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Dopamine and the prefrontal cortex are critical for thought and
behaviour. Recently, computational models have tried to
elucidate the specific and intricate roles of dopamine in the
prefrontal cortex, at the neurophysiological, system and
behavioral levels, with varying degrees of success.
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Abbreviations
BG basal ganglia
DA dopamine
EPSCs excitatory postsynaptic currents
EPSPs excitatory postsynatic potentials
IPSCs inhibitory postsynaptic currents
IPSPs inhibitory postsynaptic potentials
NMDA N-methyl-D-aspartate
PFC prefrontal cortex~
SNR signal-to-noise ratio
VTA ventral tegmental area

Introduction
Widespread interest in the neuroscience community regards
the function of the prefrontal cortex (PFC) and the
dopamine (DA) systems. This interest, in part, stems from
the longstanding consensus that these neural systems play a
critical role in many neuropsychiatric disorders, such as 
schizophrenia, attention deficit hyperactivity disorder, and
Parkinson’s disease, as well as in normal and pathologic
aging. Scientific interest has also driven the hypothesis that
DA and PFC systems are critical for the control of thought
and behavior. PFC is of central importance to higher 
cognition and plays a critical role in working memory and
attentional control [1], whereas the DA system is integrally
involved with both motor control and reward/motivation
[2,3]. Nevertheless, the interaction of DA within PFC likely
serves a specialized computational function. Strong bidirec-
tional anatomical connectivity between PFC and midbrain
DA neurons supports this view [4]. Moreover, experimental
manipulations of the DA system affect behavioral perfor-
mance in both humans and other animals on tasks thought to
be dependent on PFC function [5–13]. Neuroimaging 
studies in humans [14–16] and single-cell recordings in 
animals [17–20] have also provided evidence for the effects
of DA on PFC activity during task performance. However, as 

discussed further below, these effects are complex and not 
easily understood.

In this commentary, we discuss the progress made in
understanding the role of DA in PFC. Other recent
reviews provide more in-depth summaries of the neuro-
biological and pharmacological complexities of DA effects
in the PFC [21–24] and of computational models of PFC
function or working memory more generally [25,26]. Here,
we focus on computational modeling work that specifically
addresses the functions of DA in PFC at the neurophysio-
logical, systems and behavioral levels.

Connectionist models of dopamine
neuromodulation
A long-held hypothesis suggests that catecholamine 
neurotransmitters, including DA, modulate target neuron
responses, by increasing their signal-to-noise (SNR) ratio
(i.e. by increasing the differentiation between background
or baseline firing rates and those that are evoked by 
afferent stimulation) [27]. For example, studies in the
striatum showed that DA potentiated the response of 
target neurons to the effect of both excitatory and inhibitory
signals [28]. However, the precise biophysical mechanisms
underlying these effects were not well understood.
Moreover, the view that DA acts as a modulator in PFC has
been controversial, because, for many years, DA application
or stimulation of DA neurons reliably inhibited sponta-
neous PFC activity. Thus, many investigators argued that
DA served as an inhibitory transmitter in PFC [1,29,30].

The first explicit computational models of the neuromodu-
latory function of catecholamines [31], and DA in particular
[30], were developed within the connectionist framework,
and focused on their effects on information processing.
Although such models do not typically incorporate 
biophysical detail, by virtue of their simplicity they have
the advantage of simulating system level function and 
performance in a wide variety of cognitive tasks. Within this
framework, DA effects were simulated as a change in the
slope (or gain) of the sigmoidally shaped input–output 
activation function of processing units. Thus, in the presence
of DA, both the excitatory and inhibitory influences of
afferent inputs are potentiated. Computational analyses
showed that this modulatory function would not improve
the SNR characteristics of single neurons, but could do so
at the network level [31,33,34]. Models implementing
these ideas proved useful for accounting for a wide range of
phenomena, including the pharmacological effects of DA
on performance in tasks thought to rely on PFC [35] and
the effects of disturbances of DA in schizophrenia [32].
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Biophysically detailed models
In recent work, computational studies have focused on
more biophysically detailed accounts of DA action within
PFC. Models by Durstewitz et al. [36–38] and Brunel and
Wang [39], all include data on the different biophysical
effects of DA on specific cellular processes. These models
have been used to simulate the dynamics of activity in 
networks that closely parallel the patterns observed in vivo
within PFC. For example, Durstewitz et al. [36] incorporate
five empirically observed effects of DA: an enhancement
of sodium current, via D1 receptors; a reduction of slow
potassium current; a reduction of high-voltage calcium 
currents; a suppression of glutamate-mediated excitatory
postsynaptic potentials (EPSPs); an enhancement of
γ-amino butyric acid (GABA)-mediated inhibitory post-
synaptic potentials (IPSPs). This model also distinguishes
between DA effects in two dendritic compartments, 
separating its effects on recurrent versus afferent inputs. In
later work, the opposing effects of DA on glutamate-
mediated EPSPs via N-methyl-D-aspartate (NMDA)
receptors and α-3-hydroxy-5-methyl-4-isoxazole propionate
(AMPA) receptors were also taken into account.

