length
(150,000–180,000 (Pakkenberg et al., 2003); 120,000 (Tang and Nyengaard, 1997)), for
an average of 2.2×105 mm of axonal length per mm3 of white matter.

2229D.C. Van Essen et al. / NeuroImage 62 (2012) 2222–2231
(4 bipolar, 60 monopolar). The system is installed inside a magneti-
cally shielded room that includes one layer of aluminum and two
layers of high magnetic permeability material. The RMS noise of the
magnetometers is ~5 fT/sqrt (Hz) on average in the white noise
range (above 2 Hz). Experience gained during HCP Phase I will deter-
mine whether it will be practical to routinely record EEG during
Phase II. Prior to MEG/EEG data acquisition, the positions of the EEG
electrodes and shape of the subject's head will be mapped by marking
fiducials on the subject's skin and using a Polhemus localization sys-
tem. This will enable co-registration with anatomic MR scans per-
formed subsequently at WashU. The MR data will be used to create
anatomic models to support MEG/EEG source reconstruction and
will be collected after the MEG/EEG recording session to avoid errors
due to subject magnetization. Subjects will complete three resting
state scans followed by a set of task runs, with all data collected in a
single 2-hour session. MEG/EEG data analyses will be based on the
FieldTrip platform (Oostenveld et al., 2011).

The MEG/EEG task paradigms will involve tasks that activate the
lateral and dorsal surface of the brain, which are more sensitively
sampled by MEG/EEG. In phase I, pilot data will be acquired for
motor processes (motor strip mapping), memory (working memory,
episodic memory), language, and attention tasks. To facilitate com-
parisons between T-MEG/EEG and T-fMRI scans, the MEG/EEG task
paradigms will be identical in temporal sequence to those used for
T-fMRI. Each task under consideration includes sufficient stimuli to
allow presentation of different stimuli in each run, thereby avoiding
priming effects that might otherwise interfere with subsequent
T-fMRI protocols. While the temporal sequence of task protocols
will be maintained, T-MEG/EEG protocols may be extended in dura-
tion to allow collection of enough trials to ensure adequate sensitivi-
ty. Based on the results of these pilot studies, a subset of tasks will be
chosen for inclusion in phase II.

A major emphasis of the MEG/EEG component of the HCP will be
on developing novel analysis strategies. Non-invasive electrophysiol-
ogy historically has focused on averaging responses in phase with be-
haviorally salient events (Dale et al., 2000). Our behavioral protocols
will support this methodology but the emphasis will be on analyses of
induced oscillatory activity, e.g., event-related time-frequency re-
sponses (Hoogenboom et al., 2006) and event-related changes in syn-
chrony within and across brain regions (Siegel et al., 2008). Particular
emphasis will be given to novel approaches for analyzing resting state
MEG data that require analysis pipelines (Mantini et al., 2011) differ-
ent from those used for T-MEG paradigms. Patterns of MEG resting
connectivity can be studied through e.g., correlation of band-limited
power time series (de Pasquale et al., 2010) and characterizing
node-pair interactions using complex coherency (Marzetti et al.,
2008). Delineation of MEG resting state networks based on beam-
former techniques (Brookes et al., 2011) will also be investigated.

Quality assurance

Given the richness and complexity of the datasets to be generated
in Phase II of the HCP, it is important to establish and maintain rigor-
ous quality assurance (QA) plans and quality control (QC) processes.
Although HCP is a cross-sectional study, the three-year Phase II data
collection period and the importance of avoiding drift in ‘healthy
normal’ data over time means that many QA and QC challenges
faced by longitudinal studies are relevant to HCP. These issues include
potential protocol changes, scanner equipment wear, and differences
in behavioral interviewing techniques across research staff (Whitney
et al., 1998). The HCP Phase II protocols will be fully piloted in late
Phase I using adult twins/sibships who do not meet family size cri-
teria for participating in Phase II. We intend that the core HCP proto-
col, once established, will be invariant throughout Phase II. This
protocol will be documented in Standard Operating Procedures
made publicly available. Key advances that occur over the course of
the study, e.g. in pulse sequences, may be evaluated in additional ses-
sions while the subjects are on-site. To avoid data drift related to
equipment performance, scanner QC will be performed daily, and
the stability of primary measures associated each data type will be
tracked. Many technical aspects of the quality assurance effort are
described in Marcus et al. (2011). Efforts to standardize interviewing
techniques will include selecting staff to minimize turnover;
computerizing the majority of behavioral tests to ensure standard
presentation and analysis; and careful training and occasional obser-
vation of interviews via audiotapes and two-way mirrors in our
testing suite. We will establish an atmosphere in which staff and in-
vestigators understand the importance of standardization and are
encouraged to discuss and address any issues that might impact
this objective.

