
We present a computational model of the intradimensional/
extradimensional (ID/ED) task (a variant of the Wisconsin card
sorting task) that simulates the performance of intact and frontally
lesioned monkeys on three different kinds of rule changes (Dias et
al., 1997, J Neurosci 17:9285–9297). Although Dias et al. interpret
the lesion data as supporting a model in which prefrontal cortex is
organized into different processing functions, our model suggests an
alternative account based on representational content. A key aspect
of the model is that prefrontal cortex representations are organized
according to different levels of abstraction, with orbital areas
encoding more specific featural information and dorsolateral areas
encoding more abstract dimensional information. This representa-
tional scheme of the model is integrated with two additional key
elements: (i) activation-based working memory representations
controlled by a dynamic gating mechanism that simulates the
hypothesized phasic actions of dopaminergic neuromodulation in
prefrontal cortex, which acts to stabilize or destabilize frontal
representations based on success in the task; and (ii) a weight-
based associative learning system simulating posterior cortex and
other subcortical areas, where the stimulus–response mappings are
encoded. Frontal cortex contributes to the task via top-down
activation-based biasing of task-appropriate features and dimen-
sions in this posterior cortex system — this top-down biasing is
specifically important for overcoming prepotent associations after a
sorting  rule  reverses.  The ability  of the model to capture the
double-dissociation observed by Dias et al. with orbital versus
dorsolateral lesions supports the validity of these principles, many of
which have also been useful in accounting for other frontal
phenomena.

Introduction
The prefrontal cortex (PFC) is widely discussed as subserving a

range of important functions in higher-level cognition, including

executive control, planning, working memory, inhibition,

decision making, and abstract thinking. These descriptive

accounts help to make sense of behavioral data (e.g. from cases

of prefrontal damage or neuroimaging results), but they provide

little guidance in clarifying how the PFC achieves these various

functions. One important way of understanding how the PFC

works is to understand how its representations are organized.

There have been a number of proposals regarding different

representational schemes for frontal cortex, and considerable

controversy still exists on this issue. This paper presents a

mechanistically explicit computational model of PFC function

that incorporates a novel proposal for the organization of frontal

representations. This organizational scheme, together with a

basic set of computational mechanisms (which apply throughout

the frontal cortex), are used to account for an intriguing double-

dissociation of impairments resulting from lesions of two

different frontal areas on the ID/ED (intradimensional/extra-

dimensional) dynamic categorization task (Dias et al., 1997).

The ID/ED task (Roberts et al., 1988; Owen et al., 1993; Dias

et al., 1997) is a refinement of the widely studied Wisconsin card

sorting task (WCST). Dynamic categorization tasks like these

involve the periodic switching of response rules, with each rule

in the ID/ED task defined as responding to a target stimulus in

the context of several other stimuli. The ID/ED task involves two

kinds of switches — intradimensional (ID) and extradimensional

(ED). A dimension in this context represents a category of

stimuli sharing the same general set of features (e.g. color,

shape). For example, shapes constructed from homogeneous

regions of color are considered one dimension, while shapes

constructed from solid black lines are considered another

dimension. An ID switch therefore involves changing the target

stimulus to another within the same dimensional category (e.g.

from one colored shape to another), while an ED switch involves

changing the target stimulus to one from a different dimension

(e.g. from a color shape to a solid black line figure). Dias et al.

(Dias et al., 1997) showed that orbital frontal lesions selectively

impaired a particular type of ID switches, while dorsolateral

frontal lesions selectively impaired specific ED switches.

These data clearly have the potential to inform the issue of

how the PFC is organized, given that these two different frontal

areas appear to be selectively involved in different aspects of

the same task. One can categorize the existing proposals for

understanding the organization of frontal cortex into at least two

groups. One group, exemplified by Goldman-Rakic (Goldman-

Rakic 1987), suggests that different areas of frontal cortex

encode different kinds of representational content (e.g. spatial

versus object representations), while performing the  same

kind of essential processing function (e.g. working memory).

Another suggests that different frontal areas contribute quali-

tatively different processing functions [e.g. inhibition versus

working memory (Fuster, 1989; Diamond, 1990) or simple

maintenance versus complex processing (Petrides, 1994)]. Dias

et al. (Dias et al., 1997) interpreted their data as supporting a

differential-processing model involving affective inhibition (in

the orbital region) and attentional selection (in the dorsolateral

region). In contrast, our model demonstrates that these findings

are consistent with a content-based organization (with a com-

mon processing function of working memory across different

areas).

Thus, our  model  shares  the same basic approach as  the

working memory model of Goldman-Rakic (Goldman-Rakic,

1987), in that we view the single essential function of frontal

cortex as that of maintaining information in an active state over

time (i.e. activation-based working memory). Indeed, we have

developed a set of biologically based computational mechanisms

for understanding how the PFC is specialized for this active

maintenance function (Cohen et al., 1996; O’Reilly et al., 1999;

Braver and Cohen, 2000; Frank et al., 2001). However, our

model ref lects a somewhat different view regarding the specific

organization of representations within PFC. We take the view

that an important principle of organization may be the level of
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abstraction of representations, rather than the specific sensory

modality or domain of the information represented. Thus, some

areas may  be  responsible for representing specific featural

information, while others are responsible for representing more

abstract categories (e.g. featural dimensions) [see (Koechlin et

al., 1999; Christoff and Gabrieli, 2000) for related ideas].

The ID/ED Dynamic Categorization Task
The ID/ED task is a more complex version of the WCST, which

has been widely used as a measure of frontal function [although

performance on this task may also be affected by damage to

other cortical areas (Stuss et al., 2000)]. The ID/ED task has been

explored in monkeys, neurologically intact humans, frontal

patients, and Parkinson’s patients (Owen et al., 1993; Dias et al.,

1997; Roberts et al., 1988). The task involves a two-alternative

choice based on two stimuli that are presented on each trial

(Fig. 1). Each choice stimulus is composed from two features,

one from each of two different dimensions (e.g. filled-shape and

line-shape). At any given point in the experiment, there are two

different features from each dimension present (e.g. a bar and an

X within the line-shapes dimension, and a triangle and square

within the filled-shapes dimension). Therefore, there are four

different possible choice stimulus configurations (Fig. 1). The

correct choice is determined by one target feature from one

dimension (e.g. the triangle feature from the filled-shape

dimension), and the subject is rewarded for selecting the

stimulus that contains the target. Thus, given only a single trial,

reward is ambiguous between the two features of the stimulus

on the rewarded side, but this ambiguity is resolved over

multiple trials.

