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Introduction

There is widespread agreement that the capacity for cogni-
tive control is a central element of human adaptability, 
achievement, and flourishing. While this ability to flexibly 
regulate, update, and coordinate thoughts and actions in 
accordance with internally maintained goals is one of 
humans’ most cherished higher mental functions, it is also 
quite vulnerable to impairment, and even in healthy individ-
uals can vary substantially (Braver, 2012). Importantly, cog-
nitive control is not a unitary process, as it encompasses a 
diverse range of mental functions spanning different domains 
of cognition (i.e., attention, working memory [WM], and 
decision-making) (Kane & Engle, 2002; Miller & Cohen, 
2001; Miyake et al., 2000). Consequently, a major challenge 
has been to characterise and explain cognitive control 
through a unifying and coherent theoretical framework, 
which ideally should provide meaningful and operationalis-
able core constructs that can account for both contextual (i.e., 
state) and individual (i.e., trait) variations in these functions.

The Dual Mechanisms of Control theoretical frame-
work decomposes cognitive control into two qualitatively 
distinct mechanisms—proactive control and reactive con-
trol (Braver, 2012; Braver et al., 2007). Proactive control 
refers to a sustained and anticipatory mode of control that 
is goal-directed, allowing individuals to actively and opti-
mally configure processing resources prior to the onset of 
task demands. Reactive control, by contrast, involves a 
transient mode of control that is stimulus-driven and relies 
upon retrieval of task goals and the rapid mobilisation of 
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processing resources following the onset of a cognitively 
demanding event (Braver, 2012; Braver et al., 2007). In 
other words, proactive control is preparatory, while reac-
tive control operates in a just-in-time manner. These two 
mechanisms proposed by the Dual Mechanisms frame-
work have been dissociated based on both their temporal 
dynamics, computational mechanisms, and neural sub-
strates in healthy and impaired populations (Braver et al., 
2005, 2009; De Pisapia & Braver, 2006) and based on their 
behavioural signatures in young adults (Gonthier, Braver, 
& Bugg, 2016) and in cross-sectional studies examining 
age differences (Bugg, 2014a, 2014b; Paxton et al., 2008). 
Critically, extant empirical findings provide evidence that 
these two modes of control can be manipulated via distinct 
situational factors while also pointing to an important 
source of variation in control function at the individual and 
group level (i.e., age group or in clinical groups with dif-
fering levels of well-being and characteristics), in terms of 
the bias or preference to adopt one control mode over the 
other mode (Barch & Ceaser, 2012; Braver, 2012).

In addition to providing a unifying account for under-
standing intra-individual, inter-individual, and between-
groups variability in cognitive control, the Dual 
Mechanisms framework describes a domain-general 
account of these two control mechanisms, postulating the 
presence of proactive and reactive control across multiple 
cognitive domains. However, there have been empirical 
and theoretical challenges in developing and optimising 
valid and reliable paradigms of proactive and reactive 
control in different task domains, and in establishing 
behavioural markers that provide robust indices for these 
two modes of control. The Dual Mechanisms of Cognitive 
Control (DMCC) project was initiated by our group to 
address these shortcomings (Braver et al., 2021). A major 
aim of the DMCC project has been to develop and system-
atically examine the validity and reliability of a battery of 
cognitive control tasks across four distinct cognitive 
domains: selective attention, context processing, multi-
tasking, and WM (Braver et al., 2021). Much of our prior 
work in the DMCC project has been to successfully dem-
onstrate the utility and validity of the DMCC task battery 
within the neuroimaging environment (Braver et al., 
2021; Etzel et al., 2022; Freund et al., 2021; Singh et al., 
2022; Tang et al., 2021). In parallel, we have initiated a 
systematic validation of the full task battery in terms of its 
behavioural characteristics. In the current article, we 
focus on group effects, testing for dissociations between 
behavioural markers of proactive and reactive control. 
Companion papers examine the psychometric properties 
of the task battery and its utility for individual difference 
analyses (Lin et al., 2022; Snijder et al., 2022).

Prior small-scale behavioural studies have focused on 
individual tasks and conditions within the DMCC battery, 
such as the AX version of the Continuous Performance Test 
(AX-CPT), in terms of their ability to isolate proactive and 

reactive control (Bugg & Braver, 2016; Gonthier, Braver, 
& Bugg, 2016; Gonthier, Macnamara, et al., 2016). The 
goal of the current study is to provide a systematic and 
rigorous behavioural analysis of all optimised variants of 
all four task domains, with a large sample size (N > 100) 
and utilizing a within-subject design. Indeed, in most 
studies of proactive and reactive control to date, whether 
they are designed to examine individual variation, tempo-
ral dynamics, or neural signatures of these two modes of 
cognitive control, the focus has been on a single task or a 
limited cognitive domain, and with fairly restricted par-
ticipant samples. Although the focus on single tasks in 
measuring the two modes of control has been informative 
in contributing to our understanding of their mechanisms, 
it has precluded a rigorous test of the validity and the 
domain-generality of cognitive control modes across mul-
tiple cognitive domains.

The DMCC battery includes theoretically optimised adap-
tations of four well-established cognitive tasks (Stroop, 
AX-Continuous Performance Test (AX-CPT), Cued Task-
Switching and Sternberg WM), one for each of the above-
mentioned domains, respectively, that were theoretically 
optimised to capture variability in proactive and reactive con-
trol. Specifically, there were three variants of each task rep-
resenting different experimental conditions: (1) a baseline 
condition that maximises within- and between-individual 
variability, which does not bias the adoption of proactive or 
reactive control; (2) a proactive condition that shifts indi-
viduals towards proactive control; and (3) a reactive condi-
tion that independently engages the reactive mode of 
control. As will be detailed for each task in the later sections, 
we contrasted theoretically specified behavioural perfor-
mance patterns across the three variants, to determine 
whether proactive and reactive control variants did indeed 
produce the predicted shifts in control.

The present study implemented a multi-session within-
subject design to systematically evaluate the validity of the 
full DMCC task battery. As the first large-sample (N > 100) 
study of the DMCC task battery conducted in a purely 
behavioural context, it has several advantages and innova-
tive features that had rarely been implemented in prior 
experimental studies of cognitive control. First, all tasks 
were computerised and made available through an online 
platform (Amazon Mechanical Turk [MTurk]) for data 
collection, which enables recruitment of a large sample 
size within a short time period while also allowing open 
accessibility and dissemination of the task battery for 
future investigations—both in laboratory settings and 
through online platforms. Second, the study was methodo-
logically innovative in that it includes novel task variants 
within the battery that have never previously been reported, 
along with experimental manipulations that induce varia-
bility in the utilisation of proactive and reactive control 
modes affect behavioural performance profiles. Third, the 
validation of this task battery provides a firm foundation 
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for the more costly and time-consuming neuroimaging 
investigations of cognitive control, by identifying the most 
robust behavioural markers and metrics that can be linked 
to underlying neural mechanisms (Braver et al., 2021). 
Finally, this work also provides a foundation for future 
translational efforts, given that the battery provides (1) 
assessment tools by which to evaluate the domain- 
generality (unity) and diversity of cognitive control func-
tion in different populations, including those with impaired 
cognitive control; and (2) potential targets for intervention 
efforts aimed at enhancing proactive and/or reactive con-
trol (Braver, 2012).

In the following section, we describe the experimental 
manipulations and rationale underlying the theoretically 
targeted variants of all four cognitive control tasks (Stroop, 
AX-CPT, Cued-TS, and Sternberg WM), specifically 
highlighting the innovative features of the task conditions 
included in the battery. This article focuses on the effec-
tiveness of the experimental manipulations at the group 
level, in independently assessing proactive and reactive 
control modes. In particular, we compare task performance 
and primary outcome indices among the three conditions 
(baseline, proactive, reactive) to evaluate both divergent 
(discriminant) and convergent (cross-task) validity of the 
DMCC task battery in capturing variations in the two cog-
nitive control modes. As indicated above, the primary goal 
of the article is to provide a comprehensive introduction to 
the DMCC battery and the associated dataset acquired 
with it, such that the scientific community can fully evalu-
ate and make use of the dataset (which will be made avail-
able on public repositories at the time of publication).

Dual Mechanisms of Cognitive 
Control task battery

Stroop

The colour-word Stroop is widely recognised as a canoni-
cal task of cognitive control, in which top-down selective 
attention is required to focus processing on the task- 
relevant font colour of printed words while ignoring the 
irrelevant but otherwise dominant word name. A com-
monly used approach to manipulating cognitive control 
demands in the Stroop task is to vary list-wide proportion 
congruence (PC) (Lindsay & Jacoby, 1994; Logan & 
Zbrodoff, 1979). Under high list-wide PC conditions, con-
gruent trials (word name matches font colour, for example, 
BLUE in blue font) are frequent and incongruent trials 
(word name indicates a different colour than the font col-
our, for example, RED in blue font) are rare within a block, 
such that control demands are on average low and inter-
mittent. In contrast, under low list-wide PC conditions 
(rare congruent trials, frequent incongruent), the high 
probability that interference will occur within a block 
should lead to an upregulated cognitive control state.