These models synthesize the rapidly growing, but often
confusing literature on the neurophysiology of DA within
PFC. For example, the biophysical effects of DA are shown
to produce a suppressive influence on spontaneous activity,
explaining its apparent inhibitory actions, while at the 
same time causing an enhanced excitability in response to 
afferent drive. Furthermore, the selective enhancement of
inputs from recurrent versus external afferents provides a
mechanism for stabilizing sustained activity patterns within
PFC that are resistant to interference from external inputs.
These computational analyses support the characterization
of DA as a modulatory neurotransmitter, rather than a 
classical excitatory or inhibitory one [24], and explain its
role in support sustained activity within PFC.

Strikingly, these models are remarkably consistent with
the original hypothesis that DA increases SNR within the
PFC, and the expression of this idea in earlier connectionist
models. The underlying assumption in both types of 
models is that short-term storage of information in PFC
occurs through recirculating activity within local recurrent
networks, which can be described as fixed-point attractor
systems. DA activity helps to stabilize attractor states, both
by making high activity states more stable (active mainte-
nance), and low activity states (spontaneous background
activity) less likely to spuriously transition to high activity
states in the absence of strong afferent input. This is
accomplished by the concurrent potentiation of excitatory
and inhibitory transmission, implemented as changes in
ion channel properties in biophysically detailed models
and ‘summarized’ as a change in the gain of the sigmoidal
activation function in connectionist models.

These mechanisms can be used to simulate the effects of
DA on performance in cognitive tasks that rely on PFC

function. For example, in a task emphasizing the role of
PFC in working memory [40], increased DA activation in
the Durstewitz et al. model enhanced the stability of PFC
working memory representations by making them less 
susceptible to interference from the intervening distractors.
Within connectionist models, similar effects have been
demonstrated by changing the gain of the activation 
function, and simulating human performance in tasks
known to rely on PFC (e.g. [32]), tasks similar to those 
simulated by Durstewitz et al. and Brunel and Wang.

These models also provide accounts of the pharmacological
data on the neurophysiological and behavioral effects of
DA agonists and antagonists. Thus, in a hypodopaminergic
state, PFC representations will be less sharply tuned and
unstable, and susceptibility to interference and memory
decay should be greater.  In contrast, small increases in DA
levels should facilitate PFC stability and hence, enhance
performance. However, in hyperdopaminergic states, 
performance may degrade as PFC representations become
overly fixed and brittle. Under these conditions, perseverative
behavior may dominate. All of these effects have been
demonstrated in both biophysically detailed and 
connectionist models, and all appear to be consistent with
previous data [2,19,20,41,43].

The role of dopamine in updating and learning
A critical functional requirement of the DA/PFC system is to
properly balance active maintenance of representations with
their updating at appropriate times. Specifically, how does
this system know to appropriately update its state in response
to salient input information but not to interfering distractors?
Both of the biophysical models provide partial answers to this
question. In the Durstewitz model, the PFC and DA systems
interact as a dynamically regulated network.  Initial presenta-
tion of a to-be-stored input causes PFC activation, which then
excites DA neurons. These neurons allow the information to
be actively maintained and protected from intervening 
distractors until a behavioral response is generated. Motor
activation associated with the response then suppresses the
DA system, which resets PFC, returning activity to baseline
levels until a subsequent trial begins. In the Brunel and Wang
model, active maintenance and interference protection is not
dependent upon DA modulation. Instead, resetting of PFC
occurs by a global pulse of excitation delivered to the network
following the execution of a response.

