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Neural Correlates of Weight Gain With Olanzapine
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Kathy J. Pierce, PhD; Brandon K. Akers, AB; Ioana Marcu, AB; Deanna M. Barch, PhD

Context: Iatrogenic obesity caused by atypical antipsy-
chotics increases the rate of death from all causes. Olanza-
pine is a commonly prescribed atypical antipsychotic
medication that frequently causes weight gain. To our
knowledge, the neural correlates of this weight gain have
not been adequately studied in humans.

Objective: To test the hypothesis that olanzapine treat-
ment disrupts the neural activity associated with the an-
ticipation and receipt (consumption) of food rewards
(chocolate milk and tomato juice).

Design: Event-related functional magnetic resonance
imaging study, before and after a 1-week treatment with
olanzapine.

Setting: A university neuroimaging center.

Participants: Twenty-five healthy individuals.

Main Outcome Measures: Changes in blood oxygen
level–dependent activations to the anticipation and receipt
of food rewards after olanzapine treatment.

Results: One week of olanzapine treatment caused sig-
nificant increases in weight, food consumption, and dis-
inhibited eating. Our imaging data showed enhanced
activations in the inferior frontal cortex, striatum, and
anterior cingulate cortex to the anticipation of a food
reward. Activation in the caudate and putamen were
enhanced to the receipt of the rewarding food. We also
found a decrease in reward responsivity to receipt of the
rewarding food in the lateral orbital frontal cortex, an
area of the brain thought to exercise inhibitory control
on feeding.

Conclusions: Olanzapine treatment enhanced both the
anticipatory and consummatory reward responses to food
rewards in the brain reward circuitry that is known to
respond to food rewards in healthy individuals. We also
noted a decrease in responsivity to food consumption in
a brain area thought to inhibit feeding behavior.
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I NDIVIDUALS WITH PSYCHIATRIC DIS-
orders have significantly higher
mortality rates than the general
population, with an average of 22
lost potential years of life.1 Heart

disease is the leading cause of death in the
mentally ill population,1 and obesity is a key
modifiable risk factor for heart disease and
other co-occurring conditions such as dia-
betes mellitus.2 Iatrogenic obesity caused by
antipsychotic medications, especially the
commonly prescribed atypical antipsychot-
ics, negatively impacts medication compli-
ance3,4; predisposes patients to cardiovas-
cular illness, type 2 diabetes, and metabolic
dysregulations; and increases the rate of
death from all causes.5-10

Weight gain and obesity are thought to
reflect a complex interplay between homeo-
static food intake mechanisms and brain re-
ward circuitry.11-13 Such homeostatic food
intake mechanisms involve the hypothala-
mus and neuroregulatory peptides and hor-
mones, both central (eg, neuropeptide Y and
orexin) and peripheral (eg, ghrelin, leptin,
and insulin), that dynamically regulate ca-
loric intake through their modulation of the

brain reward circuitry.3,13-17 Recent ad-
vances in functional neuroimaging tech-
niques have started to elucidate the brain
reward circuitry that is involved in the plea-
surable or hedonic response to taste in
healthy humans and the neural substrates
of taste reward expectancy and taste expe-
rience in obesity.18,19 The main compo-
nents of this taste reward processing cir-
cuit involve the highly interconnected
striatum (dorsal and ventral), amygdala, cin-
gulate cortex, insula, and orbitofrontal and
medial prefrontal cortex (Figure 1).20-26

This reward circuitry has significant do-
paminergic components, in addition to the
involvement of other neurotransmitter
systems such as opioids, serotonin, and
cannabinoids.17,27-29 Forexample,apositron
emissiontomography(PET)studyinhealthy,
nonobese humans showed that dopamine
release increased in the striatum after con-
sumptionof a favoritemeal and that this in-
creasecorrelatedwithratingsofmealpleas-
antness.28 Another series of PET studies
showed significant increases of dopamine
in the dorsal striatum in response to food
cues30 and increased food cue–related me-
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tabolismintheorbitofrontalcortex.31 Bothof these increases
in nonobese, healthy humans correlated with perception
of hunger and desire for food. Additionally, PET studies in
obese individuals have also demonstrated the role of dopa-
mine signaling in food reward and the inhibitory control
of behavior, disruptions of which could lead to disinhib-
ited eating.32-34

Functional magnetic resonance imaging (fMRI) stud-
ies similarly have found abnormalities in dopaminergic taste
reward–relatedareas inobese individuals.These studieshave
found enhanced striatal activation to food-related cues25,35-37

while there is less activation in these regions to the actual
consumption of food.25,36 This pattern was correlated with
significant weight gain in adolescents over a 1-year pe-
riod.36 Based on these findings, it is reasonable to posit that
dopaminergic disruptions may cause a mismatch between
enhanced reward expectation and diminished reward ex-
perience inobese individuals.Thisdisequilibriummaycause
overeating as a compensatory mechanism to obtain the an-
ticipated reward.