In particular, we and others have hypothesised that 
under low list-wide PC conditions, the tendency to utilise 
proactive control will increase (Bugg, 2014a; Bugg & 
Chanani, 2011; Gonthier, Braver, & Bugg, 2016; 
Hutchison, 2011; Spinelli et al., 2019). In this case, proac-
tive control is theoretically associated with sustained 
maintenance of the task goal to attend to the ink colour and 
ignore the word, which should be present in a consistent 
(i.e., global; present on all trials) and preparatory manner 
(i.e., engaged even prior to stimulus onset). Thus, the key 
prediction is that the Stroop effect (average slowing or 
increase in errors on incongruent relative to congruent tri-
als) should be reduced on all trials, relative to a baseline, 
high list-wide PC condition, reflecting improved perfor-
mance on incongruent trials and a reduction of facilitation 
on congruent trials (i.e., a congruency cost) (Gonthier, 
Braver, & Bugg, 2016).

In contrast, PC can also be manipulated in an item- 
specific, rather than list-wide fashion (Jacoby et al., 2003). 
In this case, specific colours will occur with low PC (e.g., 
items appearing in green font will frequently be incongru-
ent), while others may occur with high PC (e.g., items 
appearing in red font will frequently be congruent), and 
these “items” are randomly intermixed such that partici-
pants cannot predict whether a low PC or high PC item 
will appear on a given trial. This type of item-specific PC 
manipulation is theoretically predicted to enhance the uti-
lisation of reactive control for low PC items (Bugg & Dey, 
2018; Bugg & Hutchison, 2013; Bugg et al., 2011). For 
these items, strong associations develop between a critical 
feature (a specific font colour, such as green) and increased 
control demands (i.e., high interference), leading to more 
effective goal retrieval and utilisation upon presentation of 
a stimulus that includes this feature (e.g., a word printed in 
a green font). The engagement of reactive control is 
expected to be transient, present only after stimulus onset, 
and only engaged by low PC incongruent items, particu-
larly when these occur within the context of 50% congru-
ent, or even higher, list-wide PC conditions.

The three Stroop task variants in the present battery 
varied as follows: the baseline condition had a high list-
wide PC (67% congruent, 33% incongruent trials), whereas 
the proactive condition had a low list-wide PC (33% con-
gruent, 67% incongruent trials). In contrast, the reactive 
condition approximated the high list-wide PC of the base-
line condition (60% congruent, 40% incongruent) due to 
the inclusion of many high PC (100% congruent) filler 
items, but also featured specific items that were low PC 
(25% congruent, 75% incongruent). Another feature of the 
battery is the inclusion, in each condition, of a set of unbi-
ased, diagnostic items (“PC-50,” 50% congruent, 50% 
incongruent) that did not share features (i.e., words or col-
ours) with the other items in the condition. These PC-50 
(diagnostic) items provide clearer behavioural markers 
from which to dissociate proactive and reactive control 
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(Braem et al., 2019). Similar versions of these Stroop con-
ditions have been examined in prior work, using both pic-
ture-word (Gonthier, Braver, & Bugg, 2016) and 
colour-word variants (Dey & Bugg, 2021). Finally, it is 
worth noting that because of the large numbers of different 
font colours (8) included in each of the conditions, the task 
was implemented with vocal rather than manual respond-
ing, using built-in voice recognition software to extract 
response latencies.

AX-CPT

The AX-CPT has become increasingly utilised as a task of 
context processing and cognitive control, given its sim-
plicity, flexibility, and applicability in a wide range of 
populations (Barch et al., 2008; Chatham et al., 2009; 
Chun et al., 2018; Janowich & Cavanagh, 2018; Servan-
Schreiber et al., 1996). In the paradigm, participants 
respond to letters presented one at a time, with each trial 
consisting of a cue–probe letter pair. When an A-cue is fol-
lowed by an X-probe, a target response is required. Since 
the AX pairing occurs frequently, strong cue–probe asso-
ciations develop. Cognitive control is postulated to be 
needed to maintain and utilise the information provided by 
contextual cues, particularly to minimise errors and 
response interference occurring on BX trials (where B 
refers to any letter except A), which occur when the 
X-probe is presented, but is not preceded by an A-cue. In 
prior work, shifts in the tendency to utilise proactive or 
reactive control have not only been observed when com-
paring different populations or groups, but have also been 
manipulated within-subjects (Braver et al., 2009).

The AX-CPT conditions included in the battery extend 
prior recent work using a task variant in which the A- and 
B-type contextual cues occur with equal frequency, thus 
eliminating confounds in earlier versions that could be due 
to the lower overall frequency of encountering B-cues 
(Gonthier, Macnamara, et al., 2016; Richmond et al., 2015). 
Furthermore, these conditions also include no-go trials, in 
which the probe is a digit rather than letter. Because of the 
increase in response uncertainty (i.e., three types of probe 
response are possible: target, non-target, no-go), the addi-
tion of no-go trials decreases the overall predictive utility 
of context information for responding, and as a conse-
quence was found to reduce the overall proactive control 
bias typically observed in healthy young adults. As such, 
the no-go conditions result in a “low control” baseline, 
from which to more sensitively observe condition-related 
changes in control mode (Gonthier, Macnamara, et al., 
2016). In all of the current AX-CPT versions tested in this 
battery, the task structure, trial types, and frequencies are 
identical, except for the specific manipulations described 
below for proactive and reactive conditions.

The proactive condition replicates prior work using 
context strategy training (Gonthier, Macnamara, et al., 

2016), as a means of increasing the predictive preparation 
of responses following contextual cue information. 
Specifically, participants are provided with explicit infor-
mation regarding the frequencies of these cue–response 
associations and receive training and practice in utilising 
them to prepare the dominant responses. In addition, dur-
ing inter-trial intervals, participants are provided with vis-
ual instructions to “remember to use the strategy.” The key 
prediction is that the increased utilisation of contextual cue 
information will lead to a bias to prepare a target response 
following an A-cue (analysed in terms of both AX and AY 
trials) and a non-target response following a B-cue, lead-
ing to reduced interference on BX trials. Yet a side effect 
of this preparatory bias is a predicted increase in errors and 
response interference on AY trials, which occur when the 
A-cue is not followed by an X-probe.

The reactive condition involved a new manipulation 
which has not previously been examined in prior work. 
Specifically, the reactive condition utilises context- 
specific probe cueing (similar to other context cueing 
manipulations in tasks, such as Stroop and flanker; for 
review, see Bugg and Crump, 2012), in that for high con-
trol demand trials (AY, BX, no-go) the probe item appears 
in a distinct spatial location, and with a distinct border col-
our surrounding it (presented briefly before the onset of 
the probe). Critically, because these featural associations 
are only present at the time of probe onset, they were not 
hypothesised to modulate the utilisation of proactive con-
trol strategies. Similarly, the probe features could not drive 
direct stimulus–response learning, since they do not 
directly indicate the appropriate response to be made. In 
other words, the probe feature cannot be used as a “stop 
signal,” since on high-control demand trials it signals the 
need for a go response as often as a no-go. Similarly, on 
low control demand trials, the probe feature predicts a tar-
get response (when it follows an A-cue) as often as it does 
a non-target response (when it follows a B-cue). In con-
trast, the probe features do serve as contextual cues signal-
ling high control demand, and thus prompt more rapid and 
effective retrieval of contextual information to resolve the 
conflict. Because information about high-conflict probe 
features is not provided explicitly to participants (in con-
trast to the proactive condition), it has to be learned implic-
itly through experience. The key prediction is that 
utilisation of probe features should reduce the tendency to 
make BX errors but could increase BX reaction time inter-
ference (due to the tendency to utilise the probe to drive 
context retrieval).

Cued-TS

Cued-TS has long been recognised as a critical paradigm to 
assess a core component of cognitive control—the ability to 
activate and update task representations in an online man-
ner, to configure attention and action systems to process the 
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task-relevant features of a current target. The key aspect of 
the paradigm is that two or more tasks randomly alternate 
across trials, with target items typically being ambiguous, so 
that they can be processed according to multiple task rules. 
Consequently, the advance presentation of the task cue, 
prior to target onset, is what disambiguates the target and 
specifies the appropriate stimulus–response rules.

An important metric of cognitive control in task-switch-
ing paradigms is the task-rule congruency effect (TRCE), 
which refers to the increased interference (both errors and 
reaction time) when the target response required for the 
current task is incongruent with the response that would be 
required to the same target stimulus if the alternative task 
had been cued (Meiran & Kessler, 2008). Consider the let-
ter–digit task-switching (also called consonant–vowel, 
odd–even [CVOE]) task comprising a letter task and a digit 
task. If in the letter task, a right button press is required for 
a consonant and a left button press for a vowel, while in the 
digit task, a right button press is required for odd and a left 
button press for even, the “D4” target stimulus would be 
incongruent (whereas the “A2” target stimulus would be 
congruent, since for either task, the left button press would 
be correct). Two additional important metrics are switch 
costs, which refer to the decrement to performance when 
the task to be performed on the current trial switches from 
that on the previous trial (relative to task-repeats, when the 
same task is performed on two consecutive trials) (Meiran, 
1996; Rogers & Monsell, 1995), and mixing costs, which 
refer to the decrement to performance that occurs on task-
repeat trials (relative to performance within a single-task 
block) (Braver et al., 2003; Los, 1996). These have also 
served as indices of cognitive control demands.