The mechanisms proposed by these models face important
limitations. For example, both require a motor response to
reset PFC and permit a new representation to be stored.
This does not explain, however, the updating of PFC 
representations when no motor response is generated 
(e.g. the successive encoding of items into working memory
during a serial recall task). Furthermore, they do not specify
how the appropriate signals for updating might be learned.

Mechanisms that provide a more flexible form of updating
have been explored in connectionist models. For example,
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Hochreiter and Schmidhuber [44] argue computationally
that the only way for an attractor-based network to perform
important classes of active memory tasks is if it regulates
the entry of information into the network through the use
of a gating mechanism, phasically triggered by task-
relevant inputs. Zipser et al. [45] have employed a similar
mechanism in their model of PFC function. However, 
neither of these models [44,45] specified the neural 
mechanisms subserving the gating signal.

Phasis versus tonic dopamine release
In our own recent work, we have suggested that phasic
bursts of DA activity in PFC may function as a gating
mechanism, by signaling when afferent inputs should be
selected and stored in PFC, updating the contents of working
memory [46–49,51]. Both computational considerations and
neurophysiological data motivated this hypothesis. The
data suggest that midbrain DA neurons convey important
reward-related information regarding external stimuli
through phasic bursts of activity [2]. Specifically, these
neurons show rapid, transient, stimulus-specific responses
to salient environmental stimuli that reliably predict future
rewards. The timing of such responses is well suited for
signaling the need to update representations in PFC, the
function of which is to guide behavior in accord with 
current goals [1,50]. Thus, updating PFC representations
in response to cues that signal the availability of reward can
ensure that behavior is guided toward the procurement of
that reward. It is also worth noting that when a reward 
is predicted but not received, the DA system exhibits a 
phasic depression in activity [52].

Importantly, it is phasic, rather than tonic, changes in DA
activity that seem to track the relevant events in working
memory tasks thought to rely on PFC function. For example,
in such tasks, DA neurons respond phasically to stimuli
that must be remembered, whereas they do not show tonic
increases in firing during the retention interval, while
information is being actively maintained [53]. 

The dynamics of DA activity in classical conditioning tasks
have also been the focus of new theories regarding the role
of DA in learning. Modeling work has suggested that 
phasic DA activity might serve as a reinforcement learning
signal, by indicating a mismatch between the prediction
and delivery of reinforcements, which can be used to
update associative (Hebbian) synaptic connections to
reduce the occurrence of subsequent prediction errors
[54–58]. These models have demonstrated that DA phasic
activity closely parallels the dynamics of the reinforcement
learning signal both within task trials and across various
stages of learning. The models are also consistent with a
growing base of neurobiological data indicating that 
DA modulates synaptic plasticity in a variety of cortical 
locations, including PFC [59–62].

Recently, we have integrated the hypothesized updating
and reinforcement learning functions of DA into a single

model. We suggest that the phasic DA signals trigger a
switch in the current attractor state, by transiently enhancing
afferent input while potentiating local inhibitory signals
[47,48], thus gating new information into PFC. At the same
time, the potentiating effects of DA mediate learning, by
amplifying the impact of inputs on receiving units. The
coincidence of these gating and learning effects allows the
system to learn the appropriate timing for the gating signal,
by associating the information being gated with a triggering
of the gating signal in the future. Furthermore, phasic dips
in DA activity following failed rewards can produce rapid
deactivation of PFC activity and thus reset the contents of
working memory [51]. Similar proposals for a role of phasic
changes in DA activity in resetting working memory have
been made by other investigators [63].

Connectionist models implementing these mechanisms
can learn how and when to gate information into an active
maintenance (PFC) layer, and thereby learn to perform
simple working memory tasks known to rely on PFC
[48,51]. These models suggest an important role of phasic
DA responses, both in updating the contents of working
memory, and learning when to do so. However, this reliance
on a phasic DA signal appears to be at odds with the bio-
physically detailed models of Durstewitz et al. and Brunel
and Wang. Durstewitz et al. have argued explicitly that it is
the tonic rather than phasic actions of DA that are most 
relevant to PFC function. Moreover, these investigators
have suggested that the slow timecourse of DA effects indicates
that even phasic bursts of activity may result in sustained
postsynaptic effects that take minutes to resolve [37].