Among the atypical antipsychotic medications, olanza-
pine has been shown conclusively to cause significant
weight gain in both patients38-40 and healthy individu-
als.41-43 This predictability and relative safety38,40 have made
olanzapine the prototypical antipsychotic agent used in
studies investigating antipsychotic-induced weight gain.
A number of rodent experiments point toward disrup-
tions in the hunger-satiety balance and resultant hyper-
phagia as putative mechanisms for the increased adipos-
ity associated with olanzapine.44-47 Similarly, metabolic
studies in healthy humans have also shown that in-
creased appetite and increased food consumption were
key contributors to olanzapine-induced weight gain.41,48

However, the exact mechanisms for the weight gain re-
main unclear. Several studies converge on serotonin, his-
tamine, dopamine, and catecholamine neurotransmitter sys-
tems that are dynamically impacted by olanzapine.16,49 H1

receptor binding affinity is closely associated with weight
gain liability.16,49-51 Serotonin 2A receptor antagonism, the
inverse agonist effects at serotonin 2C receptors, and the
muscarinic M3 receptor antagonism also play a prominent
role52-57 as do D1 and D2 dopamine receptor antagonism,
especially through their impact on the reward system.30,31

Additionally, these receptor mechanisms may have syner-
gistic effects that disrupt satiety signaling58,59 and alter taste
reward processing,60,61 effects that are especially relevant
to this study. This multifactorial interplay between the phar-
macological effects of olanzapine, homeostatic food in-
take mechanisms (central and peripheral), and the taste re-
ward system likely results in weight gain.

At present, there is a lack of human studies that have
examined the neural mechanisms associated with olanza-
pine-induced weight gain. As such, the goal of the cur-
rent study was to test the hypothesis that olanzapine treat-
ment disrupts the neural circuitry associated with the
anticipation and receipt of food rewards. To do so, we
used a taste reward paradigm that is biologically salient
and that would allow us to explore the anticipatory re-
sponse to a food cue and the response to the actual taste
(receipt) of the cued food. We expected to find that olanza-
pine treatment would cause weight gain, increased food
consumption, and disinhibition in eating behavior in the

healthy participants. We hypothesized that there would
be increases in the food cue–related responses in the re-
ward circuitry (eg, dorsal striatum and inferior frontal
cortex) that could signify an enhanced food reward ex-
pectancy. We also hypothesized that the neural re-
sponse to the actual receipt of taste reward would be en-
hanced and that we may find alterations in the activity
of regions involved in inhibitory mechanisms that con-
trol feeding, such as the lateral orbital frontal cortex.

METHODS

PARTICIPANTS

This study was approved by the Washington University insti-
tutional review board. The participants were 25 right-handed
healthy adults with a mean body mass index (calculated as weight
in kilograms divided by height in meters squared) of 25.78
(range, 19.29-35.41; the only individuals with body mass in-
dex �30 were 4 muscular male football players) recruited
through flyers in St Louis, Missouri. One subject withdrew con-
sent on the second day of the study because of intolerable som-
nolence and fatigue. Another subject withdrew consent on the
fourth day because of intolerable headache. Four subjects were
excluded because their imaging data showed excessive move-
ment in the scanner at 1 or both sessions. The final data set
included 19 subjects (see Table 1 for demographics).

All of the participants were initially interviewed to deter-
mine their eligibility via a screening telephone interview (see
Table 2 for criteria). Subjects who met the entrance criteria
were invited for an interview with a psychologist. Subjects were
evaluated using the Structured Clinical Interview for DSM-IV-
TR62 to ascertain that they did not have any current or past men-
tal disorders. The principal investigator ( J.M.) then con-
ducted a medical history and a physical examination. Subjects
who qualified for the study and consented were then assessed
with 2 fMRI scans, each after an overnight fast.

mPFC

OFC
Amyg

ACC

Thal
DSVS

IN

Figure 1. A schematic depiction of the approximate anatomical locations and
connections of the taste reward pathways. Information from taste receptors
project to the thalamus (Thal) via the nucleus tractus solitaries. This taste
information along with information from other sensory modalities (eg, smell
and appearance of food) then converge on the insula (IN), amygdala (Amyg),
and orbitofrontal cortex (OFC). From here they access the other major
components of the reward processing circuit including the highly
interconnected striatum (ventral striatum [VS] and dorsal striatum [DS]),
anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC).
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The first fMRI scan was done when subjects were drug na-
ive and the second scan was obtained after 7 consecutive days
of olanzapine treatment, both using the identical taste experi-
ment described later. Subjects were contacted by telephone on
the evening prior to their first fMRI scan and reminded not to
eat or drink any fluids except for water after dinner. All sub-
jects then spent 7 consecutive nights after the first scan at the
Clinical Research Unit at Washington University to ensure safety
and compliance. They continued their regular routines during
the day. Subjects once again fasted, except for drinking water,
after dinner on the night prior to their second fMRI scan. All
participants confirmed that they complied with the instruc-
tions. Subjects took 5 mg of olanzapine on the first night and
10 mg on the subsequent 6 nights.