After the subject has achieved criterion level performance

(90% correct), the target feature is changed (unbeknownst to

the subject), and the four component stimuli either remain the

same or change (Fig. 2). The target feature is changed either to a

feature within the same dimension (intradimensional, or ID), or

to a feature in the other dimension (extradimensional, or ED).

When the stimuli remain the same, the rule change results in a

reversal, because the selection of a previously rewarded feature

must be reversed to become a non-selection, and the non-

selection of a previously unrewarded feature must be reversed to

become a selection. When the stimuli change, the rule change

results in a shift, because the selection of a previously rewarded

feature must be shifted onto a novel feature. Thus, there are

four different types of changes to the categorization rule:

intradimensional reversal (IDR), intradimensional shift (IDS),

extradimensional reversal (EDR) and extradimensional shift

(EDS).

It is important to emphasize that although the EDS case is a

shift at the level of the features (new features are used), it is

really a reversal at the level of the dimensions involved. This is

because prior to the EDS, subjects learn that one dimension is

relevant and the other is not. Then, the EDS requires these

dimensions to be reversed — the previously irrelevant dimension

must be reversed to become relevant, and a previously relevant

dimension must be reversed to become irrelevant. The EDR

condition, which was not run in the Dias et al. study, is therefore

a reversal at both the featural (like IDR) and dimensional levels

(like EDS).

In the Dias et al. study (Dias et al., 1997), marmosets with

lesions in either dorsolateral or orbital (ventromedial) frontal

cortex were tested on three of these changes: IDR, IDS and EDS.

They found selective impairment of IDRs with orbital lesions,

selective impairment of EDS with dorsolateral lesions, and no

significant impairments on IDSs with either frontal lesion

(Fig. 3).

Dias et al. (Dias et al., 1997) interpreted their results as

follows:

It suggests that distinct regions of the prefrontal cortex carry

out independent but complementary forms of cognitive pro-

cessing of complex visual stimuli in changing environmental

circumstances. Thus, regions within the orbital prefrontal

cortex in marmosets enable the rapid reversal of affective

associations for specific visual stimuli, whereas the higher-

order shifting of attention between supraordinate features

of visual stimuli, such as their perceptual dimensions, is

mediated by regions within the lateral prefrontal cortex.

(p. 9296).

As we noted in the Introduction, this way of characterizing the

different frontal areas is consistent with functionally based

Figure 1. Example stimuli from the feature and dimension switching categorization
task studied by Dias et al. (Dias et al., 1997). Each row represents one trial. Subjects
were rewarded for choosing the target (indicated by the surrounding box, which was
not presented to the subjects). The stimuli were created by combining one of two
possible line-shapes and one of two possible filled-shapes (all four possible test
combinations are shown for these line-shape and filled-shape dimensions). The target
was determined by one feature from one dimension, in this case, the triangle feature
from the filled-shape dimension.

Figure 2. Types of changes in categorization rule following criterion performance on
the original rule (Fig. 1), organized by same versus different stimuli across the rule
change, and intradimensional or extradimensional target change. The target stimulus is
again indicated by the surrounding box.
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theories (Fuster, 1989; Diamond, 1990; Petrides, 1994), although

it also does  assume a  representational  distinction between

‘specific visual stimuli’ and ‘supraordinate features’. Dias et al.

(Dias et al., 1997) argued that their results were inconsistent

with a working memory (‘on-line processing’) account, because

the apparent memory demands across the different tasks (IDR,

IDS, EDS) are all roughly equivalent, whereas deficits were

observed only when inhibition or higher-order dimensional

shifting was required. We argue that this analysis is based on a

simplified notion of working memory that suggests it is only

important for the raw maintenance of information. In contrast,

we think that the maintenance of information in frontal cortex,

when combined with representational distinctions along the

lines suggested by Dias et al. (Dias et al., 1997), has important

implications for processing elsewhere in the system, in ways that

can explain the Dias et al. pattern of results.

A Theory of Perseverations in the ID/ED Task
First, to avoid confusion arising from the many different uses of

the term working memory, we restrict our usage to refer to the

process of maintaining information through persistent neural

firing (i.e. activation-based working memory), which has long

been observed in frontal cortex (Fuster and Alexander, 1971;

Kubota and Niki, 1971). The primary advantage of this form of

working memory for the present purposes is that it can be

rapidly updated by simply changing the activation state of a set

of neurons. In contrast, more long-term memories encoded in

connection weights between neurons require structural changes

to update, which can be much slower (but more enduring).

Therefore, activation-based memories support more f lexible

processing in the sense that a variety of different strategies,

rules, or goals can be quickly activated and de-activated.

We argue that this kind of f lexibility is essential for rapid

switching in dynamic categorization tasks. Specifically, we think

the PFC maintains a representation of the currently relevant

dimension or feature in activation-based working memory, and

that this activation provides top-down support or biasing

(Cohen and O’Reilly, 1996) of the corresponding perceptual

processing and action selection pathways, facilitating sorting

along this dimension or feature. Categorization behavior may be

altered either as a result of weight changes in these modulated

pathways, or through changes in the activation-based biasing

provided by the working memory system. While the active

representation can be relatively rapidly switched when the

sorting rules change, a weight-based solution must slowly

unlearn the previous weights and learn the new ones. Thus, the

perseveration observed in the ID/ED and WCST tasks can be

accounted for by the loss of the more f lexible, prefrontally

mediated activation-based working memory, causing behavior

to depend solely on the less f lexible weight-based learning

supported by posterior cortex and other brain areas [see

(Munakata, 1998; Munakata et al., 2001) for similar ideas].