In prior work, including reward incentives on a subset 
of trials, with reward cues presented at the time of the task 
cue, led to a strong reduction in the mixing cost—and this 
was present even on the trials that were non-incentivised—
but there was no effect on the TRCE (Bugg & Braver, 
2016). This finding was interpreted as indicating that the 
mixing cost reductions reflected a list-wide (global) 
enhancement of proactive control, whereas the TRCE 
effect is primarily influenced by reactive control, and so 
less affected by advance reward incentive manipulations. 
The Cued-TS conditions included in the current battery 
build on this prior work by using variants of the CVOE 
(letter/digit) paradigm that aims to accentuate the robust-
ness of the TRCE while also enabling clear utilisation of 
proactive control through the use of advance task cues 
with a long cue-to-target interval (CTI). A robust finding 
from prior work is that performance improves with longer 
preparation times (CTI), suggesting advanced preparation 
for relevant task rules and stimulus–response mappings for 
the upcoming target (Meiran, 1996).

In the baseline condition, target stimuli are list-wide 
mostly congruent (LW-MC; 67%), as prior work has found 
that mostly congruent conditions result in a large and robust 

TRCE (Bugg & Braver, 2016). The proactive condition 
builds on Bugg and Braver’s (2016) study in keeping the 
same LW-MC structure as the baseline condition but add-
ing reward incentives on a subset of trials. Specifically, on 
33% of trials, reward cues are presented simultaneously 
with advance task cues (i.e., by presenting the task cue in 
green font), and indicate the opportunity to earn monetary 
bonuses if performance is accurate and fast (relative to 
baseline performance) on that trial. By only presenting 
reward cues on a subset of trials, the remaining subset of 
non-incentivised trials and target stimuli can be directly 
compared across the proactive and baseline conditions. A 
divergence from Bugg and Braver (2016) is that single-task 
conditions are not included as part of the battery (due to 
length constraints), which precludes direct calculation of 
mixing costs. Nevertheless, the key prediction is that 
enhanced proactive control will lead to a global improve-
ment of performance (i.e., faster response times [RTs] with-
out a loss in accuracy).

The reactive condition utilises a new manipulation 
which has not previously been examined in prior work. 
Specifically, the reactive condition includes punishment 
(rather than reward) incentives, again on the same 33% 
subset of trials that were incentivised in the proactive con-
dition. However, in the reactive condition the incentive 
cue is presented at the time of the target stimulus, rather 
than with the task cue, which precludes the use of incen-
tive motivation in a preparatory fashion. Participants are 
instructed that they will lose a component of their potential 
monetary bonus if they make an error on these incentivised 
trials. Critically, the incentivised trials occur preferentially 
(75%) with incongruent target stimuli. This manipulation 
is intended to associate punishment-related motivation 
with these high-conflict items, potentially leading to 
increased response monitoring and caution when incon-
gruence is detected. As such, the key prediction is that 
enhanced reactive control should reduce the error TRCE, 
even on the non-incentivised trials, when compared with 
baseline and proactive conditions. Conversely, the RT 
TRCE should be increased, due to the tendency to utilise 
target features (detection of incongruency) to drive 
retrieval of task rules.

Sternberg WM

The Sternberg item-recognition task has been one of the 
most popular experimental paradigms used to assess short-
term/WM for over 50 years (Sternberg, 1966), but more 
recently has been adapted particularly for the study of cog-
nitive control with the “recent probes” version (Jonides & 
Nee, 2006). Like standard versions of the paradigm, the 
recent probes version presents participants with a memory 
set of various load levels (number of items), to maintain 
over a short delay (retention period), after which a single 
item probe is presented, which requires a target response if 
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the probe was a part of the memory set. A classic finding in 
the literature is that as the memory set increases in size, 
WM load increases, and performance declines accordingly 
(higher error rates, longer RTs) (Shiffrin & Schneider, 
1977; Sternberg, 1966). Under conditions in which the 
WM load is below capacity (3–4 items), active mainte-
nance and rehearsal processes can be used to keep the 
memory set accessible, as an attentional template from 
which to prospectively match against the probe item (i.e., 
utilising proactive control strategies). In contrast, when 
the WM load is above capacity (~7 items), probe responses 
are likely to be driven by retrieval-focused processes, such 
as familiarity (i.e., reactive control strategies).

In recent probes versions, the key manipulation is that 
the probe item can also be a part of the memory set of the 
previous trial, but not the current trial, which is termed a 
“recent negative” (RN) probe. On these RN trials, the probe 
is associated with high familiarity, which can increase 
response interference and errors, unless cognitive control is 
utilised to successfully determine that the probe familiarity 
is a misleading cue regarding its status (target or non-target). 
The current versions of the Sternberg WM paradigm 
included in the battery are adapted from previous studies 
(Burgess & Braver, 2010; Speer et al., 2003), in using 
manipulations of WM load expectancy and RN frequency. 
Specifically, in all conditions, trials randomly vary in set 
size, with words used as stimuli, such that all items are novel 
on each trial, with the exception of RN probes. Under such 
conditions, Burgess and Braver (2010) found strong RN 
interference effects in both RT and errors. Similarly, follow-
ing Speer et al. (2003), the set size in a given trial is revealed 
sequentially, leading to unpredictability and reliance on 
WM load expectancies to engage control strategies.

In the baseline condition, most trials have high WM load 
(6–8 items; 60%) and RN frequency is low (20% of non-
target probes), which should reduce tendencies to engage 
either proactive or reactive control strategies. However, in 
the proactive condition, most trials have low WM load (2–4 
items; 60%), leading to the expectancy that active mainte-
nance-focused and proactive attentional strategies will be 
effective, while RN frequency remains low (matched at 
20% non-target probes), such that the utility of reactive 
control should be unchanged. The critical prediction con-
cerns the five-item set size which occurs equivalently in all 
conditions (40% of trials), and thus can be directly com-
pared between them. The key hypothesis is that use of pro-
active control strategies will improve both RT and accuracy, 
primarily for the target probe items (termed novel positive, 
or NP, since they never overlap across trials).

In the reactive condition, WM loads are identical to the 
baseline condition, while the frequency of RN trials is 
increased (80% of non-target probes). Thus, in the reactive 
condition, it is familiarity-based interference expectancy 
that increases, rather than WM load expectancy. Based on 
the increased interference expectancy, the theoretical 

hypothesis is that participants will not rely on familiarity 
as a cue for responding, and will rather evaluate the match 
of the probe to items stored in WM. Consequently, the key 
prediction is that performance on RN (or rather the RN 
effect, computed by subtracting performance on novel 
negative or NN trials) will be significantly improved rela-
tive to baseline.

Methods

Participants

Participants were recruited for the study via the MTurk 
online platform. The TurkPrime interface was used to post 
study descriptions, manage recruitment and payment, send 
out reminder emails, and handle all other communication 
with the participants. After reading a description of the 
study that indicated its multi-session nature and time com-
mitment, interested participants accessed a link which 
allowed them to review and sign the consent form. After 
signing the consent, the web links for the first session of 
the study were made available over MTurk. Participants 
were instructed to use a computer or laptop for completing 
the sessions, as the tasks were not designed to work with 
mobile device or tablet. The study protocol was approved 
by the Institutional Review Board of Washington 
University, St. Louis. All data were collected across two 
separate testing waves held a few months apart; however, 
since the procedures for the tasks described below were 
identical across waves, the data from both waves are 
aggregated for reporting purposes below.

A total of 278 participants signed up for the study and 
129 participants with complete data were included in the 
analyses. Participants were excluded for not completing ses-
sions in the required period of time, for technical problems 
that precluded data analysis (particularly for the Stroop task, 
which involved vocal responses), or for data that indicated a 
failure to comply with task instructions. Participants were 
not restricted with regard to age; consequently, the final 
included sample of participants had a wide age range (22–
64, M = 37.11, SD = 9.90; 82 females, 47 males). Data were 
analysed separately for each task, and only for participants 
that had complete useable data for that task; thus, tasks are 
not equivalent in terms of sample size (AX-CPT: 121, 
Stroop: 126, Cued-TS: 128, Sternberg: 128).