Each day subjects completed the Patient Rated Inventory of
Side Effects63,64 to assess any adverse effects. Subjects also filled
out the Three-Factor Eating Questionnaire,65 a self-report scale
that assesses cognitive and behavioral components of eating and
a 5-point hunger rating scale ranging from 0 (not hungry) to 4
(very hungry), before and after the fMRI scans.

EXPERIMENTAL PARADIGM

A biologically relevant visual cue (a picture of a glass of to-
mato juice, chocolate milk, or water) was presented for 2 sec-
onds while subjects were in the magnetic resonance imaging
scanner. Subjects identified each cue with a corresponding
unique button press. At a varying interval of between 2 and 6
seconds, the cued taste (tomato juice, chocolate milk, or taste-
less water) was delivered to the participant in small quantities
(0.5 mL) via 3 small tubes (1⁄8-in diameter) that were held in
their mouth and lay on the anterior one-third of their tongue.
These tubes were each connected to a 60-mL syringe that held

the fluids and was attached to a syringe pump. The syringe
pumps were triggered by PsyScope software.66

At a variable interval between 2 and 6 seconds after the de-
livery of the taste stimulus to the mouth, another cue (an as-
terisk) signaled swallowing. This cued swallowing was used to
allow for a sufficient taste experience. This was immediately
followed by delivery of 0.5 mL of tasteless water to rinse out
the earlier taste stimulus. Subjects were instructed to immedi-
ately swallow the tasteless water rinse and the asterisk cue re-
mained on the screen for 2 seconds after the rinse was trig-
gered (eFigure 1, http://www.archgenpsychiatry.com).

In 75% of the trials, the cue for tomato juice and chocolate
milk resulted in the delivery of the cued taste stimulus. In 25%
of the trials, it resulted in the delivery of the tasteless solution,
thus introducing a small element of uncertainty to aid anticipa-
tion.23,67,68 However, the relative contribution of uncertainty can-
not be estimated from this design. All the cues for the tasteless
solution resulted in the delivery of the tasteless solution. There
was a variable intertrial interval of 2 or 4 seconds. There were a
total of 24 trials in each blood oxygen level–dependent (BOLD)
run, and each BOLD run lasted 7.4 minutes. The subjects rated
the pleasantness of the taste stimuli on a 5-point Likert scale by
pressing a button after each BOLD run. An example of the exact
phrase that was used is “How will you rate the chocolate milk?”
Subjects could choose between very pleasant, pleasant, neutral,
unpleasant, and very unpleasant (eFigure 2).

The visual cue was projected onto a screen behind the sub-
ject’s head within the imaging chamber and was viewed by a
mirror attached to the head coil. Stimuli were presented through
the program PsyScope, and a fiber-optic key press interfaced
with the PsyScope button box to record subjects’ button press
to the task. Each subject had a brief practice session in the scan-
ner to establish the cue-button-taste association prior to the ac-
quisition of fMRI data.

After completing 5 BOLD runs, subjects were taken out of the
scanner for a liquid breakfast session. Subjects were given either
the savory drink of tomato juice or the sweet drink of chocolate
milk for breakfast in a pseudorandom, counterbalanced man-
ner. Subjects knew their breakfast selection prior to each of the 2
scans. They were instructed to drink as much of the tomato juice
or chocolate milk so that they were no longer hungry. The amount
consumed was recorded. Subjects were then instructed to use the
bathroom and were rescanned for 5 more BOLD runs. This ex-
act protocol, with the same breakfast selection, was repeated af-
ter 7 days of treatment with olanzapine.

Subjects found both chocolate milk and tomato juice signifi-
cantly more pleasant than the tasteless liquid (eFigure 3) but had
a significantly stronger preference for chocolate milk over juice.
We had counterbalanced which liquid was satiated (offered for
breakfast), but this stronger preference for chocolate milk over
tomato juice was a significant confound in assessing postfeeding
satiety effects. Thus, postfeeding satiety effects will not be dis-

Table 1. Demographic Characteristics

Characteristics No. (%)

Age, y, mean (SD) 27.5 (5.9)
Education, y, mean (SD) 16.1 (2.0)
Sex

M 10 (52.6)
F 9 (47.4)

Race
White 14 (73.7)
African American 2 (10.5)
Hispanic 2 (10.5)
�1 Race 1 (5.3)

Marital status
Single 14 (73.7)
Divorced 5 (26.3)

Table 2. Inclusion/Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Age 18-50 y. Male or female. Any race or ethnicity. Any magnetic resonance imaging contraindication.
Does not meet DSM-IV criteria for any mental illness. Any current medical disorder or any impairment in taste or smell

sensation.
Capacity to give informed consent and follow study procedures. Subjects taking any prescribed medications or over-the-counter herbal

remedies.
Ability to read, speak, and understand English. Any female subject who is currently pregnant, nursing, or planning to

become pregnant during the course of the study.
Right handed as judged by the Edinburgh Inventory. Smoking cigarettes.
Liking for tomato juice and chocolate milk.
Willingness to spend 7 consecutive nights at the Clinical Research Unit.
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cussed further and this article will focus on the anticipatory and
experiential responses to rewarding taste (collapsing across juice
and chocolate milk) prior to the satiation phase.