Importantly, the effects of frontal damage are only evident

when there are prepotent responses that must be overcome —

this is when the frontal top-down support of the new target

(dimension or feature) is critical for overcoming the strength of

the prior target. Such prepotent responses are present only after

the first rule is learned in WCST, and in ID/ED only in the

conditions of IDR and EDS (which involves a reversal of the

relevant dimension, as noted previously), but not IDS (which

involves all new stimuli and no reversal of the relevant

dimension). The fact that activation-based top-down support

interacts with the strength of existing associations means that an

assessment of the role of working memory in this task based on

the idea that it only maintains information [as provided by Dias

et al. (Dias et al., 1997)] is incomplete. Maintained representa-

tions inf luence processing elsewhere in the brain, and this

inf luence is felt in some conditions more than others, depending

on the strength of learned associations in those other areas.

Although it may be intuitively appealing to describe such con-

ditions as requiring inhibition of prepotent responses, we can

provide a more parsimonious overall account of frontal function

by thinking instead in terms of sustained activations supporting

weaker responses (Cohen and O’Reilly, 1996; Munakata, 1998;

O’Reilly and Munakata, 2000; Miller and Cohen, 2001) [cf. the

biased-competition model of Desimone and Duncan (Desimone

and Duncan, 1995)].

The f lexibility conferred by PFC is specific to the represen-

tational content of PFC areas. We suggest that these areas are

organized along a gradient of abstraction, such that: (i) orbital

frontal cortex in the marmoset is particularly important for

supporting feature-level representations, so that lesions here

impair reversals at the feature level (IDR); and (ii) dorsolateral

areas in the marmoset support dimension-level representations,

so that lesions here impair reversals at the dimension level (EDS).

As noted, these representational distinctions were also assumed

by Dias et al. (Dias et al., 1997). We discuss possible extensions

of this account to other primate species in the Discussion.

The Dynamic Gating Mechanism

The f lexibility of activation-based working memories depends

critically on the presence of a dynamic gating mechanism,

which controls the updating and maintenance of working

memory representations. When the gate is open, working

memory can be updated, and when it is closed, any currently

active working memories are protected from interference (from

noise, ongoing processing, irrelevant stimuli, etc.). This gate is

needed because one setting of connection strengths into the

working memory system cannot satisfy both the need for rapid

updating and robust maintenance (Cohen et al., 1996; O’Reilly et

al., 1999; Braver and Cohen, 2000; O’Reilly and Munakata,

2000). Biologically, we have shown how this gating mechanism

can be implemented either through the phasic dopamine

neuromodulation of the frontal cortex by the ventral tegmental

area (VTA) (Durstewitz et al., 1999; Braver and Cohen, 2000;

Figure 3. Perseverations from different types of frontal lesions in the WCST-like task
studied by Dias et al. (Dias et al., 1997), reflected in number of errors made before
reaching training criterion. Orbital lesions (ventromedial) selectively impair IDRs,
whereas lateral lesions selectively impair EDSs (which are actually reversals to a
previously ignored dimension). IDSs are never impaired. Data from Dias et al. (Dias et al.,
1997).
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O’Reilly and Munakata, 2000) (which is used in the present

model), or through the interactions between the basal ganglia

and frontal cortex (Frank et al.,  2001). In  either  case, the

updating properties of the gating mechanism are shaped by a

reinforcement-based learning mechanism, which plays a critical

role in the present model by triggering the updating of working

memory representations when the categorization rule changes.

Basic Properties of the Model

Figure 4 shows the structure of the model, which is imple-

mented using the  Leabra framework  (O’Reilly, 1998, 2001;

O’Reilly and Munakata, 2000) (see Appendix). Leabra integrates

a number of widely used neural network mechanisms into one

coherent framework, and has been used to simulate over 40

different psychological phenomena in O’Reilly and Munakata

(O’Reilly and Munakata, 2000). Thus, all the basic mechanisms in

the model have strong independent motivation; we note below

where specific features of the algorithm play an important role.

The input layer represents the stimuli in a simple format, with

separate units for the two different dimensions in each of the

two different locations (left and right). There are four units

within each dimension, and features are encoded using simple

distributed representations having two out of the four units

active. The posterior cortex layer, which represents the sensory

cortex encoding of the stimuli, is organized in the same way as

the input, but is limited so that it can only have two units

active at the same time, so that once a given target feature has

been learned, the posterior cortex representations of the other

features are naturally suppressed. This ref lects attentional

limitations in processing that have been shown to exist in the

visual system (Desimone and Duncan, 1995) — an entire com-

plex multi-stimulus input pattern cannot be processed in

parallel. This  constraint is  implemented  via the  k-Winners-

Take-All mechanism in Leabra, described in the Appendix. The

output response is produced via connections directly from the

posterior cortex layer, meaning that all of the actual response

outputs are generated via weight-based associations between

posterior cortex and output units, and not by any direct outputs

from frontal cortex. Instead, as argued earlier, the frontal cortex

contributes via top-down biasing of posterior cortex. Therefore,

we restricted synaptic learning to those connections involving

the posterior cortex but not the frontal cortex (and the VTA

inputs as described below), so that we could ensure that frontal

cortex was contributing through an activation-based mechanism

and not through synaptic modification. In reality, both types of

contributions would be possible.

The PFC is organized into two areas: orbital areas that

represent featural information, and lateral areas that represent

more abstract dimension-level information. These areas are

reciprocally interconnected with the posterior cortex units, and

their activity thus biases the posterior cortex units. The featural

nature of the orbital representations is accomplished by having

the individual PFC units connect in a one-to-one fashion with the

featural units within the two dimensions. We only included one

set of four such featural units per dimension so that this area

does not encode the location of the features, only their identity.

The dimensional nature of the lateral representations comes

from the fact that there are only two units in this layer, one for

each dimension, with each unit fully connected with the feature

units in the posterior cortex layer from the corresponding

dimension. Throughout, the network connectivity generally

obeys the principle of bidirectional cortical connections

(Felleman and Van Essen, 1991; O’Reilly and Munakata, 2000).

The exceptions are the VTA which projects to the PFC (see

below), the dimensional PFC which projects to the featural PFC

but not vice versa, in accord with the ideas and data reviewed by

Gobbel (Gobbel, 1997) [see also Frank et al. (Frank et al.,

2001)], and the input layer which is fixed and therefore does not

receive backprojections.