Design and procedure

The study protocol consisted of 30 separate testing sessions 
that subjects completed in a sequential manner (15 for the 
test phase, and another 15 for retest). Participants were 
asked to complete the sessions at a rate of 5 per week, that 
is, 6 weeks to complete the full protocol. Each session lasted 
approximately 20–40 min in duration, with the exception of 
the first session, which was 1 hr in duration (and included a 
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Stroop practice block to validate operation of vocal response 
recording, plus a battery of demographic and self-report 
questionnaires). To both incentivise and prorate study com-
pletion, completion of the first session in each set of 5, for 
both test and retest phases, resulted in a US$4 payment, and 
the others resulted in a US$2 payment. Additional bonuses 
of US$20 were paid for completion of the test phase and 
US$30 for full study completion. Together, successful com-
pletion of the entire protocol resulted in a payment of 
US$122, plus additional monetary bonuses associated with 
incentives in the Cued-TS sessions.

Each set of five sessions was posted at the beginning of 
the week through MTurk and sent through emails to the 
participants. Two reminder emails were also typically sent 
during the week to remind subjects of the completion 
deadline for the set (by the end of the week). If subjects 
failed to complete the weeks’ sessions by the designated 
deadline, they were not invited back to participate in sub-
sequent sessions. For each completed session, subjects 
would enter in a completion code and the experimenter 
would review each session results for completion and 
approve the payment within a week through TurkPrime. If 
subjects dropped from the study, they still received pro-
rated payment for all sessions completed.

For each completed session, the experimenter checked 
for overall accuracy and completion of each task and ques-
tionnaire to make sure that subjects were complying with 
instructions and maintaining sufficient attention to the 
task. A criterion of 60% accuracy and response rate was 
used to determine whether the data would be included, and 
the subject invited to remain in the study. For each task or 
questionnaire that did not meet the criterion, the experi-
menter attempted to communicate with the subject first to 
determine whether they had trouble understanding the 
instructions or had technical difficulties. If so, the subject 
was given a second chance to complete the task before a 
designated deadline.

Within each of the test and retest phases, sessions were 
conducted in a fixed order for all participants, with the 
baseline conditions of all tasks performed first, followed 
by reactive conditions of all tasks and then finally proac-
tive conditions. The AX-CPT, Cued-TS, and Sternberg 
were programmed with in-house JavaScript code (availa-
ble upon request at https://sites.wustl.edu/dualmecha-
nisms/request-form/), while the Stroop task was 
programmed and delivered using Inquisit software, as it 
included capabilities for online vocal response recording 
(script also available at link above).

Tasks

In the following sections, we describe each task and its vari-
ants. Figure 1 is a general illustration of the four tasks and 
their associated experimental manipulations in each variant.

Stroop. In this vocal Stroop task, colour words are pre-
sented in coloured font and participants name the font col-
our out loud. For each trial, vocal response latencies were 
recorded, and the spoken word was detected using the com-
puter’s built-in voice recognition software. Accuracy was 
then automatically coded through the Inquisit software. 
Participants were given standard instructions to respond as 
quickly as possible (in a normal voice) while retaining 
accuracy. Adequacy of the automated voice recognition 
was validated in previous pilot testing, and individually for 
each subject based on their first testing session, which con-
tained a practice block of 25 standard Stroop trials. If 
responses could not be detected for most of the trials, the 
subject was not asked to continue with further testing.

The current versions of the Stroop were based on the 
design of our previously reported work (Gonthier, Braver, 
& Bugg, 2016), and constructed using two different sets of 
four colours, in which the relative proportion of congruent 
and incongruent trials was manipulated in different ways. 
One set of four colours (red, blue, purple, white) was 
biased in the proportion of congruent and incongruent tri-
als, either mostly congruent or mostly incongruent (MI), 
varied across conditions. The other set (black, green, pink, 
yellow) was an unbiased/diagnostic set in that the propor-
tion of congruent to incongruent stimuli was 50:50 (here-
after, this set is termed PC-50 items). The two sets of 
stimuli were non-overlapping, such that on incongruent 
trials, the word name was one of the three remaining col-
ours from that set (e.g., green font with “black,” “pink,” or 
“yellow”; red font with “blue,” “purple,” or “white”). All 
trials consisted of the following stimulus parameters: items 
were presented centrally on a grey screen for 5,000-ms 
duration or until a response was detected, followed by a 
250-ms inter-trial interval during which a blank screen was 
presented.

Baseline session. In the baseline session, the trials were 
manipulated in an LW-MC manner. Participants completed 
a total of 288 trials during the baseline session, in which 
there were 96 PC-50 trials (48 congruent, 48 incongruent) 
and 192 biased trials. The biased set had 75% congruent 
(144 trials) and 25% incongruent (48 trials) trials. Con-
sequently, the list-wide proportion congruency for the 
baseline session was 67%. The session was divided into 
two blocks of 144 trials each, between which participants 
were instructed to rest for 1 min. Participants practised 
a slightly simpler version of the baseline condition in a 
practice block on the first session, to validate that response 
latencies could be accurately captured.

Proactive session. In the proactive session, the trials were 
manipulated in a list-wide, mostly incongruent (LW-MI) 
manner. Participants completed a total of 288 trials during 
the proactive session, in which there were 96 PC-50 trials 

https://sites.wustl.edu/dualmechanisms/request-form/
https://sites.wustl.edu/dualmechanisms/request-form/
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(48 congruent, 48 incongruent), and 192 biased trials. The 
biased set had 25% congruent (48 trials) and 75% incongru-
ent (144 trials) trials. Consequently, the list-wide proportion 

congruency for the proactive session was 33%. The session 
was divided into two blocks of 144 trials each, between 
which participants were instructed to rest for 1 min.

Figure 1. The DMCC battery: (a) Stroop, (b) AX-CPT, (c) Cued Task-Switching, and (d) Sternberg working memory.
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Reactive session. In the reactive session, the proportion 
congruency manipulation was at the item level, i.e., item-
specific proportion congruency (IS-PC). Specifically, blue 
and red colour font items were manipulated to be biased 
trials with PC-100 (i.e., these font-colour words were only 
presented as congruent trials; 192 trials). Purple and white 
colour font items served as biased trials, with PC-25 (i.e., 
25% congruent, 48 trials; 75% incongruent, 144 trials). 
Finally, as in the baseline and proactive conditions, the 
remaining 96 trials were unbiased trials with PC-50 (i.e., 
equal amount of congruent and incongruent trials). Thus, 
subjects completed a total of 480 trials during the reactive 
session. The session was divided into three blocks of 160 
trials each, between which subjects were instructed to rest 
for 1 min.

Cognitive control measures. Average response times 
(RTs) on correct trials and error rates were calculated for 
both congruent and incongruent trials for each subject in 
each session. The key measure of cognitive control was 
the Stroop interference effect (incongruent − congruent). 
We focus primarily on the PC-50 items (since these were 
matched across conditions) and RT (as is standard in the 
literature), though we also examined biased items and error 
rates for both types of items. To directly compare proac-
tive and reactive conditions, two additional derived indices 
were also calculated: the transfer cost and congruency cost 
(see Gonthier, Macnamara, et al., 2016, for further descrip-
tions). The transfer cost was computed as the difference in 
Stroop RT interference on PC-50 items relative to biased 
items; the congruency cost was computed by subtracting 
the baseline congruent trial RT from the congruent trial 
RT in proactive and reactive conditions (again focusing on 
PC-50 items, but also computed for biased items).

AX-CPT. In this version of the AX-CPT, participants make 
button press responses to visually presented cue–probe 
pairs. A target key press (“Z”) is made to the probe on AX 
trials; a non-target key press (“M”) is made to the probe on 
the other non-target (AY, BX, BY) trials, as well as to the 
cue on all trials. In addition to the four primary trial types, 
the task also includes no-go trials, which require withhold-
ing response to the probe; no-go trials are indicated by a 
digit (1–9) rather than letter probe. The task comprised 216 
trials in total and included 72 AX trials, 72 BY trials, 18 
AY trials, 18 BX trials, and 36 no-go trials (18 following 
an A-cue, 18 following a B-cue). All trial types and no-go 
trials were presented in random order. The task was per-
formed in three 72 trial blocks, between which subjects 
were instructed to take a minimum of 1 min rest break. All 
trials consisted of the following parameters. The cue was 
presented centrally on a white screen for 500 ms duration. 
After a 4,000-ms blank cue–probe interval, the target (in 
same size font) was presented for 500 ms but immediately 
preceded by a 250-ms period during which a bounding box 

was presented. A 1,500-ms inter-trial interval ended the 
trial (indicated by a central triangle of fixation crosses).

Baseline session. The baseline session identically fol-
lowed the description above. After receiving task instruc-
tions, subjects performed a 12-trial practice block before 
beginning the actual task.

Proactive session. In the proactive condition, partici-
pants received strategy training before completing the 
AX-CPT. The strategy training occurred during a practice 
block consisting of two phases. In the first phase of six 
trials, an audio clip was played, which instructed subjects 
which button to prepare following the cue. In the second 
phase of six trials, after the cue was presented, they were 
asked to type which button they were preparing to press in 
response to the second item. Participants typed out “left” 
or “right” and the program told subjects if they were cor-
rect or not. If they were not correct, they were reminded 
what letter the first item was and asked to try again. This 
procedure was implemented to accommodate the online 
testing format, and deviated slightly from in-person ver-
sions, in which subjects responded verbally regarding the 
button they were preparing to press. In addition, during 
the test phase, in the inter-trial interval periods, subjects 
were given the visual message to “Use the strategy!.” Oth-
erwise, task structure was identical to the baseline session.