Discussion

Three issues touched upon above warrant brief discussion. These
include issues of (i) limitations of in vivo imaging; (ii) advantages of
twin–sibship families coupled with data sharing limitations; and (iii)
the relationship of HCP to other large-scale neuroimaging projects.

Inherent limits of in vivo human imaging

Advances in MR scanner design and simultaneous multiplexed
data acquisition described above will allow the HCP to generate an
unprecedented amount of high quality data on brain connectivity
and associated measures in healthy adults (see also Van Essen and
Ugurbil, 2012). However, the ‘macro-connectome’ assessments of
human brain connectivity accessible via in vivo imaging are on a
very different scale than the ‘micro-connectome’ assessments of
brain connectivity at the level of single neurons, axons, dendrites,
and synapses (Akil et al., 2011). Macro-connectome approaches aim
to estimate long-distance connectivity between gray-matter regions
using isotropic voxels that are currently often 2 mm (dMRI) or
3 mm (R-fMRI) for 3T and can be 1–2 mm for 7T. The HCP anticipates
reducing voxel size for both modalities and for both 3T and 7T, but the
scale will remain vastly greater than that of the constituent neuronal
elements: human cerebral cortex on average contains ~40,000 neu-
rons and ~3×108 synapses per mm,2 and white matter contains
~300,000 axons per mm2 cross-sectional area.3 Micro-connectome
approaches are currently restricted to laboratory animals and aim to
reconstruct circuitry at scales yet to reach 1 mm3 of brain tissue
(Briggman and Denk, 2006; Smith, 2007; Lichtman et al., 2008).
Thus, a vast gulf remains between macro- and micro-connectome
scales.

Twin–sibship families and data sharing

Our decision to acquire data from twins and non-twin siblings will
enable analyses of the heritability of brain circuits and will greatly
increase the power of genetic analyses. However, due to the relatively
small size and localized geography of the subject population, HCP
faces some extra challenges with respect to subject confidentiality
and privacy, especially regarding sensitive data. One likely scenario
is that the publicly released HCP dataset will include all neuroimag-
ing data and most behavioral data, along with subject sex and age
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range (e.g., 5-year grouping). Information about family relationships,
ethnic and racial identity, exact age (year), and potentially sensitive
behavioral measures would be restricted to qualified investigators
who agree to appropriate limits on storage and distribution of sensi-
tive data. The publicly released data could also include a dataset con-
sisting of only one individual per family, thereby allowing analyses
not confounded by unspecified family relationships.
Relationship to other large-scale imaging projects

A growing number of projects are carrying out large-scale neuro-
imaging plus behavioral phenotyping on different populations. A
non-exhaustive list includes the Alzheimer's Disease Neuroimaging
Initiative (ADNI; http://www.adni-info.org/); the Thousand Function-
al Connectomes project and International Neuroimaging Data-sharing
Initiative (INDI, http://fcon_1000.projects.nitrc.org/; Zuo et al., 2010);
the IMAGEN study of teenagers and mental health (http://www.
imagen-europe.com); the AGES Reykjavik Study of Healthy Aging
(http://www.hjarta.is/english/ages); and the Rotterdam study of
aging (http://www.epib.nl/research/ergo.htm). Rather than consider-
ing each project and associated database as an isolated silo of data,
the neuroscience community should make such efforts synergistic
to the degree that practical considerations allow. Among the obvious
challenges are differences in imaging protocols and scanner hard-
ware, differences in behavioral measures, and different database
and data mining platforms. Sharing of information about plans and
protocols while there is still flexibility may help to increase common-
ality in each of these domains and thereby enhance the ability of the
community to gain information and insights from data mining that
cuts across projects.

In comparison to these other endeavors, the HCP is by no means
the largest in terms of the number of subjects studied or in the aggre-
gate amount of data to be collected. However, it is surely the most
complex in terms of the diversity of imaging modalities combined
with the richness of the behavioral and genetic information to be
collected. It also will have an informatics platform that supports an
unprecedented degree of visualization and analysis capabilities cus-
tomized for data mining across all of these modalities. Finally, the
HCP is uniquely positioned to improve a variety of data acquisition
methods and protocols for brain connectivity studies. An important
part of its mission is to openly share these methods as they move
from evaluation to production stages. The HCP maintains an active
outreach effort to promote awareness in the neuroscience communi-
ty of the data acquisition strategies outlined here and the informatics
strategies described elsewhere (Marcus et al., 2011) and to facilitate
coordination with other large-scale neuroimaging projects.
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