During initial learning, the network has no difficulty activ-

Figure 4. (a) Dynamic categorization network with typical activation state (higher activation = larger white square): the input contains two stimuli (left = L and right = R), and the
network must choose one. The stimuli differ along two dimensions (shapes and lines); features within a dimension are represented by two active units within a column. The Input
and Posterior Cortex layers encode these features separately. Response (Output) is generated by learned associations from the posterior cortex (weights subject to learning are shown
with dotted lines). The posterior cortex layer cannot represent all of the input features simultaneously; learning activates relevant features while suppressing irrelevant ones. Thus,
learning is impaired when the irrelevant features become relevant. The PFC layers (representing feature-level and dimension-level information) help by more rapidly focusing posterior
cortex layer processing on previously irrelevant features. The VTA acts like an adaptive critic (AC), stabilizing and destabilizing PFC units in response to errors. Connectivity
is bidirectional except VTA only controls PFC, and the more abstract dimensional PFC unidirectionally projects to featural PFC (input is fixed and thus receives no back-projection).
(b) Each dimensional (lateral) PFC unit projects reciprocally to the entire set of hidden units representing that dimension; the featural (orbital) PFC units project reciprocally to individual
sets of features. Thus, dimensional PFC is more effective at dimensional switching even though featural units are also dimension-specific.

Cerebral Cortex Mar 2002, V 12 N 3 249



ating the target item representation because all posterior cortex

units are roughly equally likely to get activated, and the correct

item will get reinforced through learning (both the Hebbian

and error-driven learning mechanisms in Leabra will cause the

target item representation to become stronger). However, if the

target is then switched to one that was previously irrelevant (i.e.

a reversal), then the irrelevant item will not tend to be activated

in the posterior cortex layer, making it difficult to learn the

new association. The top-down PFC biasing can overcome this

problem by supporting the activation of the new target item,

giving it a competitive edge in the limited activation com-

petition.

The VTA layer represents the ventral tegmental area, which

provides a dynamic gating mechanism via dopamine neuro-

modulation to the PFC. It has been shown that the VTA fires

dopamine bursts for stimuli that are predictive of reward

(Schultz et al., 1993), in a way that is generally consistent with

the temporal differences reinforcement learning mechanism

(Sutton, 1988; Montague et al., 1996). If rewards are expected

but not delivered (i.e. due to a behavioral error), the dopamine

neurons exhibit reduced firing, corresponding to a negative

error signal. We reasoned that task-relevant information that

should be maintained is a reliable predictor of reward, and

should thus elicit dopamine firing, resulting in the updating

of working memory (O’Reilly et al., 1999; Braver and Cohen,

2000), and that the negative error signal should reset working

memory representations. The net effect is to produce a form

of trial-and-error search by activating and deactivating PFC

representations.

The VTA unit directly modulates the strength of weights in the

PFC according to changes in its activity. When VTA transitions

from not expecting reward to getting a reward (0 to 1), the

weights from the posterior cortex units to the PFC transiently

increase, thereby encoding the current pattern of posterior

cortex activity. If an error is made after correct performance, the

negative change in expected reward (1 to 0) causes the PFC

gating to decrease significantly in strength, including the gain on

the recurrent self-maintenance weights. This effectively clears

the PFC activations. If there is no change in the VTA activation,

the PFC will maintain its current values. There is also noise so

random activation of PFC can occur, especially when there is

nothing already in the PFC. Detailed equations are presented in

the Appendix.

The model was trained and tested following the procedures of

Dias et al. (Dias et al., 1997). The network received two blocks

of training followed by the rule change. The first block had only

features from one dimension (one of which was the target),

and the second block added the two features from the other

dimension (but the target remained the same). Each block was

trained until a criterion of two epochs (passes through all

training items) without error. In the third block, the categor-

ization rule changed as an IDS, IDR, EDS or EDR, and we

measured the number of epochs needed to learn the new rule.

Three types of networks were run: intact, feature-level (orbital

PFC) lesion, and dimension-level (lateral PFC) lesion. Lesions

were implemented by effectively removing the corresponding

PFC layer. Ten different networks with random initial weights

were run.

Results
The results from the model (Fig. 5) capture the essential features

of the monkey data. Featural (orbital PFC) lesions cause selective

deficits on IDRs, while dimensional (lateral PFC) lesions cause

selective deficits on extradimensional shift/reversals (EDS).

Neither type of lesion affects the IDSs.

The general explanation for these results, which is substanti-

ated in detail next, is that the dopamine-based gating control

mechanism produces rapid switching of PFC representations

when expected rewards are not received (i.e. when errors are

made just after the rule is changed). Although both areas of

PFC have the same functional characteristics, they differ in the

nature of their preexisting representations, which leads to the

selectivity of the deficit. The more abstract dimensional

representations in lateral PFC selectively affect extradimensional

switching (producing deficits on EDS if lateral PFC is lesioned),

while the more concrete featural representations in orbital PFC

selectively affect intradimensional switching (producing deficits

on IDR if orbital PFC is lesioned). Because an IDR stays within

the same dimension, lateral PFC lesions have no effect on this

condition, and conversely, orbital PFC lesions have no effect on

EDS because this involves a dimensional, not featural, reversal. In

both IDR and EDS cases, it is only when there is a competing

Figure 5. Perseverations from different types of simulated frontal lesions in the model (b), showing number of errors made before criterion performance was reached, as compared
with data from monkeys shown previously in Figure 3 (a). Feat is lesions of the feature-level PFC representations, which correspond to the orbital lesions (ventromedial) in the Dias
et al. (Dias et al., 1997) monkeys — intradimensional reversals (IDR) are selectively impaired. Dim is lesions of the dimension-level PFC representations, which correspond to the
lateral lesions in monkeys — extradimensional shift/reversals (EDS) are selectively impaired. IDSs are never impaired. A novel prediction of the model is that dimensional (lateral)
lesions should selectively impair EDRs. Error bars represent standard error of the mean across 10 different simulation runs.
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prepotent response (i.e. in conditions involving some form of

reversal) that switching deficits are observable — otherwise,

only relatively small weight changes are needed to produce

effective learning in the posterior system.

Note that even though different orbital PFC units encode

different dimensions (Fig. 4b),  and  could therefore  help  to

switch to another dimension, there are two properties that

work against this. First, as shown in Figure 4b, the dimensional

units project reciprocally to the entire set of features within a

dimension, and are thus much more effective at switching across

dimensions than the featural representations that only project to

a small subset of a dimension. In short, any different activation

in the dimensional layer will produce a switch to a new dimen-

sion, whereas many different activations in the featural layer will

not shift across dimensions. Second, the overlap among features

within a given dimension produces a bias towards activating

other featural PFC units within the same dimension.