fMRI ACQUISITION AND PROCESSING

Imaging was done on a 3-T Siemens TRIO scanner. High-
resolution structural images were acquired using a 3-dimen-
sional sagittal T1-weighted magnetization-prepared rapid-
acquisition gradient-echo acquisition optimized for contrast to
noise ratio and resolution. A 2-dimensional multislice spin den-
sity/T2-weighted fast spin-echo structural image was also ac-
quired, and both of these images were used in the fMRI atlas
registration procedure. The functional images were collected
in runs using an asymmetric spin-echo sequence sensitive to
BOLD contrast (T2* weighting). The imaging parameters were
echo time=27 milliseconds, field of view=25.6 cm, and flip
angle=90%. Thirty-two contiguous, 4-mm-thick slices were ac-
quired parallel to the anterior-posterior commissure plane (4-mm
approximately isotropic voxels) providing complete brain cov-
erage. Each fMRI run included 235 volumes continuously ac-
quired at a repetition time of 2 seconds.

The fMRI data were reconstructed into images and normal-
ized across runs by following standard preprocessing methods
using in-house software. The preprocessing steps involved cor-
rection for asynchronous slice acquisition, normalizing whole-
brain signal intensity to a fixed value within each scanning run;
and using a rigid-body rotation and translation protocol to cor-
rect for motion. These anatomical images were then registered
with a standardized atlas space69 using a 12-parameter affine
transformation. The fMRI volumes were then coregistered with
the subject’s anatomical images, transformed into common at-
las space, and spatially smoothed using a 6-mm full-width-
half-maximum gaussian filter.

fMRI ANALYSIS

The fMRI analysis was done using in-house software (Func-
tional Interactive Data language)70-72 and the behavioral data were
analyzed using SPSS version 20 (IBM SPSS). Within each sub-
ject, a general linear model approach was used to estimate mag-
nitudes of task-related activity in each voxel using an event-
related design. The general linear model was computed without
assuming a predefined hemodynamic response function. Task-
related activity was computed for time points within a hemody-
namic response period that lasted for 18 seconds (9 frames) fol-
lowing an event. There were 2 regressors for the different types
of cues (rewarding taste and tasteless liquid) and 2 regressors for
the receiptof the liquid following thecue. Separate regressors coded
for the receipt of taste that was miscued (tasteless liquid delivery
following a cue for rewarding liquid).

A region of interest (ROI)–based approach was used to iden-
tify regions that showed cue-related anticipatory effects and re-
ceipt-related experiential effects to the taste stimuli within the
ROI mask. This identical ROI mask was used in prior pub-
lished studies exploring reward response73 and included the
amygdala, nucleus accumbens, putamen, caudate nucleus, sub-
stantia nigra, ventromedial prefrontal cortex, insula, and or-
bitofrontal cortex.

At the group level, we used the parameter estimates from
the subject’s general linear model to conduct 2 repeated-
measures analyses of variance treating subjects as a random ef-
fect. The first examined reward anticipation–related effects (ie,
cue-related effects). Olanzapine treatment was used as a between-
subject factor, and cue type (rewarding or neutral) and time
point within trial (time points 1-9) were within-subject fac-
tors. The second analysis of variance examined reward receipt–

related effects (ie, liquid receipt effects). Olanzapine treat-
ment was used as a between-subject factor, and fluid type
(rewarding or neutral) and time point (1-9) were within-
subject factors. For each of these analyses, we computed
voxel�voxel repeated-measures analyses of variance with the
ROI mask described earlier. This constrained our analysis to
areas that are strongly associated with reward processing and
we used a z value of more than 2.58 and a minimum cluster
size of 10 to identify significant task-related brain activations
(to obtain a within-mask overall P value of �.05 based on Al-
phaSim from Analysis of Functional NeuroImages). The inter-
action with stimuli type (cue or fluid receipt) reflects a statis-
tically significant difference between the reward and neutral
conditions.

RESULTS

BEHAVIORAL RESULTS

Adverse Effects From Olanzapine

All except the 2 subjects described earlier tolerated the
course of olanzapine without experiencing any severe ad-
verse effects. The adverse effects that were reported by
more than 2 subjects were excess sleep, fatigue, de-
creased energy, dry mouth, difficulty sleeping, head-
ache, dizziness, and poor concentration (eTable).

Weight and Vital Signs

Subjects gained on average 1.1 kg over 1 week of taking
olanzapine, which is a significant increase (Table 3).
Subjects did not experience any significant changes in
their blood pressure, temperature, or heart rate. They had
a significant increase in their respiratory rate (Table 3).