Reactive session. The occurrence of high-conflict tri-
als (AY, BX, no-go) was implicitly signalled by present-
ing the probe in a distinct spatial location and preceded 
by a distinct border colour. Specifically, while cues were 
always presented centrally (as in the baseline and proac-
tive conditions), the probe stimuli were presented either 
in the upper half (AX, BY) or in the lower half (AY, BX, 
no-go) of the visual display. Furthermore, probe stimuli 
were immediately preceded (250 ms before probe onset) 
by either a white border (AX, BY) or red border (AY, BX, 
no-go). Otherwise, the task structure and trial proportions 
were identical to baseline and proactive sessions.

Cognitive control measures. Average RTs on correct trials 
and error rates were calculated for each of the four primary 
trial types (AX, AY, BX, BY) for each subject in each ses-
sion. Average error rates for no-go trials were calculated as 
well. The key measure of cognitive control was BX probe 
interference, which is calculated as the difference score on 
B-cue trials (BX − BY). This index allows for examination 
of the interference that occurs when an “X” probe follows 
a non-target cue “A” and a target trial response must be 
inhibited. We focused on BX probe interference in both 
errors and RT. To directly compare proactive and reac-
tive conditions, we also computed an additional derived 
index, the A-cue bias. The A-cue bias measure reflects the 
bias to make a target response following an A-cue, and is  
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calculated by computing a c criterion from hits on AX trials 
and false alarms on AY trials as 1/2 × (Z[H] + Z[F]), with 
H representing hits on AX trials and F representing false 
alarms on AY trials (Richmond et al., 2015). Because BX 
probe interference and A-cue bias involve different trial 
types, they can be examined fully independently, which 
is useful when directly comparing proactive and reactive 
control conditions.

Although not a primary focus of interest in the current 
report, additional derived indices were computed and 
reported to maintain continuity with prior work: d′-context 
and the Proactive Behavioral Index (PBI; Gonthier, 
Macnamara, et al., 2016). The d′-context index was calcu-
lated by computing a d’ index from hits on AX trials and 
false alarms on BX trials as Z(H) − Z(F), with H represent-
ing hits on AX trials, F representing false alarms on BX 
trials, and Z representing the z-transform of a value 
(Servan-Schreiber et al., 1996). The PBI is calculated as 
(AY − BX)/(AY + BX) (Braver et al., 2009). This index 
reflects the relative balance of interference between AY 
and BX trials; a positive PBI reflects higher interference 
on AY trials, indicating proactive control, whereas a nega-
tive PBI reflects higher interference on BX trials, indicat-
ing reactive control. The PBI was computed separately for 
error rates (based on average error rates on AY and BX 
trials) and for RTs (based on average RTs on AY and BX 
trials). To correct for error rates that were equal to 1.00, a 
log-linear correction was applied to all error rate data prior 
to computing the d’-context, the A-cue bias, PBI, and BX 
interference (Braver et al., 2009; Hautus, 1995). This cor-
rection was applied as error rate = (number of errors + 0.5)/
(number of trials + 1).

Cued-TS. In the current Cued-TS paradigm, we used the 
letter–digit task, which involves bivalent target stimuli 
consisting of a letter and a digit (e.g., E3). On each trial, 
the subject is cued to perform either a letter task—conso-
nant/vowel discrimination—or a digit task—odd/even dis-
crimination (Minear & Shah, 2008; Rogers & Monsell, 
1995). For the letter task, consonants required a right key 
press (“M”) and vowels required a left key press (“Z”). For 
the digit task, even numbers required a right (“M”) key 
press and odd numbers required a left (“Z”) key press. At 
the start of every trial, the task is cued by an on-screen 
message that indicates either “ATTEND LETTER” or 
“ATTEND NUMBER,” indicating whether attention and 
responding should be based on the letter or digit, respec-
tively. Critically, because of the response mappings, cer-
tain stimuli are congruent, in that they require the same 
key press irrespective of the relevant task rule (e.g., H6, 
E3), while other stimuli are incongruent, in that the two 
tasks were associated with different required responses to 
the same target (e.g., I6, D4).

The target stimuli were constructed in terms of two dis-
tinct stimulus sets. One set of stimuli (A1, A2, B1, B2, 1A, 

2A, 1B, 2B) was mostly congruent (80% congruent; 20% 
incongruent). The second set of stimuli (D4, E3, H5, I6, 
4D, 3E, 5H, I6) was unbiased (50% congruent, 50% con-
gruent). Trials randomly alternated between an equal num-
ber of “ATTEND LETTER” and “ATTEND NUMBER” 
trials. Due to the random presentation order of the cues, 
switch and repeat trials were on average equivalent, but 
deviated slightly in number across conditions and subjects. 
Each session consisted of 192 total trials, 96 mostly con-
gruent (80 congruent, 16 incongruent) and 96 unbiased (48 
congruent, 48 incongruent) and also equally split between 
the two tasks (i.e., 96 letter, 96 digit). Trials were separated 
into three 64 trial blocks, between which subjects were 
required to take a minimum of 1 min rest break. Prior to 
starting each session subjects learned (or refreshed their 
memory) of these response mappings through a set of 16 
practice trials. All trials consisted of the following stimu-
lus parameters: trial initiation with a 300-ms alerting cue 
(flashing cross), followed by the task cue presented on a 
grey screen for 500-ms duration. After a 3,500-ms blank 
CTI, the target was presented until a response was made. 
The response was followed by a 1,250-ms feedback period 
and then a 1,000-ms inter-trial interval (indicated by a cen-
tral triangle of fixation crosses).

Baseline session. In this condition, no manipulations 
were made to the unbiased stimuli. All task cues appear in 
red font and task stimuli appear in black font.

Proactive session. The proactive version of Cued-TS was 
identical to the baseline version except for the addition of 
a reward-based motivational incentive. This motivational 
incentive involved presenting subjects with a reward cue 
(green font) indicated during presentation of the task cue. 
When subjects responded to incentive trials faster than the 
baseline session’s median RT, while maintaining accuracy 
(this information was stored in a look-up table database, and 
accessed at the beginning of each session), they received 
a monetary bonus for that trial added to their compensa-
tion amount. Before the start of the proactive sessions, par-
ticipants were informed by the instructions that they can 
obtain more payment on top of regular compensation by 
responding faster than before and maintaining accuracy on 
incentive trials, which are preceded by a green cue. Non-
incentive trials were indicated by the task cue appearing in 
red font. Only the unbiased set of stimuli were incentivised 
(66% of unbiased, 33% of total, 64 trials) and presentation 
order was random with respect to the task cue and target 
stimuli pre-determined pairs. Subjects received feedback 
on all trials. The word “Reward!” appeared on the screen 
for 1,250 ms if the subject earned the reward. If subjects 
were too slow or made an incorrect response, the words 
“Too Slow!” or “Incorrect!,” respectively, appeared on the 
screen. The non-incentive trials also included feedback, 
showing “Correct” or “Incorrect” after each trial.
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Reactive session. The reactive version of Cued-TS was 
identical to the baseline version except for the addition of 
a punishment-based motivational incentive. This motiva-
tional incentive involved presenting subjects with a pun-
ishment cue, that was indicated during presentation of the 
target stimulus (green font). When subjects made errors on 
incentive trials, they received a monetary penalty for that 
trial that was subtracted from their compensation amount. 
Before the start of the reactive sessions, subjects were 
informed by the instructions that if they make an error on 
incentive trials, they would be penalised strongly, with 25 
cents of their potential bonus taken away for each error. 
Non-incentive trials were indicated by the target stimulus 
appearing in black font, while incentive (i.e., punishment) 
trials were indicated by the target stimulus appearing in 
green font.1 Only the unbiased set of stimuli were incen-
tivised, and these were applied in an item-specific manner 
such that all of the incongruent stimuli (H5, 6I, 5H, 6I; 48 
trials) were incentivised, while only 33% of the congru-
ent stimuli were associated with incentives (D4, E3, 3E, 
4D; 16 trials). The sentence “Loss of 25 cents!” appeared 
on the screen for 1,250 ms if the subject made an incor-
rect response. If subjects were correct, the word “Correct” 
would appear on the screen. The non-incentive trials also 
included feedback, showing “Correct” or “Incorrect” after 
each trial.

Cognitive control measures. Average RTs on correct tri-
als and error rates were calculated separately for congru-
ent/incongruent trials, and for both the non-incentivised 
(biased) items and the incentivised (unbiased) items, for 
each subject in each session. A key measure of cognitive 
control is the TRCE (Meiran & Kessler, 2008), which is the 
difference between incongruent and congruent trials. We 
focus primarily on the non-incentivised items since these 
can be most straightforwardly compared across proactive 
and reactive conditions, although we also examined and 
report effects on incentivised items. In addition, although 
not a primary focus of interest in the current report, we 
also report the switch cost as another index of cognitive 
control. The switch cost is calculated by subtracting task-
repeat trials from task-switch trials.

