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Abstract

A computational model is presented that describes dual mechanisms of cognitive control through interactions between the prefrontal

cortex (PFC) and anterior cingulate cortex (ACC). One mechanism, reactive control, consists in the transient activation of PFC, based on

conflict detected in ACC over a short time-scale. The second mechanism, proactive control, consists in the sustained active maintenance

of task-set information in a separate PFC module, driven by long time-scale conflict detected in a separate ACC unit. The computational

function of the first mechanism is to suppress the activation of task-irrelevant information just prior to when it could interfere with

responding. The role of the second mechanism is to prime task-relevant processing pathways prior to stimulus-onset, in a preparatory

fashion. The model provided an excellent fit to both the behavioral and brain imaging data from a previous detailed empirical study on

humans performing the color-word version of the Stroop task. The model captured changes in reaction times across conditions,

accuracy, and transient and sustained activity dynamics within lateral PFC and ACC.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A great deal of convergent research has suggested that
the lateral prefrontal cortex (PFC) and anterior cingulate
cortex (ACC) play a critical role in human cognitive
control. The relationship between these two brain areas
has been studied extensively, both in neuroimaging (for
example in [3,5]) and in neural-network models [1]. In
particular, one focus has been on the role of ACC in
detecting response conflict during the execution of a
cognitive task, and the subsequent translation of this
conflict into cognitive control. The basic hypothesis is that
when high conflict occurs between different motor or
behavioral responses, cognitive control mechanisms inter-
vene to bias one response versus the others depending on
the task requirement, thus overcoming the conflict.

In these previous studies PFC and ACC interactions
have been characterized in terms of a single conflict–con-
trol loop mechanism: performance of certain task condi-
e front matter r 2006 Elsevier B.V. All rights reserved.
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tions leads to detection of response conflict, which in turn
leads to the engagement or increase of cognitive control,
that results in improved conflict resolution in subsequent
performance. Here, motivated by previous experimental
findings in humans, we develop a new neural-network
model in which ACC-PFC interactions are described by
two, rather than one, distinct conflict–control loops. The
first mechanism, reactive control, is characterized by the
transient activation of PFC based on conflict detected in
ACC over a short time-scale (on the order of milliseconds).
The second mechanism, proactive control, is characterized
by the sustained active maintenance of task-set information
in a separate PFC module, which is driven by long time-
scale conflict detected in a separate ACC unit (on the order
of several seconds or minutes). The computational function
of the first mechanism is to suppress the activation of task-
irrelevant information just prior to when it could interfere
with responding. The role of the second mechanism is to
prime task-relevant processing pathways prior to stimulus-
onset, in a preparatory fashion.
We conducted several computational simulations with

this model to examine how well it could account for
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detailed empirical data regarding human behavioral
performance and brain activation. The task studied was
the color-word version of the Stroop task, a benchmark
experimental preparation for examining response conflict
and cognitive control.

2. Methods

2.1. Simulation method

The model is a large-scale connectionist network [7],
simulating rate code spiking activity of brain regions
involved in the execution of the color-naming Stroop test.
This task requires verbally responding with the name of the
font-color in which a visually presented English word
appears. For example, the words DOG (in green color),
RED (in red color), GREEN (in blue color) would require
as correct verbal responses, respectively, ‘‘green’’, ‘‘red’’,
and ‘‘blue’’. Trials can be of several different types: neutral,
congruent, and incongruent. Neutral trials are like the first
example, in which the word name does not refer to a color.
Congruent trials are like the second example, in which the
Fig. 1. A model of dual mechanisms in cognitive control in the color-nami

represent unit-specific inputs; connections impinging on network layers (repres

heads) is also present within each layer. For detailed description and equation

Table 1

Key equations used in the model

Activation of a unit j is a logistic function of the net-input netj (see below) in

Raw net input, input is binary, and noise are normally distributed values used

(mean ¼ 0, standard deviation ¼ 1).

Cascade net input, used to simulate continuous time dynamics as t ¼ 0:0115 (

Short term scale conflict of response units i and j, with weight wij , measured at t

of Hopfield energy (see Ref. [4]) in the last 200 simulation time steps.