Table 3. Paired t Tests Comparing Vital Signs and TFEQ
Scores Prior to and Following 7 Days’ Administration
of Olanzapine

Variable

Olanzapine, x� (SD)

t18

P
ValueBefore After

Weight, kg 77.18 (21.66) 78.27 (21.58) 2.67 .02
BMI 25.78 (4.82) 26.17 (4.84) 2.88 .01

Range 19.29-35.41 19.59-35.58
Blood pressure,

mm Hg
Systolic 125.95 (17.29) 128.37 (15.01) 1.03 .32
Diastolic 69.53 (12.77) 71.32 (9.06) 0.685 .50

Pulse, beats/min 74.89 (12.79) 82.37 (20.48) 1.78 .09
Respiration,

breaths/min
16.11 (2.05) 17.37 (1.17) 2.88 .01

Temperature, �C 36.41 (0.348) 36.46 (0.293) 0.638 .53
TFEQ

Total score 35.55 (7.07) 37.89 (6.85) 2.95 .009
Disinhibited eating

factor score
16.50 (3.97) 17.94 (4.98) 2.36 .03

Abbreviations: BMI, body mass index (calculated as weight in kilograms
divided by height in meters squared); TFEQ, Three-Factor Eating
Questionnaire.
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Eating Behavior

Subjects had a significant increase in their overall Three-
Factor Eating Questionnaire score (t17=2.946; P=.009)
and in the disinhibited eating factor subscale score
(t17=2.362; P = .03) after treatment with olanzapine
(Table 3).

Hunger Rating, Salience of Reward,
and Breakfast Amount

Subjects rated their hunger before the fMRI scan and af-
ter the first half of the experiment, but before they had
their liquid breakfast. Subjects’ perception of hunger was
close to 3 (hungry) before the scan and this did not change
significantly before breakfast or with olanzapine treat-
ment (eFigure 4). During the scan, subjects rated their
experience of the rewarding taste and the tasteless solu-
tion after each BOLD run. As described in the “Meth-
ods” section, they rated both chocolate milk and tomato

juice as significantly more pleasurable than the tasteless
solution. Their ratings of these liquids did not differ sig-
nificantly after treatment with olanzapine (eFigure 1).
There was a significant increase in the amount of liquid
breakfast consumed during the out-of-scanner satiety
phase after treatment with olanzapine (P � .001)
(Figure 2).

IMAGING RESULTS

Anticipation of Reward

We first examined BOLD responses to cues predicting
reward vs tasteless solution, irrespective of treatment with
olanzapine (eg, cue type� time point interaction). This
analysis revealed a number of expected regions in the in-
ferior frontal gyrus, claustrum, insula, and caudate
(Figure 3 and Table 4) that showed greater response
to cues predicting reward as compared with cues pre-
dicting tasteless liquid (see Figure 4 for time course ex-
amples). Importantly, there were additional brain areas
that showed further interactions with olanzapine treat-
ment (eg, treatment�cue type� time point interac-
tions) (Figure 3 and Table 4). The time courses of the
activations in these regions showed a consistent pattern
of increased responses to the anticipation of reward and
a decreased response to the tasteless solution cue after
treatment with olanzapine (Figure 4).

Experience of Reward

We next examined BOLD responses to the receipt of
rewarding fluids in comparison with the tasteless liq-
uid, collapsed across the treatment condition (eg, liq-
uid type� time point interaction). This analysis again
revealed a number of expected regions in the insula,
caudate, putamen, amygdala, inferior frontal gyrus,
middle frontal gyrus, and medial prefrontal cortex
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P < .001

Figure 2. Increased consumption of liquid breakfast after a 7-day treatment
with olanzapine (Olan). The P value reflects the results of a t test.
Rx indicates prescription.

z = 24 z = 21 z = 18 z = 15 z = 12 z = 9 z = 6

z = 3 z = 0 z = – 3 z = – 6 z = – 9 z = – 12 z = – 15

Figure 3. Activation maps of cue-related anticipatory response. Right is on the right and left is on the left. Regions displaying a cue type (reward vs
tasteless)� time point interaction are in yellow and regions displaying a further interaction with treatment (treatment�cue type� time point) are in red. All the
significant task-related brain activations depicted here have a P value of �.05 at the mask level, which corresponds to a z value of more than 2.58 (P� .005) per
voxel and a minimum cluster size of 10 voxels.
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Table 4. Brain Regions Identified in Analysis of Reward Anticipation (Cue-Related Activity)

Region Brodmann Area Cluster Size, Voxels x y z z Score Effect Size, �2

Cue � Time Point
Inferior frontal cortex 47 29 46 33 −3 4.75 0.20
Claustrum 57 38 4 3 3.67 0.14
Insula 13 12 −38 −12 12 3.28 0.12
Caudate 22 11 −10 20 3.71 0.14