Sternberg. In the current Sternberg item-recognition task, 
participants are presented with a new, short list of words 
on each trial that served as a memory set (e.g., “WINE,” 
“SPLIT,” “GRILL,” “INTENT”). After encoding and a 
retention interval delay period, a probe item is presented, 
which requires a judgement as to whether it was part of the 
current trial’s memory set (i.e., a positive probe) or not 
(i.e., a negative probe). If the word was in the most recent 
list, a left key press (“Z”) is required. If the word was not 
in the most recent list, a right key press (“M”) is required. 
The current versions of the Sternberg were based on the 
design of Speer et al. (2003) and constructed using two 

distinct sets of memory set items: critical items, had a con-
stant memory set of five words; the other, variable-load set 
consisted of either low-load items (memory sets of 2–4 
words) or high-load items (memory sets of 6–8 words). In 
addition, the probe consisted of three trial types: (1) NP, 
(2) NN, and (3) RN.

Each session consisted of 120 total trials, broken down 
into 48 critical items and 72 variable-load items. Trials 
were separated into three 40 trial blocks, between which 
subjects were required to take a minimum of 1 min rest 
break. Prior to starting each session, subjects learned (or 
refreshed their memory) of the task through a set of 10 
practice trials. All trials consisted of the following stimu-
lus parameters: visual presentation of the memory set 
across two encoding screens each of 2,000 ms duration; in 
the first screen, were presented above a central fixation 
cross, and in the second screen, below the cross. Following 
memory set presentation, a retention interval of 4,000 ms 
was presented (during which the fixation cross remained 
on screen), followed by 1,500 ms presentation of the probe 
item, and then a 1,000-ms inter-trial interval.

Baseline session. The baseline session involved high-
load variable items and a low proportion of RN trials (20% 
of negative probes; 10% of total trials). Specifically, the 
variable-load set consisted of a mixture of high-load mem-
ory sets (12 six-item, 24 seven-item, 36 eight-item) and 
very few RN trials (4 RN, 32 NN, 36 NP). For the criti-
cal five-item set, the proportion was slightly adjusted, to 
increase the number of RN trials for analysis (8 RN, 16 
NN, 24 NP).

Proactive session. In the proactive session, the variable-
load items were instead a mixture of low-load memory sets 
(36 two-item, 24 three-item, 12 four-item). The proportion 
of RN, NN, and NP trials was identical to the baseline ses-
sion for both variable-load (4 RN, 32 NN, 36 NP) and criti-
cal item sets (8 RN, 16 NN, 24 NP).

Reactive session. In the reactive session, the variable-
load set used the identical mixture of high-load memory 
set items as the baseline session (12 6-item, 24 7-item, 36 
8-item). However, the relative proportion of RN to NN tri-
als was increased in both the variable-load (32 RN, 4 NN, 
36 NP) and critical items (16 RN, 8 NN, 24 NP).

Cognitive control measures. Average RTs on correct trials 
and error rates were calculated per trial type (i.e., NN, NP, 
RN trials), and separately for critical items (five-item lists) 
and non-critical items (collapsed across the remaining list 
lengths). The key measure of cognitive control was the 
recency effect, which is calculated as the difference score 
on negative trials (RN − NN; Jonides & Nee, 2006). We 
focused on critical item performance, both in errors and 
RT and in terms of the recency effect, since these are most 
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easily compared across proactive and reactive conditions, 
though we also report findings on non-critical (high- or 
low-load) items as well.

Data pre-processing and analysis. The data were pre-pro-
cessed in two steps: (1) removal of extreme outliers and 
(2) winsorisation of remaining outliers. In Step 1, all 128 
subjects were screened for data abnormalities such as 
extremely slow RTs or high error rates. RT plots were 
examined and cut-off decisions were made for each task 
separately. Trials with RTs slower than the cut-off thresh-
old were discarded. The threshold for Stroop was 4,000 ms; 
no RTs on correct trials surpassed the threshold. The 
threshold for AX-CPT was 2,000 ms; no RTs on correct 
trials surpassed the threshold. The threshold for Cued-TS 
was 5,000 ms and resulted in 0.3% of the task’s data dis-
carded. The threshold for Sternberg was 3,000 ms; no RTs 
on correct trials surpassed the threshold. After discarding 
trials with these RT outliers, the number of trials per condi-
tion remained sufficient for analyses.

In Step 2, a winsorisation procedure was conducted on 
RT data at the trial level (i.e., data split by phase, session, 
trial type, and subject). The winsorisation parameters for 
RTs were as follows: RTs lower than 200 ms were replaced 
by RTs of 200 ms and RTs above the mean plus 3 standard 
deviations were replaced by RTs of the mean plus 3 stand-
ard deviations. Across the four tasks, 1.9% of RT observa-
tions were adjusted by the procedure. The adjustments did 
not vary considerably across tasks, sessions, or trial types. 
For error rate, the winsorisation procedure was conducted 
at the level of trial type (data split by phase, session, and 
trial type), instead of at the subject level, which was exam-
ined in the first step of pre-processing. Following the cut-
off used by Gonthier, Macnamara, et al. (2016), error rates 
above 40% were replaced with error rates of 40%. This 
resulted in nearly 5% of error rates being adjusted for the 
AX-CPT and Sternberg tasks (i.e., 4.78%, 4.69%, respec-
tively). The Stroop and Cued-TS adjustments were much 
lower at .07% and 1.69%, respectively. Examining this 
more carefully revealed repeated subpar performance for 
some subjects (e.g., greater than 80% error rate in some 
conditions, large proportion of observations without 
responses) which inflated the winsorisation adjustment 
rates. Those subjects were excluded from the final sample. 
It should be noted that for all tasks (with the exception of 
no-go trials in the AX-CPT), trials in which no response 
was recorded were treated as incorrect trials. Finally, we 
retained 126 subjects for Stroop, 121 for AX-CPT, 128 for 
Cued-TS, and 126 for Sternberg.

After these pre-processing steps, statistical inference 
was conducted both within and across conditions using 
paired t-tests. Both classical frequentist and also Bayesian 
analyses were conducted and both sets of results are 
reported, in terms of both effect sizes (Cohen’s d ) and 
Bayes Factors (BFs). The reported t-values are always 

positive when the pattern followed the predicted pattern; 
thus, a negative t-value refers to a pattern than went oppo-
site to that predicted. We refer to an effect as having strong 
evidence in favour of the hypothesis when BF > 10, and 
strong evidence for a null effect with BF < 0.1. In cases 
where an effect yielded statistical significance via classical 
frequentist conventions (i.e., p < .05), but with BF < 10, we 
refer it as significant but lacking strong evidence. Data and 
analysis code are publicly available at https://osf.io/pqvga/.

Results

Primary and secondary predictions for each task are sum-
marised in Figures 2 to 5 and Tables 1 to 4, respectively; 
the tables also indicate which predictions were confirmed. 
For all figures, primary results are depicted in Panel (a) 
and secondary results are depicted in Panel (b). Detailed 
descriptive data are presented in Supplementary Tables 1 
to 4. Below, we present the key results and test statistics 
for each task measure, separately for each condition.

Stroop

Baseline effects. We first verified the presence of a stand-
ard Stroop interference effect in terms of increased RT on 
incongruent (IC) relative to congruent (C) trials. We exam-
ined the biased (PC-75) and PC-50 items separately. In 
both cases, highly robust effects (>100 ms) were 
observed—biased items, IC: M = 920.27, SD = 381.32, C: 
M = 768.51, SD = 372.96, t(125) = 24.49, p < .001, Cohen’s 
d = 2.18, BF10 > 100; PC-50 items, IC: M = 910.60, 
SD = 376.78, C: M = 792.41, SD = 380.73, t(125) = 17.86, 
p < .001, Cohen’s d = 2.18, BF10 > 100. In the Stroop task, 
error rates tend to be very low overall, but also typically 
show Stroop interference effects as well. This pattern held 
in the current dataset—biased items, IC: M = 0.07, 
SD = 0.08, C: M = 0.03, SD = 0.06, t(125) = 7.314, p < .001, 
Cohen’s d = 1.59, BF10 > 100; PC-50 items, IC: M = 0.05, 
SD = 0.06, C: M = 0.03, SD = 0.06, t(125) = 5.23, p < .001, 
Cohen’s d = 0.47, BF10 > 100.