Toward an integrated theory of dopamine
function in PFC
Is it possible to reconcile tonic DA stabilization of working
memory with the hypothesized phasic DA modulation of
working memory updating and learning? The literature
provides hints that this may be possible. Previous
[31,36–38] models focused primarily on DA effects 
associated with D1 receptor activation, which is thought to
be long acting. This emphasis reflects the importance of
D1 receptors in PFC from pharmacological studies [21].

However, phasic actions of DA may be mediated by D2
rather than D1 receptors. This is consistent with the
hypothesis proposed by Grace [64,65] that tonic and phasic
DA release represent two distinct, and antagonistic modes
of DA action. Specifically, phasic DA neuron firing may
cause DA to be released intrasynaptically in high concentra-
tions, but then be rapidly removed via a fast, high-capacity
reuptake system before it diffuses extrasynaptically.
Consequently, phasic DA release may not be measurable via
extrasynaptic monitoring. In contrast, sustained, tonic
changes in DA neuron firing may produce increases in
extrasynaptic DA concentrations. Most importantly, increases
in tonic DA levels may inhibit phasic (spike-dependent)
release of DA via regulation of presynaptic DA terminal
autoreceptors. Accordingly, pharmacologic manipulations
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that target D1 receptors, or otherwise produce changes in
tonic DA activity, may also have an indirect influence on
phasic DA release.

D2 mediated effects also tend to be the opposite of, and
antagonistic to, D1-mediated effects [37,66,67]. Whereas
D1 receptor activation enhances NMDA excitatory post-
synaptic currents (EPSCs), inhibitory postsynaptic currents
(IPSCs) and interneuron excitability, D2 receptor activation
decreases NMDA EPSCs, IPSCs, and interneuron excitability.
In addition, D2 receptor effects show a different time
course of effect in IPSC modulation, acting more rapidly
but then decaying more quickly.

This distinction between tonic D1 and phasic D2
effects, and their reciprocal relationship, may provide a basis
for integrating the maintenance (tonic) and updating/learning
(phasic) functions of DA. This, in turn, may help explain a
number of puzzling findings in the psychopharmacological
literature. For example, the effects of DA modulation on
behavioral performance are non-monotonic: both too little
and too much DA impair performance, and DA effects are
dependent on tonic baseline levels of DA activation.
However, the behavioral consequences of too little versus
too much DA differ, with too little DA producing impulsive
behaviors and distractibility, and too much DA resulting in
perseveration and stereotypy [12,41,43,68–72]. These results
may be explained by the hypothesis that pharmacologic
manipulations of tonic DA activity produce indirect changes
in phasic activity, changing the balance between the mainte-
nance and updating functions of DA. Thus, a DA agonist
with protracted effects would allow representations in PFC
to be maintained (high tonic DA), but not effectively updated
(low phasic DA). This would produce perseveration and
stereotypy. Conversely, a DA antagonist would degrade 
representations in PFC (low tonic DA), while updating
might be intact or even over-reactive (augmented phasic).
This would produce impulsivity and distractibility

Although the hypothesis concerning the distinct functions
of D1 and D2 receptors has appeal, it is not yet clear how
phasic DA release might modulate postsynaptic targets
with the rapid time course required for a gating or updating
mechanism. Recent evidence suggests that single-pulse
stimulation of the ventral tegmental area (VTA), using
physiologically realistic parameters, can rapidly and 
transiently modulate the firing patterns of PFC neurons
[73].  However, additional studies are needed, pairing VTA
stimulation with thalamocortical (or cortico–cortical) 
afferent stimulation, and monitoring PFC neuronal activity.
Our theory would predict, for example, that in behaving
animals, brief VTA stimulation (simulating phasic activity)
during the presentation of an external stimulus should
result in the representation and maintenance of this input
as a sustained pattern of PFC activity. 