To illustrate this explanation in specific cases, Figure 6a

shows the state of the network after initial target acquisition. The

target is the triangle filled shape, and this is what is activated in

posterior cortex and the orbital PFC, with the shape dimension

active in lateral PFC. Then, in the IDR condition (Fig. 6b), the

input stimuli are the same, but the network’s initial responses

(based on the old triangle target) are wrong, which rapidly

destabilizes the PFC representations. When the PFC activates

the other shape representation (squarish shape), this provides

top-down support for the corresponding representation in

posterior cortex, which then facilitates shifting the responding

to be based on this target. In the EDS condition (Fig. 6c), the

input stimuli change to all new items, and responding is initially

random but still focused on the old, wrong dimension (shape

instead of lines). As errors occur, the PFC representations are

destabilized, and when the new dimension (lines) is activated in

lateral PFC, this provides top-down support to that dimension

in posterior cortex, facilitating learning of the correct output

mapping. The detailed time course of this lateral PFC-mediated

switching is shown for one EDS run in Figure 7, where it is clear

that the dimensional unit switching leads to switching in the

other layers.

One small but interesting difference between the model and

monkey data is that the featural (orbital) lesions appear to

improve extradimensional shift performance (EDS) in the

model. This effect can be attributed to the fact that top-down

activation from the featural level of the PFC can hinder dimen-

sional reversals, impairing performance slightly unless this

portion of PFC is lesioned. Although this effect makes sense in

the model, it is likely that other collateral effects of damage, or a

less perfect division of dimensional and featural representations,

could obscure such a small effect in the monkeys. Also, the

model learns overall faster than the monkeys (i.e. it has lower

overall errors to criterion) — this can be attributed to the small

size of the network and the fact that it is completely focused on

this task. Although we could potentially have slowed down the

model’s learning, we chose instead to use standard learning rate

parameters.

The results of the EDR condition constitute an interesting

prediction, showing that only dimensional (lateral) PFC lesions

cause  impairments,  despite  the fact that it is like the  IDR

condition in having the same stimuli present. The notion that

orbital PFC is responsible for inhibiting affective associations

associated with stimuli, as proposed by Dias et al. (Dias et al.,

1997), would appear to predict that orbital PFC lesions would

impair performance in this EDR condition. Instead, we suggest

that because the dimensional PFC units do not encode featural

level details anyway, they will be unaffected by having the same

stimuli present. Thus, their role in switching in EDR should be

similar to that in EDS, as is suggested by the model results.

Discussion
This simulation demonstrates that an activation-based working

memory model, combined with frontal representations organ-

ized according by different levels of abstractness, can account

for the double-dissociation of orbital and dorsolateral frontal

lesions observed by Dias et al. (Dias et al., 1997). Specifically,

we found that by simulating the role of dopamine in regulating

the frontal cortex in terms of an adaptive-critic mechanism, a

rapid trial-and-error searching process emerged. This searching

process deactivated the PFC when errors were made, and

Figure 6. Schematic of ID/ED network performance using localist representations instead of the distributed ones present in the actual network (active units shown in white). (a) The
state of the network after learning the initial problem (target = triangle-like filled shape). (b) The network after undergoing an IDR, where the target is now the box-like shape. The
orbital (feature) PFC units switch rapidly under activation-based control, and then provide top-down support for the corresponding representation in the posterior cortex. (c) The
network after undergoing an EDS, where the new target is the new X-like line shape (with a horizontal bar in the middle). Again, the PFC units rapidly switch, this time triggered by
the lateral (dimensional) area, facilitating attention for the units in the new line dimension.
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activated it either through noise or when performance was

successful. The model provided a qualitative match to the effects

of orbital and lateral PFC damage in marmosets on the dynamic

categorization task by encoding more detailed feature-level

information in  orbital areas, while encoding more abstract

dimension-level information in lateral areas. These different

levels of representation, when combined with the trial-and-error

control mechanism, provided a quick way of reconfiguring the

categorization rule used by the network via top-down biasing of

different posterior representations. This biasing effect conferred

selective benefits on performance when the rules were reversed,

in which case the cortical system had a difficult time overcoming

the prior (dominant) pattern of responding without the help of

top-down activity.

At a more general level, this model provides an important step

toward characterizing the kinds of control mechanisms that

enable activation-based working memory to  confer greater

f lexibility as compared to weight-based adaptations. Although

the activation-based working memory framework instantiated

in our model is consistent with other active or working

memory ideas (e.g. Goldman-Rakic, 1987), it extends these

notions by accounting for empirical data that implicates the

frontal cortex in overcoming perseverations through greater

dynamic f lexibility.

There are other important advantages of activation-based

working memories (O’Reilly and Munakata, 2000). Specifically,

working memory is useful because it can be rapidly updated to

ref lect the ongoing products and demands of processing, and

it is generally consciously accessible and can be described in

a verbal protocol (Miyake and Shah, 1999). Furthermore, as

exploited in the present model, the active nature of working

memory provides a natural mechanism for cognitive control (or

task-based attention), where top-down activation can inf luence

processing elsewhere to achieve task-relevant objectives (Cohen

et al., 1990; Cohen and O’Reilly, 1996; O’Reilly et al., 1999).

Thus, working memory and cognitive control can be seen as

two different sides of the same coin of actively maintained

information.

However, these advantages of activation-based working

memories also have concomitant disadvantages (O’Reilly and

Munakata, 2000). For example, because these memories do not

involve structural changes, they are transient, and therefore

do not provide a suitable basis for long-term memories. Also,

because information is encoded by the activation states of

Figure 7. Time course of activations for key units in the VTA (dopamine gating), lateral (dimensional) PFC, orbital (featural) PFC, and posterior cortex layers of the intact model during
an EDS trial (dimensional reversal). Prior to the EDS, shape-coding units in each layer are appropriately active (dotted lines), and the VTA unit is consistently predicting rewards (i.e.
it is consistently active). Shortly after the onset of the EDS, the network makes errors, which results in deactivation of the VTA and consequently a negative dopamine change, causing
both PFC layers to become deactivated via the dopamine-based gating mechanism. Although the shape units are subsequently reactivated for a bit, the resulting errors shut them
down again, and then the lateral PFC unit for the line dimension becomes activated, which produces good performance by causing line representations to become activated in orbital
PFC and posterior cortex. The resulting good performance causes the VTA to become activated (producing a positive dopamine burst), and this stabilizes the PFC representations. Note
that while the PFC units are constantly active, the posterior units plotted are only relevant for a subset of trials, as is evident in the graph. Trials are 60 cycles long (one cycle = one
activation update; see Appendix).
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neurons, the capacity of these memories scales as a function of

the number of neurons, whereas the capacity of weight-based

memories scales as a function of the number of synaptic con-

nections, which is much larger.