Cue � Session � Time Point
Inferior frontal cortex 47 28 40 25 −9 4.51 0.19
Inferior frontal cortex 47 69 −39 28 −6 4.75 0.21
Caudate 41 9 8 −5 5.30 0.24
Claustrum 10 −37 −4 −8 3.40 0.11
Inferior frontal cortex 10 13 38 45 −4 3.87 0.15
Lentiform nucleus 34 −10 7 −5 4.99 0.22
Inferior frontal cortex 47 20 49 27 −1 3.97 0.15
Middle frontal gyrus 10 17 −37 52 0 3.86 0.15
Anterior cingulate 32 36 0 49 7 4.62 0.19
Caudate 12 11 14 12 3.24 0.11
Caudate 19 −11 8 12 3.32 0.11
Caudate 19 13 −6 22 3.37 0.13
Caudate 11 −15 −7 22 3.28 0.11
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Figure 4. Examples of graphs plotting the time courses of the hemodynamic response curve to cue-related activity. Each time point on the x-axis represents
1 frame (2 seconds). A and B, Examples of the cue type� time point analysis, irrespective of treatment with olanzapine (Olan). C and D, Examples of further
interaction with treatment (treatment�cue type� time point), where the red dotted line represents responses after olanzapine treatment for the rewarding taste
while the blue dotted line represents the responses to the tasteless liquid after olanzapine treatment. All the significant task-related brain activations depicted here
have a P value of �.05 at the mask level, which corresponds to a z value of more than 2.58 (P� .005) per voxel and a minimum cluster size of 10 voxels.
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(Figure 5 and Table 5). As shown in Figure 6, the
time courses in these regions showed a greater
response to the receipt of rewarding liquids as com-
pared with the tasteless solution. There were 3 addi-
tional brain areas that showed a further interaction
with treatment (eg, treatment � liquid type � time
point interactions), which included the inferior frontal
gyrus, caudate, and putamen (Table 5). The time
course of activations in these regions showed that in
the inferior frontal gyrus, there was a decrease in acti-
vation to the rewarding taste after olanzapine treat-
ment, while the response to the tasteless solution
increased. In the caudate and putamen, the response
to rewarding taste increased after olanzapine treatment

while the response to the tasteless solution decreased
(Figure 6).

COMMENT

To our knowledge, this is the first human study to look
at the neural correlates of weight gain after a 1-week trial
of an antipsychotic medication. We were interested in
characterizing the taste reward response underlying
olanzapine-induced weight gain. Our study design al-
lowed us to evaluate the impact of olanzapine on both
the anticipatory and experiential aspects of a taste re-
ward. We found that our subjects gained weight, in-

z = 24 z = 21 z = 18 z = 15 z = 12 z = 9 z = 6

z = 3 z = 0 z = – 3 z = – 6 z = – 9 z = – 12 z = – 15

Figure 5. Activation maps of liquid receipt–related response. Right is on the right and left is on the left. Regions displaying a liquid type (reward vs
tasteless)� time point interaction are in yellow and regions displaying a further interaction with treatment (treatment� liquid type� time point) are in red. All the
significant task-related brain activations depicted here have a P value of �.05 at the mask level, which corresponds to a z value of more than 2.58 (P� .005) per
voxel and a minimum cluster size of 10 voxels.

Table 5. Brain Regions Identified in Analysis of Reward Receipt (Liquid Receipt–Related Activity)

Region Brodmann Area Cluster Size, Voxels x y z z Score Effect Size, �2

Receipt � Time Point
Insula 13 87 −36 −18 13 5.68 0.26
Lentiform nucleus 18 30 −14 7 5.11 0.23
Caudate 51 13 −7 21 6.30 0.31
Amygdala 46 22 −5 −12 5.55 0.26
Caudate 27 −14 −15 21 5.97 0.29
Caudate 103 −12 0 12 5.12 0.24
Putamen 92 −30 −13 −2 4.67 0.20
Caudate 150 13 7 9 4.73 0.20
Insula 13 115 36 12 6 3.97 0.15
Inferior frontal gyrus 17 −47 16 0 4.13 0.16
Insula 13 89 −33 6 12 4.05 0.17
Caudate 37 −16 19 8 3.67 0.14
Middle frontal gyrus 11 12 −42 44 −8 4.31 0.17
Amygdala 31 −20 −6 −15 4.47 0.18
Medial frontal gyrus 10 27 −3 45 13 3.22 0.11

Receipt � Session � Time Point
Inferior frontal gyrus 47 14 −39 20 −8 4.23 0.17
Caudate 20 8 11 −5 4.69 0.20
Putamen 12 −11 10 −5 3.96 0.15
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creased their food intake, and demonstrated an increase
in their self-reported disinhibited eating behavior. Fur-
ther, our imaging data showed an increase in the antici-
patory reward responsivity toward food reward in the in-
ferior frontal cortex, striatum, and anterior cingulate
cortex. We also found an increase in reward receipt re-
sponsivity in the caudate and putamen but a decrease in
reward receipt responsivity in the lateral orbital frontal
cortex, an area of the brain regarded as exercising in-
hibitory control on feeding.28,29,74,75

The adverse effects experienced by subjects in this study
were consistent with other studies that administered olanza-
pine to healthy participants41-43 and with the Food and Drug
Administration–approved prescribing information for
olanzapine.76 Subjects gained on average 1.1 kg after 1 week
of olanzapine treatment, thus lending ecological validity
to the experiment. A significant degree of weight gain has
been reported in several studies investigating olanzapine-
induced weight gain in healthy subjects41-43,48 and in people
with schizophrenia.38-40 One small study that explored in-

sulin resistance after 8 days of olanzapine treatment did
not find statistically significant weight gain. However, this
study detected insulin resistance and other metabolic
changes that presage weight gain and there was a trend
toward weight gain.77