Proactive condition. In the proactive condition, the list-wide 
PC manipulation was predicted to lead to a reduction in the 
Stroop RT interference effect. Critically, because of the 
list-wide nature of the manipulation, this reduction was 
predicted to affect PC-50 items as well as biased items 
(PC-25). This prediction was confirmed: both of these 
interference effects yielded strong evidence of reduction 
relative to the baseline condition—biased: baseline 
M = 151.76, SD = 69.57, proactive M = 83.74, SD = 53.43, 
t(125) = 12.10, p < .001, Cohen’s d = 1.08, BF10 > 100; 
PC-50: baseline M = 118.19, SD = 74.30, proactive 
M = 92.96, SD = 68.66, t(125) = 3.76, p < .001, Cohen’s 
d = 0.34, BF10 = 69.83 (Figure 2b, left side). Similar numer-
ical patterns were present in the error rate data, but weaker, 

https://osf.io/pqvga/


Tang et al. 13

Figure 2. Stroop RT and error indices: (a) primary effects and (b) secondary effects.

Table 1. Stroop.

Primary results

Measures Formula Predictions Confirmation

Reaction time
 Stroop effect Incongruent − congruent P < B (biased, PC-50) +*

R < B (biased) +*
R = B (PC-50) +

 Congruency cost Proactive/reactive congruent 
− baseline congruent

R < P (biased, PC-50) +

 Transfer cost PC-50 incongruent − biased 
incongruent

P < R +*

Secondary validation results

Error
 Stroop effect Incongruent − congruent P < B (biased, PC-50) +*

R < B (biased) +
R = B (PC-50) +

B: baseline; P: proactive; R: reactive; BF: Bayes Factor.
+Prediction confirmed.
*Strong evidence (BF > 10 or BF < 0.1).

in that the effects were significant, but some lacked strong 
evidence—biased: baseline M = 0.03, SD = 0.05, proactive 
M = 0.01, SD = 0.0, t(125) = 4.64, p < .001, Cohen’s 

d = 0.41, BF10 > 100; PC-50: baseline M = 0.02, SD = 0.04, 
proactive M = 0.01, SD = 0.03, t(125) = 2.07, p = .041, 
Cohen’s d = 0.18, BF10 = 1.29) (Figure 2b, right side).



14 Quarterly Journal of Experimental Psychology 00(0)

Reactive condition. In the reactive condition, the IS-PC 
manipulation was predicted to lead to a reduction in the 
Stroop RT interference effect on the biased (MI) items 
(PC-25). Conversely, because of the item-specific nature 

of the manipulation the reduction in Stroop interference 
was predicted to not transfer to PC-50 items, with no 
change from baseline. This prediction was confirmed: 
biased interference effect (M = 93.53, SD = 66.24) and 

Figure 3. AX-CPT RT and error indices: (a) primary effects and (b) secondary effects.

Table 2. AX-CPT.

Primary results

Measures Formula Predictions Confirmation

Reaction time
 BX interference effect BX − BY P < B +*

R > B +*
R > P +*

Error
 BX interference effect BX − BY P < B +*

R < B +*
 A-cue bias 0.5 × (Z[Hits on AX] + Z 

[False alarms on AY])
P > 0 +*
P > B +*
P > R +*

Secondary validation results 

Reaction time
 PBI (AY − BX)/(AY + BX) P > 0 +*

R < P +*
Error
 d’-context Z(Hits on AX) − Z(False alarms 

on BX)
P > B +*
P > R +*

 PBI (AY − BX)/(AY + BX) P > 0 +*
R < 0 +*

B: baseline; P: proactive; R: reactive; BF: Bayes Factor.
+Prediction confirmed.
*Strong evidence (BF > 10).
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PC-50 interference effect (M = 127.01, SD = 73.96). Only 
the biased items were significantly reduced relative to the 
baseline condition with strong evidence; in contrast, the 
PC-50 items showed some evidence for a null effect—
biased: t(125) = 9.00, p < .001, Cohen’s d = 0.80, 
BF10 > 100; PC-50: t(125) = –1.50, p = .136, Cohen’s 
d = 0.13, BF01 = 0.29. Again, similar numerical patterns 
were present in the error rate data—biased: M = 0.03, 

SD = 0.03, t(125) = 1.96, p = .053, Cohen’s d = 0.21, 
BF01 = 0.63; PC-50: M = 0.02, SD = 0.03, t(125) = –0.90, 
p = .370, Cohen’s d = 0.09, BF01 = 0.15.

Proactive vs. reactive. Based on prior work, we predicted that 
the Stroop interference effect (in RT) would be reduced for 
PC-50 items in proactive, due to the differential transfer 
effect. This prediction was confirmed, with strong evidence: 

Figure 4. Cued Task-Switching RT and error indices: (a) primary effects and (b) secondary effects.

Table 3. Cued Task-Switching.

Primary results

Measures Formula Predictions Confirmation

Reaction time
 Non-incentivised (biased) trials — P < B (biased, low-conflict biased) +*

R > B (biased) +*
P < R (low-conflict biased) +*

Error
 TRCE interference (non-incentivised) Incongruent − congruent R < B +

R < P +*

Secondary validation results

Reaction time
 TRCE interference (non-incentivised) Incongruent − congruent R > B +*

R > P +
Error
 Non-incentivised (biased) trials — P = B (low-conflict biased) +

R < B +*

B: baseline; P: proactive; R: reactive; BF: Bayes Factor.
+Prediction confirmed.
*Strong evidence (BF > 10 or BF < 0.1).
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PC-50, t(125) = 6.43, p < .001, Cohen’s d = 0.57, BF10 > 100. 
Conversely, we predicted no difference between conditions 
for biased items; there was some evidence in favour of the 
null effect, t(125) = –1.97, p = .051, Cohen’s d = 0.18, 
BF01 = 0.64. To more directly quantify these contrasting 
effects, we computed the “transfer cost,” which is the differ-
ence in Stroop interference across PC-50 and biased items. 
As predicted, the transfer cost was significantly greater in 
reactive (M = 33.48, SD = 47.91) than proactive, with strong 
evidence (M = 9.22, SD = 58.63), t(125) = 3.97, p < .001, 
Cohen’s d = 0.35, BF10 > 100) (Figure 2a, right side).

Another prediction from prior work was that the proac-
tive condition would reduce facilitation on congruent trials 
to a greater degree than reactive. The congruency cost was 
computed by subtracting out the baseline congruency from 

both proactive and reactive on PC-50 items (and on biased 
items as well). Although the congruency cost effects were 
numerically in the predicted direction (i.e., greater in proac-
tive), these were not close to statistically reliable—PC-50: 
proactive = –12.56, reactive = –17.03, t(125) = 0.36, p = .717, 
Cohen’s d = 0.03, BF01 = 0.11; biased: proactive = 4.07, 
reactive = –7.06, t(125) = 0.78, p = .436, Cohen’s d = 0.07, 
BF01 = 0.13 (Figure 2a, left side). Thus, the congruency cost 
prediction was not supported in this dataset. Key predicted 
effects for the Stroop are summarised in Table 1.

AX-CPT

Baseline effects. We verified the presence of standard AX-
CPT interference effects, which include higher RTs and 

Figure 5. Sternberg RT and error indices: (a) primary effects and (b) secondary effects.

Table 4. Sternberg.

Measures Formula Predictions Confirmation

Reaction time
 Critical load performance NP P < B +*

P < R +
 Recent negative interference effect RN − NN R < B +*

R < P +*
Error
 Critical load performance NP P < B +

P < R –
 Recent negative interference effect RN − NN R < B +*

R < P +*

B: baseline; P: proactive; R: reactive; BF: Bayes Factor.
+Prediction confirmed.
–Opposite of prediction.
*Strong evidence (BF > 10).
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error rates on high-conflict AY (RT: M = 548.77, 
SD = 73.45; errors: M = 0.06, SD = 0.07) and BX (RT: 
M = 553.75, SD = 148.53; errors: M = 0.19, SD = 0.18) non-
target trials, relative to low-conflict BY non-target trials 
(RT: M = 462.65, SD = 66.51; errors: M = 0.01, SD = 0.03). 
For both trial types, highly robust effects with strong evi-
dence were observed—AY, RT: t(120) = 21.25, p < .001, 
Cohen’s d = 1.93, BF10 > 100; errors: t(120) = 6.67, 
p < .001, Cohen’s d = 0.61, BF10 > 100; BX, RT: 
t(120) = 9.38, p < .001, Cohen’s d = 0.85, BF10 > 100; 
errors: t(120) = 10.99, p < .001, Cohen’s d = 1.00, 
BF10 > 100. Moreover, as predicted from the inclusion of 
no-go trials, participants showed poorer performance on 
BX than AY trials in terms of error rates, t(120) = 7.44, 
p < .001, Cohen’s d = 0.68, BF10 > 100, and were even 
numerically, though not reliably slower in RT, t(120) = 0.48, 
p = .633, Cohen’s d = 0.04, BF01 = 0.11.