Because of this fundamental tradeoff between activation- and

weight-based memory mechanisms, it makes sense that the brain

would have evolved two different specialized systems to obtain

the best of both types of memory. This is particularly true if

there are specific mechanistic specializations that are needed

to make each type of memory work better — for example the

dynamic gating mechanisms needed for rapid updating and

robust maintenance in frontally mediated activation-based

working memory. This type of tradeoff-based reasoning has also

been exploited in the context of weight-based long-term

episodic memory (O’Reilly and Rudy, 2001).

Our model also provides support for the general principle that

different areas of frontal cortex might be organized according to

different levels of abstractness. In the marmoset, we argued that

this organization exists along the ventral (more specific) to

lateral (more abstract) axis. However, these organizational axes

may differ in other species. For example, it is possible that the

lateral–ventral axis in monkeys is more closely aligned with

the anterior–posterior axis in humans. Therefore, we want to

emphasize instead the general principle that different frontal

areas may be organized according to different levels of abstrac-

tion, without making specific claims as to the correspondence of

the marmoset brain areas with those in other primates. With this

idea in mind, we can explore how well abstraction might align

with other interpretations of frontal organization in more

familiar primate species.

In the rhesus macaque monkey, a number of neural recording

studies suggest that more ventral areas encode more specific

object or pattern information (Mishkin and Manning, 1978;

Wilson et al., 1993). Other researchers have hypothesized, based

on a variety of data, that the dorsolateral areas in humans are

involved in more complex, abstract processing, whereas the

ventral areas are used for simpler memory processes that require

maintaining specific information (Petrides, 1994). In contrast to

this generally dorsal–ventral organization, others have suggested

an anterior–posterior organization where anterior prefrontal

areas have the most temporally-extended representations

(Koechlin et al., 1999). We can interpret this temporal extension

as a form of abstraction (Frank et al., 2001; O’Reilly et al., 1999),

where more anterior/dorsal frontal areas could encode

information that is relevant over longer delays (i.e. more abstract

goals or plans that encompass many subgoals or subplans), while

more posterior/ventral areas encode information relevant over

briefer intervals. A major project for future work is to explore

how much of this other data can be accounted for using explicit

computational models incorporating the principle of differing

levels of abstraction.

There are other aspects of the Dias et al. data (Dias et al.,

1997) that the model cannot address in its present form.

Specifically, the monkeys were also tested on additional reversals

and shifts, with the result that the second reversal did not

produce the same patterns of frontal deficits as the first. We

suspect that this result emerges as a result of the posterior

system establishing a more equal balance among the represen-

tations involved, and thus do not consider it a challenge to

the basic principles captured in our present model. Simulating

this data would require a more complex network capable of

representing at least 16 different stimuli, whereas our current

model only handles four.

More generally, there are a number of scaling issues raised by

the model — we used a small number of units to simulate a

complex phenomenon that likely involves millions of neurons

in the monkey brain. This is one of a number of challenges that

are often leveled at neural network models of this sort, and a

full discussion is beyond the scope of this paper [see O’Reilly

and Munakata (O’Reilly and Munakata, 2000) for one such dis-

cussion]. One of the most important ways of addressing such

concerns is to ask, ‘will the fundamental principles behind the

model’s behavior change with scaling?’. In this case, we think

not — the most basic principles of the differences between

weight- versus activation-based memories should not depend

critically on scaling parameters, and we can understand the

model’s behavior in terms of these principles. Thus, we must be

careful to think of the model as just one possible concrete imple-

mentation of more general principles.

There are various aspects of the model that could be improved

with future research. For example, we have hand-coded the

frontal representations in this model (which therefore do not

have learned connections as shown in Fig. 4), but it should be

possible for these representations to develop naturally through

learning in response to a combination of initial architectural

constraints and task demands. Demonstrating this kind of

learning is important for avoiding hidden ‘homunculi’ in the

model, and is therefore a topic of active research in our group.

Predictions

The model and the broader theory in which it is framed make a

number of testable predictions. For example, we simulated the

EDR condition in the model [which was not run by Dias et al.

(Dias et al., 1997)], and found that only lateral (dimensional)

PFC lesions impaired performance on this condition. Orbital

(featural) PFC lesions had no apparent effect, despite the fact

that this condition involves all the same stimuli, and therefore

appears to require ‘inhibiting affective associations’ with the

previous target item [which is how Dias et al. (Dias et al., 1997)

interpreted the role of the orbital PFC]. We interpreted this

finding as showing that for the network, the dimensional

switching represents the dominant difficulty for the EDR case,

and that because the dimensional PFC units are relatively

abstract anyway, their ability to switch is relatively unaffected by

featural-level changes. This finding thus represents a testable

prediction from the model, and one that appears to distinguish it

from the predictions that Dias et al. (Dias et al., 1997) would

make.

At a more general level, the overall framework behind the

model makes a number of predictions. For example, we predict

that electrophysiological recordings would reveal differences in

the extent to which neurons in different areas of the PFC exhibit

abstract, categorical representations of stimuli. This could be

tested by using an experiment similar to that performed by

Freedman et al., who have shown that prefrontal neurons in the

macaque encode abstract categories of stimuli such as cats

versus dogs (Freedman et al., 2001).

Similarly, neuroimaging studies in monkeys or humans could

be used to test our ideas. For example, as mentioned above, we

have suggested that neuroimaging studies showing activation of

more anterior PFC areas in humans (Koechlin et  al., 1999;

Christoff and Gabrieli, 2000) can be interpreted as ref lecting

an organization according to different levels of abstraction.