Subjects also had a significant increase in the amount
of liquid breakfast they consumed after olanzapine treat-
ment. A recent study investigated changes in food in-
take and energy expenditure in healthy, nonobese male
subjects who took olanzapine for 15 days.48 This study
found a 23% average increase in food consumption, which
is consistent with the 35% increase in the breakfast con-
sumption that we noted after a week of olanzapine treat-
ment. Another study that investigated olanzapine-
induced weight gain in healthy subjects over a 2-week
period found significant weight gain but not a signifi-
cant increase in caloric consumption, although the means
slightly increased.41

Participants also had significant increases in the Three-
Factor Eating Questionnaire total score and the disinhib-
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Figure 6. Examples of graphs plotting the time courses of the hemodynamic response curve to receipt-related activity. Each time point on the x-axis represents
1 frame (2 seconds). A and B, Examples of the liquid type� time point analysis, irrespective of treatment with olanzapine (Olan). C and D, Further interaction with
treatment (treatment� liquid type� time point). In the inferior frontal gyrus (C), the response to rewarding taste receipt goes down after olanzapine treatment
(solid red line compared with the dashed red line) while the converse is noted in the caudate (D). All the significant task-related brain activations depicted here
have a P value of �.05 at the mask level, which corresponds to a z value of more than 2.58 (P� .005) per voxel and a minimum cluster size of 10 voxels.
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ited eating factor subscale score. The other 2 factor scores—
eating restraint andhunger—werenot significantlydifferent.
An elevated disinhibited eating score has been shown to
predict weight gain in healthy adult subjects78,79 and was
related to obesity in otherwise healthy adolescents.80 In a
study that used the Three-Factor Eating Questionnaire to
assess patients with schizophrenia, the disinhibited eating
scores were found to be higher in patients taking atypical
antipsychotic medications, those who were obese, and those
with elevated waist circumference.81

Interestingly, subjects’ perception of hunger did not
change significantly after olanzapine treatment nor did
their perception of the pleasantness of chocolate milk or
V8 tomato juice (Campbell Soup Company). These find-
ings contrast to the actual behavior of the subjects de-
scribed earlier, as they consumed significantly more break-
fast and gained weight after treatment with olanzapine.
The neuroimaging data discussed later may shed some
light into this dissociation between hunger perception
and eating behavior. In sum, we found that 7 days of
olanzapine treatment in our healthy, nonobese partici-
pants caused significant increases in their weight, self-
reported disinhibited eating behavior, and amount of liq-
uid breakfast they consumed, all while their hunger score
and perceived pleasantness of the taste reward re-
mained stable.

Recent neuroimaging literature provides good evi-
dence for reward processing networks that encode the
anticipatory “wanting” aspect of a taste reward and the
experiential “liking” aspect of that taste.24,82 There are dis-
sociable differences in the neural response to these 2 as-
pects of reward processing24,82 (Table 4 and Table 5). Con-
sistent with prior research, we found that regions in the
anterior insula, caudate, and inferior frontal cortex all
showed increased BOLD responses to cues that pre-
dicted upcoming rewarding liquids, suggesting that our
paradigm was successful in eliciting anticipatory reward–
related responses.23,24,82,83 When we looked at the re-
gions that further interacted with olanzapine treatment,
we found regions in the inferior frontal cortex, stria-
tum, and anterior cingulate. All these regions showed en-
hanced responses to cues predicting rewarding liquids
after olanzapine, while there was a decrease in activa-
tions elicited by the picture of the tasteless liquid. In-
creased anticipatory responses in these reward regions
to the anticipation of a pleasant taste have been associ-
ated with obesity in a number of studies.35-37 Further-
more, a recent study found that elevated activations in
the anterior cingulate cortex and orbital frontal cortex
to the anticipation of palatable food correlated with higher
scores of a validated food addiction scale: the Yale Food
Addiction Scale.75 The increase in food cue–related re-
ward response we found after olanzapine treatment in
our nonobese participants, taken together with studies
showing similar increases in obese individuals and those
with disinhibited eating, is consistent with the hypoth-
esis that enhanced responses to food cues may contrib-
ute to the increased food intake and weight gain we ob-
served with olanzapine treatment.

The experience of rewarding taste showed activa-
tions in the insula, amygdala, caudate, putamen, medial
frontal cortex, and inferior frontal cortex. All of these re-

gions have been shown to respond to the experience of
a taste reward in previous studies24,36,82,84 and indicated
that our paradigm was successful in eliciting taste receipt–
related responses. The regions that further interacted with
olanzapine treatment were in the lateral orbital frontal
cortex, caudate, and putamen. In the caudate and puta-
men, activation to the experience of rewarding taste was
enhanced after treatment with olanzapine. This en-
hanced activation in the striatum in our nonobese par-
ticipants is in contrast to studies in obese individuals
where either striatal hypoactivity25,36 or no change in stria-
tal activity was noted.85 However, these studies com-
pared obese and lean healthy individuals who were not
taking any medication.