Long time-scale conflict, measured and changed only after response. a ¼ 0:95

Units are indexed as i or j, while t is time, wij is the weight between unit i and
word name and font-color coincide. Incongruent trials are
like the third example, in which the word name refers to a
different color than the font-color used for it.
The neural-network model (see Fig. 1 and Table 1)

developed to simulate this task—built upon an earlier
model described in [1]—consisted of two input layers, one
representing stimulus features of the color dimension
(3 units, one for red, one for green, one for neutral), and
the other representing lexical features of the word
dimension (3 units, as for the color dimension). A response
layer (2 units, one for red response, one for green response)
coded the output of the network. The activation function
of each unit simulates rate code spiking activity of large
brain regions [7]. As a first qualitative approximation,
we assume a monotonic relationship between these
activations and percentage changes in blood oxygenation
level dependent (BOLD) signals, as measured in fMRI
experiments. One-to-one weights coming from the word
red and green units onto the response red and green units
were greater in strength than the corresponding one-to-one
weights coming from the color layer onto the same
response layer. This weight strength asymmetry captures
ng Stroop test. Excitatory connections (arrowheads) impinging on units

ented by rectangles) represent inputs to the entire layer. Inhibition (circle-

s see main text and Table 1.

to unit j at time t. aj ¼
1
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to induce variability rawnetjðtÞ ¼
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aiðtÞwij þ inputþ biasþ noise

see Ref. [6]). netjðtÞ ¼ ðð1� tÞ net ðt� 1ÞÞ þ ðt rawnetjðtÞÞ
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the automatic tendency to read the written words, rather
than to name the color in which they are written.
A negative bias towards the input units ensured that their
activity was above baseline only during simulated stimulus
presentation. Lateral inhibition within each layer ensured
competitive activation dynamics. No learning took place
during simulations, because in this model we did not focus
on associative processes (which may also be an important
component of performance). Noise was added at the net-
input to induce variability.

The main modifications made to the original Botvinick
et al. [1] model were on the conflict detection units (which
simulate ACC function), and on the task units layers
(which simulate lateral PFC function in different sub-
regions), that exert cognitive control onto the input layers.
In the original model there was one conflict unit,
calculating the Hopfield energy in the response layer [4],
and only at response time. In our modified version, there
are two conflict units, one calculating conflict—still as
Hopfield energy, but across a short time-scale, i.e.,
a moving window of 200 time steps (for equation, see
Fig. 2. Human data. Reaction times (upper left), transient percentage change i

overall sustained percentage signal change in more anterior lateral PFC (lowe
Table 1, fourth row). The second conflict unit calculated
long time-scale conflict, which remained constant for each
trial, and it was computed as an average of previous short
time-scale conflicts at the time of response output (Table 1,
fifth row).
Furthermore, in the original model there was one task

layer, with one unit for the color naming task and one unit
for the word reading task (to capture the ability of
participants to rapidly switch between the two tasks, as
required in some versions of the Stroop). In our modified
version, there are instead two task layers, the reactive one,
which is modulated by short time-scale conflict input
(2 units, color naming and word reading), and the
proactive one, which is modulated by long time-scale
conflict input (again two units). Furthermore, the proactive
units have self-recurrent weights, whose values passively
decay with time, but are also selectively increased or
decreased following each trial, based on long time-scale
conflict input. This reflects a tendency to exert more
control (via active maintenance of task information)
following a high level of experienced response conflict.
n BOLD signals in ACC (upper right) and in lateral PFC (lower left), and

r right) in the different conditions.
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For both task layers, color task units have positive
connections towards the color feature input units, whereas
word task units have positive connections towards the
word feature input units. Finally, when an error occurs in
the response, the self-recurrent weights are reset to zero, as
at the beginning of each block.