Assuming such an organization, our framework would predict

that one might be able to find evidence of a anterior–posterior

organization for IDR versus EDS activation in the ID/ED task in

humans. Indeed, one such study found suggestive evidence

consistent with this prediction (Rogers et al., 2000). They found
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that when EDS and IDR were directly compared, there was more

dorsal/anterior PFC activation during EDS, but no more ventral

PFC activity during IDR. The lack of a ventral difference for IDR

versus EDS suggests that these regions were active for both IDR

and EDS, which is consistent with their non-shifting control

comparison as well.

Other Models

Although we are not aware of any other computational models of

the ID/ED task specifically, there are several published models

that share some features with the present model. First, the

hypothesized role of frontal cortex in our model is very similar

to that proposed by Cohen et al. in their model of the Stroop

task (Cohen et al., 1990). They suggested that frontal cortex is

specifically important for overcoming the prepotent process of

word reading to support the weaker process of color naming.

We have subsequently generalized this Stroop model in terms of

top-down biasing as a mechanism by which the frontal cortex

contributes to cognitive control or controlled processing (Cohen

and O’Reilly, 1996; Miller and Cohen, 2001). A key feature of

dynamic categorization tasks such as ID/ED is that frontal

representations need to be rapidly updated when the rules

change to provide useful top-down activation-based support,

whereas in the Stroop model the frontal representations were

externally specified (e.g. through task instructions). Thus, the

present model extends the Stroop model by demonstrating how

dynamic gating mechanisms for activation-based working

memory can provide rapidly switched, task-appropriate top-

down biasing.

The Dehaene and Changeux model (Dehaene and Changeux,

1991) of the WCST has some similarities to our own, in that it is

based on an error-driven search mechanism. However, a critical

difference is that their model relies on weight-based learning and

unlearning that is modulated by the error signals, and is not

fundamentally a top-down biasing based model like the one

presented here. Specifically, when an error occurs, negative

weights are incremented to prevent the return to a previously

unsuccessful sorting rule. Indeed, despite the presence of sus-

tained activation memory units in their model, their primary

‘memory’ manipulation involved changing the decay parameter

of these negative weights. To simulate a frontal lesion, they

changed the strength of weights into the error unit that is

responsible for setting these negative weights, instead of damag-

ing their sustained-firing memory units. Thus, the Dehaene and

Changeux model (Dehaene and Changeux, 1991) makes very

different mechanistic assumptions, and is less closely tied to

specific brain areas, than the model presented here.

Levine and Prueitt (Levine and Prueitt, 1989) also presented

a WCST model that is generally similar to the Dehaene and

Changeux (Dehaene and Changeux, 1991) model, but lacks the

decay function on the error-driven negative weights and some

other features. Moving outside the realm of neural network

models,  Kimberg and Farah  presented a production-system

framework that accounted for a range of frontal deficits, in-

cluding perseveration on the WCST (Kimberg and Farah, 1993).

The essence of the model is that frontal damage reduces the

inf luence of specific information on production firing, such that

the productions end up falling back on perseverative and noisy

firing biases that operate  in  the  absence  of other specific

information. Thus, they build in perseveration as the behavior

that the model resorts to after a frontal lesion. In contrast, we see

perseveration as a result of learning in the weight-based proces-

sing of the posterior cortex. Nonetheless, this paper makes a

number of more general points that resonate well with the

framework presented here. For example, Kimberg and Farah

emphasize the idea that frontal cortex can be understood as

performing a single function, that, when damaged, produces a

range of different behavioral manifestations  (Kimberg and

Farah, 1993). Furthermore, this common frontal function has

something generally to do with working memory, which is

consistent with our framework.
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Appendix — Implementational Details
The model was implemented using the Leabra framework, which is

described in detail in O’Reilly and Munakata (O’Reilly and Munakata,

2000) and O’Reilly (O’Reilly 2001), and summarized here. See Table A1

for a listing of parameter values, nearly all of which are at their default

settings.  These  same parameters  and equations have been used to

simulate over 40 different models in O’Reilly and Munakata (O’Reilly and

Munakata 2000), and a number of other research models. Thus, the model

can be viewed as an instantiation of a systematic modeling framework

using standardized mechanisms, instead of constructing new mech-

anisms for each model. The model can be obtained by emailing the first

author at oreilly@psych.colorado.edu.

Pseudocode

The pseudocode for Leabra is given here, showing exactly how the pieces

of the algorithm described in more detail in the subsequent sections fit

together.

Outer loop: Iterate over events (trials) within an epoch. For each

event:

1. Iterate over minus and plus phases of settling for each event.

(a) At start of settling, for all units:

i. Initialize all state variables (activation, v_m, etc.).

ii. Apply external patterns (clamp input in minus, input and output

in plus).

(b) During each cycle of settling, for all non-clamped units:

i. Compute excitatory net input (ge(t) or hj, equation 3).

ii. Compute kWTA inhibition for each layer, based on gi
Θ

(equation 7):

A. Sort units into two groups based on gi
Θ : top k and remaining

k + 1 to n.

B. If basic, find k and k + 1th highest; if avg-based, compute avg

of 1 → k and k + 1 → n.

C. Set inhibitory conductance gi from gk
Θ and gk+1

Θ (equation 6).

iii. Compute point-neuron activation combining excitatory input

and inhibition (equation 1).

(c) After settling, for all units:

i. Record final settling activations as either minus or plus phase (yj
–

or yj
+).

2. After both phases update the weights (based on linear current weight

values), for all connections:

(a) Compute error-driven weight changes (equation 9) with soft

weight bounding (equation 10).

(b) Compute Hebbian weight changes from plus-phase activations

(equation 8).

(c) Compute net weight change as weighted sum of error-driven and

Hebbian (equation 11).

(d) Increment the weights according to net weight change.

Point Neuron Activation Function

Leabra uses a point neuron activation function that models the

electrophysiological properties of real neurons, while simplifying their

geometry to a single point. This function is nearly as simple computa-

tionally as the standard sigmoidal activation function, but the more

biologically based implementation makes it considerably easier to model

inhibitory competition, as described below. Further, using this function

enables cognitive models to be more easily related to more physiologically

detailed simulations, thereby facilitating bridge-building between biology

and cognition.