In the lateral orbital frontal cortex, the response to the
actual experience of chocolate milk and tomato juice was
diminished after treatment with olanzapine. This re-
gion is hypothesized to play a role in suppressing re-
sponse to taste stimuli that were previously reward-
ing28,74 and may play a role in satiety.75 The increase in
the anticipation responses or “wanting” of food reward
along with an increased consummatory “liking” re-
sponse to food, in the context of a decreased response in
a lateral orbital frontal region thought to inhibit re-
sponses to food taste, could dynamically interact to con-
tribute to the increased food intake, disinhibited food at-
titudes, and resultant weight gain that we observed after
treatment with olanzapine.

This imbalance between the reward circuitry and cir-
cuits that inhibit prepotent responses to rewarding
food75,84,86,87 could extend our understanding of the mecha-
nism of weight gain with atypical antipsychotic medica-
tions. Further, these findings in our nonobese subjects
are in general agreement with models of obesity,17,25 al-
beit with an important difference: We found an in-
creased response to food consumption in the dorsal stria-
tum, while the literature in obese individuals points to a
reduced response. As such, it is possible that this pat-
tern is present in the initial stages of rapid weight gain
and that we would find evidence for a decreased re-
sponse to food in the striatum if we studied individuals
taking olanzapine for longer periods. Such reduction in
striatal responsivity to the taste of milkshake was re-
cently reported in healthy women after they had gained
weight over a 6-month period.88

Our results contrast with a small pilot study with 8
subjects investigating monetary reward–related brain ac-
tivation after a single dose of 5 mg of olanzapine.89 This
study found reduced activations in the ventral striatum,
anterior cingulate, and inferior frontal cortex while tak-
ing olanzapine compared with placebo. However, this
study used a monetary reward paradigm that did not dis-
tinguish reward anticipation from reward experience and
focused on the acute 1-dose effect of olanzapine. Our study
showed a more complex relationship of olanzapine treat-
ment to an ecologically valid food reward after a steady-
state dosing duration.

There were several limitations of this study. First, we
did not have a placebo control group and this limits our
ability to conclusively demonstrate that the changes we
observed were due to olanzapine treatment. Second, be-
cause our unmedicated scan always preceded the scan
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with olanzapine, it is possible that habituation effects could
be confounded with the olanzapine effects. However, the
majority of the olanzapine-related anticipatory and re-
ceipt effects were in the direction of increased re-
sponses to rewarding food cues or to the receipt of food
(eg, in the caudate), which is in the opposite direction
of the effects predicted by habituation over time. Fur-
ther, we also saw reduction of response in regions of the
lateral orbital cortex that may play a role in inhibition.
Thus, this interpretable pattern of both increased and de-
creased activation is not consistent with a general change
in activity as a function of time.

Third, although participants had significant in-
creases in their breakfast consumption, a food record and
a measure of their physical activity would have yielded
a more detailed picture. Fourth, we used an ROI ap-
proach to analyze the data in view of our sample size and
our a priori hypothesis that focused on the reward re-
gions. Future research with a larger sample size may in-
dicate changes in a wider array of brain regions.

Finally, although subjects preferred both chocolate
milk and tomato juice over the tasteless liquid, subjects
had a stronger preference for chocolate milk over to-
mato juice. This presented a significant confound in as-
sessing postfeeding satiety effects; hence, this aspect of
the data could not be examined and differences in ho-
meostatic regions such as the hypothalamus that differ
as a function of satiety could not be explored.90-92

CONCLUSIONS

With these limitations in mind, our study was the first,
to our knowledge, to assess the neural mechanism un-
derlying olanzapine-induced weight gain using an eco-
logically valid food-related reward paradigm. Our par-
ticipants experienced significant weight gain, increased
food intake, and disinhibition in their eating behavior.
These changes in food-related cognition and behavior were
accompanied by enhanced fMRI responses to food cues
and the taste of food in a number of reward-related brain
regions, including the inferior frontal cortex, striatum,
and anterior cingulate. Further, the use of olanzapine was
associated with a decrease in activity to food receipt in
the lateral orbital frontal cortex, a region thought to play
a role in satiety responses. These fMRI changes sug-
gested an enhanced anticipatory desire for food, an en-
hanced reward experience of consuming the antici-
pated food, and a compromised satiety-related mechanism.
This pattern of change after treatment with olanzapine
provides a plausible set of mechanisms that may con-
tribute to the weight gain commonly associated with this
medication.

Our understanding of this common and unfortunate ad-
verse effect of treatment with atypical antipsychotics would
be enhanced by larger placebo-controlled studies that use
comparator antipsychotic agents with low weight gain li-
ability in patient populations; use continuous records of
food intake and physical activity; use body composition as-
sessments; explore prediction error–related effects, sex dif-
ferences, and neural activity that correlates with the de-
gree of weight gain; use appropriate satiety stimuli; and

examine interactions with other malfunctions of the re-
ward system such as substance abuse. This could pave the
way for targeted treatments that may help dial down the
enhanced reward value of food while strengthening the in-
hibitory circuits that control food intake.
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