Even if the integrated tonic/phasic model of DA modulation
within PFC is correct, important functional issues regarding

active maintenance remain unaddressed. In particular, the
phasic gating model suggests that selection and updating
of information is determined through the association of
that information with predicted future reinforcement.
Although this type of reinforcement–association mecha-
nism seems reasonable for some task situations, it may not
explain how updating occurs in situations requiring more
complex maintenance dynamics. For example, many task
situations have a goal–subgoal structure, in which higher-
order goals need to be actively maintained while
lower-order subgoals are updated. The direct input from
the VTA DA system to PFC does not seem well suited for
such a function, because this system phasically responds to
relevant inputs in a homogeneous and undifferentiated
manner [2]. To achieve hierarchical or asynchronous
updating, a gating mechanism would need to selectively
target PFC subregions. Interestingly, the basal ganglia
(BG) appear to be well suited for such a role. This structure
plays a critical role in reinforcement-driven learning, and
has a highly segregated system of inputs to PFC subregions
[3,74,75]. Recent computational analyses of the potential
role of the BG in hierarchical updating of PFC have yielded
promising results [76]. Thus, one future direction of
research will be to determine the relationship between the
direct VTA–PFC pathway and the VTA–BG–PFC pathway
with regard to their involvement in DA updating of 
representations in PFC.

In summary, although much remains to be learned about DA
function, the empirical data and modeling work reviewed
above suggest a possible synthesis of models of tonic DA
effects [32,36,39] and those implementing phasic DA effects
[48,51,55,57]. Both modes of DA activity may serve to 
modulate active memory representations within PFC, but in
different ways.  Tonic DA effects may increase the stability
of maintained representations through an increase in the
SNR of background versus evoked PFC activity patterns. In
contrast, phasic DA effects may serve as a gating signal, indi-
cating when new inputs should be encoded and maintained,
or when currently maintained representations should be
updated in response to salient, reward-predicting information.
The system may dynamically regulate the balance or bias
between these modes of activation, through the antagonistic
relationship of tonic and phasic DA release, perhaps mediated
by D1 and D2 receptor activations, respectively.

Conclusions and future directions
Recent models of DA and PFC function offer the promise,
for the first time, of relating phenomena at very different
levels of analysis, from the cellular to the behavioral. For
example, biophysically detailed models of tonic DA effects
on PFC activity [36,37,39] suggest functions that are very
similar to those described in more abstract form in connec-
tionist models [31,32]. Although the former provide a more
detailed account of the underlying physiological mecha-
nisms, the latter can be (and have been) used to simulate a
wide variety of behavioral phenomena. Conceptual contact
between these models will offer a host of new opportunities.
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Biophysical models can be used to assess the fidelity of the
abstractions used in connectionist models. They can also
be used to explore which new features of DA modulation
may be most relevant to network behavior, and whether
and how these may be usefully represented in more
abstract connectionist models. This in turn can be used to
predict the effects of pharmacological manipulations on
behavior. Conversely, connectionist models that implement
mechanisms suggested by a functional analysis of the system
may help guide future research on the biophysical processes
that underlie these mechanisms.

Perhaps the most important message from this work is the
value of a multilevel approach to model building. One
analogy that has recently been offered is that understand-
ing system-level computation in neural networks is akin to
understanding the aerodynamic properties of an airplane:
it requires a detailed description of the interactions among
many small elements, which cannot be summarized by the
effects of a small number of large particles bombarding 
the wing. We fully respect the fact that some aspects of 
nervous system function will yield only to such detailed
characterization. At the same time, it seems highly likely
that other aspects will be most usefully described at more
abstract levels, just as the trajectory of an airplane, when
properly designed and operated, may be usefully
described by principles that do not require recourse to the
molecular level.

Research on DA function, and neuromodulators more 
generally, is in an exciting phase. Clearly, there is much
more to be learned to gain a comprehensive understanding
of how DA modulation influences PFC dependent cognitive
processes. We have focused only on D1 and D2 receptor
effects, without addressing the other DA receptors that no
doubt carrying out important functions. And, as we have
noted, there are certainly close relationships between DA
function in PFC and in the basal ganglia. Nevertheless, the
progress to date affirms that a close partnership of multi-
level empirical and computational research will continue to
be a productive path towards making further progress in
this area.
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