The membrane potential Vm is updated as a function of ionic

conductances g with reversal (driving) potentials E as follows:

(1)

with four channels (c) corresponding to: e, excitatory input; l, leak

current; i, inhibitory input. Following electrophysiological convention,

the overall conductance is decomposed into a time-varying component

gc(t) computed as a function of the dynamic state of the network, and a

d

d

m

c c c m

c

V t

t
g t g E V t

b g b g b gd i= −∑τ
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constant gc that controls the relative inf luence of the different

conductances. The equilibrium potential can be written in a simplified

form by setting the excitatory driving potential (Ee) to 1 and the leak and

inhibitory driving potentials (El and Ei) to 0:

(2)

which shows that the neuron is computing a balance between excitation

and the opposing forces of leak and inhibition. This equilibrium form of

the equation can be understood in terms of a Bayesian decision making

framework (O’Reilly and Munakata, 2000).

The excitatory net input/conductance ge(t) or ηj is computed as the

proportion of open excitatory channels as a function of sending

activations times the weight values:

(3)

The inhibitory conductance is computed via the kWTA (k-Winners-

Take-All) function described in the next section, and leak is a constant.

Activation communicated to other cells (yj) is a thresholded (Θ)

sigmoidal function of the membrane potential with gain parameter γ:

(4)

where [x]+ is a threshold function that returns 0 if x < 0 and x if x > 0. Note

that if it returns 0, we assume yj(t) = 0, to avoid dividing by 0. As it is,

this function has a very sharp threshold, which interferes with graded

learning mechanisms (e.g. gradient descent). To produce a less dis-

continuous deterministic function with a softer threshold, the function is

convolved with a Gaussian noise kernel (µ = 0, σ = 0.005), which ref lects

the intrinsic processing noise of biological neurons:

(5)

where x represents  the  [Vm(t) – Θ]+ value, and yj
*(x) is the noise-

convolved activation for that value. In the simulation, this function is

implemented using a numerical lookup table.

k-Winners-Take-All Inhibition

Leabra uses a kWTA function to achieve inhibitory competition among

units within a layer (area). The kWTA function computes a uniform level

of inhibitory current for all units in the layer, such that the k + 1th most

excited unit within a layer is below its firing threshold, while the kth is

above threshold. Activation dynamics similar to those produced by the

kWTA function have been shown to result from simulated inhibitory

interneurons that project both feedforward and feedback inhibition

(O’Reilly and Munakata, 2000). Thus, although the kWTA function is

somewhat biologically implausible in its implementation (e.g. requiring

global information about activation states and using sorting mechanisms),

it provides a computationally effective approximation to biologically

plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory current for all

units in the layer as follows:

(6)

where 0 < q < 1 is a parameter for setting the inhibition between the

upper bound of gk
Θ and the lower bound of gk+1

Θ. These boundary

inhibition values are computed as a function of the level of inhibition

necessary to keep a unit right at threshold:

(7)

where ge
* is the excitatory net input without the bias weight contribution;

this allows the bias weights to override the kWTA constraint.

Hebbian and Error-Driven Learning

For learning, Leabra uses a combination of error-driven and Hebbian

learning. The error-driven component is the symmetric midpoint version

of the GeneRec algorithm (O’Reilly, 1996), which is functionally equiva-

lent to the deterministic Boltzmann machine and contrastive Hebbian

learning (CHL). The network settles in two phases: an expectation

(minus) phase where the network’s actual output is produced, and an

outcome (plus) phase where the target output is experienced, and then

computes  a simple difference of a pre and postsynaptic activation

product across these two phases. For Hebbian learning, Leabra uses

essentially  the same  learning rule  used in  competitive learning or

mixtures-of-Gaussians which can be seen as a variant of the Oja normal-

ization. The error-driven and Hebbian learning components are combined

additively at each connection to produce a net weight change.

The equation for the Hebbian weight change is:

∆hebbwij = xi
+yj

+ – yj
+wij = yj

+(xi
+ – wij) (8)

and for error-driven learning using CHL:

∆errwij = xi
+yj

+ – xi
–yj

– (9)

which is subject to a soft-weight bounding to keep within the 0–1 range:

∆sberrwij = [∆err]+(1 – wij) + [∆err]–wij (10)

The two terms are then combined additively with a normalized mixing

constant khebb:

∆wij = ε[khebb (∆hebb) + (1 – khebb) (∆sberr)] (11)

Temporal Differences and Adaptive Critic Gating Mechanisms

To implement the temporal differences (TD) algorithm in Leabra, the

adaptive critic (AC) unit in the VTA layer has plus–minus phase states that

correspond to the expected reward at the previous time step (minus) and

the current time step (plus). The difference between these two states is

the TD error δ, which is essentially equivalent to the more standard kinds

of error signals computed by the error-driven learning component of

Leabra, except that it represents an error of prediction over time, instead

of an instantaneous error in the network output.

The AC–PFC relationship is formalized in the model with the

following equations for the gating (multiplicative scaling) terms sin (the
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Table A1
Parameters for the simulation (see equations in text for explanations of parameters)

Parameter Value Parameter Value

El 0.15 gl 0.10
Ei 0.15 gi 1.0
Ee 1.00 ge 1.0
Vrest 0.15 Θ_ 0.25
τ 0.02 γ 600
k Post Ctx 2† k Output 1†
k Feat PFC 2† k Dim PFC 1†
khebb 0.02 ε 0.01
to AC ε 0.04†

All are standard default parameter values except for those with a † (most of which have no default
because they are intrinsically task-dependent). The faster learning rate (ε) for connections into the
AC was important for ensuring rapid learning of reward.
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weight scaling of the PFC inputs) and smaint (the weight-scaling of the PFC

self-maintenance connections):

sin = bin + δ + ν (12)

smaint = bmaint + δ + ν (13)

where δ is the change in AC activation (TD error), and ν is a Gaussian

random noise value that allows for random trial-and-error exploration

(µ = 0, σ = 0.2). The base-level parameters bin and bmaint determine the

basic level of each weight-scaling (gain) parameter, and are set to 0 and 1,

respectively. Both of the weight-scaling terms are bounded between 0

and 1. These differences in input and maintenance connections could

result from different dopamine receptor affinities, and have the effect that

the inputs tend to weakly impact the PFC units except during a positive

δ, while the maintenance connections are relatively strong except during

a negative δ.
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