2.2. Experimental method

In a previous study [2], we examined behavioral
performance from 32 participants, and fMRI BOLD data
from an additional 11 participants, that performed the
color-naming Stroop in three different conditions. Conflict
associated with processing each trial can vary according to
the information that is automatically activated by the
word-name feature. Thus, response conflict will be the
lowest for congruent trials (since the word name will
activate the same response as the font-color), and the
highest for incongruent trials (since the word name will
activate a different response than the font-color). Three
task conditions were presented in separate 80 trial blocks
(2 each per condition): mostly congruent (MC: 70%
congruents, 15% neutrals, and 15% incongruent), mostly
incongruent (MI: 70% incongruents, 15% neutrals, and
15% congruents) and mostly neutral (MN: 70% neutrals,
15% incongruents, and 15% congruents).
Fig. 3. Model data. Simulated reaction times (upper left), transient activity in s

task-set units (simulating lateral PFC; lower left), and sustained overall activity

the different conditions. Arrows in the upper left panel indicate the increase in

vice versa a decrease for incongruent trials. As a consequence, interference an

data. Arrows in the upper right and lower left panels indicate a decrease in the d

of simulated ACC and lateral PFC) in the MI condition compared to the MN
The brain imaging data were analyzed to extract
transient brain activation evoked from the performance
of each task trial, as well as any residual sustained
activation maintained across task blocks. Importantly, in
the empirical studies, participants were not given explicit
information regarding the trial frequency manipulations
present across the task conditions, nor were they given any
strategy instructions regarding how to optimally engage
cognitive control in each condition. Likewise, they were for
the most part unable to report on these manipulations at
the end of the experiment. Thus, any observed changes
were likely to be implicit, and in direct response to on-
going experience of task performance and conflict.

3. Results

In the empirical data (Fig. 2), behavioral performance
patterns (upper left panel) indicated that interference
(incongruent minus neutral reaction times) and facilitation
(neutral minus congruent) effects in response times were
reduced in the MI condition compared to MC, with an
intermediate effect in the MN condition. This is consistent
with a shift from reactive to proactive control when
comparing MC versus MI conditions, since proactive
control should result in a tonically reduced influence of
the irrelevant word name information. The brain imaging
hort-time scale conflict unit (simulating ACC; upper right) and in reactive

in proactive task-set units (simulating anterior lateral PFC; lower right) in

average reaction time for congruent trials in MI versus MN and MC, and

d facilitation are reduced in MI compared to MC, as observed in human

ifference of incongruent versus congruent average activations (respectively

and MC condition, as in the corresponding human data reported in Fig. 2.
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data indicated that there was increased sustained activity in
right-lateralized PFC during the MI condition (lower right
panel), but increased transient activity in a different PFC
region (primarily left lateralized—lower left panel) and the
ACC (lower right panel) specifically on incongruent trials
in the MC condition. These effects are consistent with the
idea that short time-scale conflict on incongruent trials
engaged reactive control in the MC condition, but that
protracted occurrences of conflict in the MI condition
engaged sustained proactive control (via increased active
maintenance of task-set information). The increase in
proactive control led to a corresponding decrease in the
demand for reactive control.

Simulation results (Fig. 3) demonstrate that the model
provided an excellent fit to both the behavioral and brain
imaging data. In particular, the model closely matched the
changes in reaction times observed across conditions
(upper left panel). Reaction time was simulated as the
number of cycles necessary to the response units to reach a
threshold after stimuli presentation [6]. The model also fit
additional features of the behavioral data, including
condition effects on accuracy and the shape of the reaction
time distribution (not shown) effects and the pattern of
reaction time distribution. Likewise, the model also showed
changes in both transient (within-trial interval) (upper right
and lower left panels) and sustained (inter-trial interval)
activation (lower right panel) of conflict and task-units that
corresponded well to the empirical pattern observed.
4. Conclusions

The model describes a non-homuncular mechanism that
may explain the dramatic shift in human behavior and
brain activity during different conditions of the Stroop
cognitive control task. Specifically, the model suggests that
local and sustained experience of conflict during perfor-
mance might lead to a shift in the neural mechanisms of
cognitive control engaged to perform the task. Importantly,
since individuals may not have been explicitly aware of
changes in task context across condition, the adjustments in
cognitive control had to occur implicitly, and without
conscious intervention. The model provides an explicit set
of computational mechanisms by which such cognitive
control adjustments might be achieved in the brain.
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