Proactive condition. In the proactive condition, the 
instructed strategy manipulation was predicted to lead to 
an increased utilisation of contextual cue information, as 
indexed by a significantly positive A-cue bias (the ten-
dency to make a target response following an A-cue). This 
prediction was confirmed with strong evidence, M = 0.42, 
SD = 0.46, t(120) = 10.02, p < .001, Cohen’s d = 0.91, 
BF10 > 100. Moreover, the A-cue bias also exhibited strong 
evidence of increase relative to baseline (M = 0.03, 
SD = 0.30), t(120) = 9.06, p < .001, Cohen’s d = 0.82, 
BF10 > 100 (Figure 3a, left side). In addition, the utilisa-
tion of context was also predicted to reduce BX interfer-
ence effects in the proactive condition (errors: M = 0.11, 
SD = 0.10; RT: M = 56.45, SD = 74.55), in both errors and 
RT, relative to baseline (errors: M = 0.19, SD = 0.17; RT: 
M = 91.11, SD = 106.84) (Figure 3a, right side). This pre-
diction was also confirmed with strong evidence—error: 
t(120) = 5.07, p < .001, Cohen’s d = 0.46, BF10 > 100; RT: 
t(120) = 3.74, p < .001, Cohen’s d = 0.34, BF10 = 65.42. 
Although we now prefer the A-cue bias measure, because 
it more selectively indexes proactive control, for continu-
ity with prior literature we further examined d’-context, 
which was also predicted to be improved in the proactive 
condition (M = 3.12, SD = 0.88), relative to baseline 
(M = 2.61, SD = 0.93) (Figure 3b, left side). This prediction 
was confirmed, as the proactive condition d′-context was 
significantly greater, with strong evidence, t(120) = 6.13, 
p < .001, Cohen’s d = 0.56, BF10 > 100.

Reactive condition. In the reactive condition, the probe cue-
ing manipulation was predicted to lead to a reduction in 
BX error interference, but at a cost of increased BX RT 
interference (due to probe-triggered context retrieval). 
These predictions were also both confirmed, BX error 
interference in reactive (M = 0.14, SD = 0.14) showed 
strong evidence of reduction, relative to baseline (M = 0.19, 
SD = 0.17), t(120) = 3.27, p = .001, Cohen’s d = 0.30, 

BF10 = 15.15 (Figure 3b, right side), whereas BX RT inter-
ference in reactive (M = 130.07, SD = 77.40) was signifi-
cantly increased relative to baseline, also with strong 
evidence (M = 91.11, SD = 106.84), t(120) = 3.99, p < .001, 
Cohen’s d = 0.36, BF10 > 100 (Figure 3a, right side). 
Although we now prefer the BX RT interference effect as 
a selective index of reactive control, for continuity with 
prior literature we further examined d’-context, which was 
also predicted to be improved in the reactive condition 
(M = 2.84, SD = 0.85), relative to baseline (M = 2.61, 
SD = 0.93; Figure 3b, left side). This prediction was con-
firmed, as the reactive condition d’-context was signifi-
cantly greater than the baseline condition, but was lacking 
strong evidence, t(120) = 2.76, p = .007, Cohen’s d = 0.26, 
BF10 = 3.74.

Proactive vs. reactive. We predicted that the A-cue bias 
would be greater in proactive than reactive, whereas BX RT 
interference would be greater in reactive compared with 
proactive. Both effects were confirmed with strong evi-
dence—A-cue bias: t(120) = 7.97, p < .001, Cohen’s 
d = 0.72, BF10 > 100; BX RT interference: t(120) = 10.13, 
p < .001, Cohen’s d = 0.92, BF10 > 100 (Figure 3a). 
Although we prefer these two measures as they are doubly 
dissociable, for completeness and comparison with prior 
studies we also examined the PBI and d’-context measures. 
In the proactive condition, the PBI had strong evidence of 
being positive in both error, M = 0.18, SD = 0.53, 
t(120) = 3.68, p < .001, Cohen’s d = 0.33, BF10 = 53.79, and 
RT indices, M = 0.08, SD = 0.10, t(120) = 9.39, p < .001, 
Cohen’s d = 0.85, BF10 > 100, whereas in reactive the PBI 
had strong evidence of being negative in errors, M = –0.19, 
SD = 0.52, t(120) = 4.12, p < .001, Cohen’s d = 0.37, 
BF10 > 100. For RT, the PBI in reactive had strong evidence 
of being lower than proactive, t(120) = 8.74, p < .001, 
Cohen’s d = 0.79, BF10 > 100, consistent with predictions. 
Similarly, there was strong evidence for the d′-context 
measure being greater in proactive, relative to reactive 
(M = 2.84, SD = 0.85), t(120) = 3.73, p < .001, Cohen’s 
d = 0.34, BF10 = 63.31 (Figure 3b, left side). Key predicted 
effects for the AX-CPT are summarised in Table 2.

Cued-TS

Baseline effects. We verified the presence of standard 
Cued-TS effects, which include both the TRCE and the 
(residual) switch costs. For RT, there was strong evidence 
for both effects, in both the biased (mostly congruent) and 
unbiased items—TRCE, biased: M = 40.51, SD = 126.90, 
t(127) = 3.61, p < .001, Cohen’s d = 0.32, BF10 = 42.78; 
unbiased: M = 46.30, SD = 132.36, t(127) = 3.96, p < .001, 
Cohen’s d = 0.35, BF10 > 100; switch cost, biased: 
M = 38.63, SD = 76.68, t(127) = 5.70, p < .001, Cohen’s 
d = 0.50, BF10 > 100; unbiased: M = 39.96, SD = 115.66, 
t(127) = 3.91, p < .001, Cohen’s d = 0.35, BF10 > 100. 
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These effects also tend to be present in error rate, and there 
was strong evidence confirming this pattern in the data as 
well, for both the TRCE, biased: M = 0.06, SD = 0.11, 
t(127) = 6.33, p < .001, Cohen’s d = 0.56, BF10 > 100; 
unbiased: M = 0.06, SD = 0.10, t(127) = 6.94, p < .0001, 
Cohen’s d = 0.61, BF10 > 100, and switch cost, biased: 
M = 0.02, SD = 0.04, t(127) = 4.91, p < .001, Cohen’s 
d = 0.43, BF10 > 100; unbiased: M = 0.03, SD = 0.08, 
t(127) = 3.87, p < .001, Cohen’s d = 0.34, BF10 = 97.60.

Proactive condition. We first examined the effects of the 
reward incentive manipulation. This manipulation was pre-
dicted to speed RTs, but also increase errors, which was 
confirmed with strong evidence, when comparing incentiv-
ised trials (RT: M = 709.11, SD = 211.00; errors: M = 0.16, 
SD = 0.10) to non-incentivised trials, RT: M = 770.22, 
SD = 208.36, t(127) = 7.25, p < .001, Cohen’s d = 0.64, 
BF10 > 100; errors: M = 0.09, SD = 0.07, t(127) = 8.89, 
p < .001, Cohen’s d = 0.79, BF10 > 100. This shift in control 
strategy was predicted to affect even the non-incentive 
(biased) trials, which could be compared directly with 
baseline. Confirming this prediction, there was strong evi-
dence for faster RTs on these non-incentivised trials in the 
proactive condition (M = 770.22, SD = 208.36), relative  
to baseline (M = 988.41, SD = 254.83), t(127) = 16.66, 
p < .001, Cohen’s d = 1.47, BF10 > 100. Moreover, even 
when restricting the focus to just low-conflict C trials, there 
was still strong evidence for this effect, proactive: 
M = 746.98, SD = 197.89; baseline: M = 968.16, 
SD = 257.56, t(127) = 18.71, p < .001, Cohen’s d = 1.65, 
BF10 > 100 (Figure 4a, right side). In addition, the RT 
speeding on these trials occurred in the absence of a 
change in error rate, relative to baseline, with some evi-
dence for the null, proactive: M = 0.05, SD = 0.04; base-
line: M = 0.05, SD = 0.06, t(127) = 0.79, p = .431, Cohen’s 
d = 0.07, BF01 = 0.13 (Figure 4b, right side), suggesting 
more than just a speed–accuracy shift.

Reactive condition. We first examined the effects of the 
punishment incentive manipulation. This manipulation 
was predicted to slow RTs, but also decrease errors. The 
RT prediction was confirmed with strong evidence when 
comparing incentivised trials (RT: M = 1,202.03, 
SD = 338.29) to non-incentivised trials (RT: M = 1,094.76, 
SD = 303.19), t(127) = 9.55, p < .001, Cohen’s d = 0.84, 
BF10 > 100. However, the effect of reduced errors was not 
detected, incentivised: M = 0.04, SD = 0.05; non-incentiv-
ised: M = 0.04, SD = 0.05, t(127) = 0.83, p = .407, Cohen’s 
d = 0.07, BF01 = 0.14. This shift in control strategy was pre-
dicted to affect even non-incentivised (biased) trials, which 
could be directly compared with the baseline condition. 
Confirming this prediction, there was strong evidence for 
RTs being slower in reactive (M = 1,094.76, SD = 303.19) 
relative to baseline, M = 988.41, SD = 254.83, t(127) = 5.48, 

p < .001, Cohen’s d = 0.48, BF10 > 100, and in this com-
parison there was also strong evidence for errors being 
lower as well, reactive: M = 0.04, SD = 0.05, baseline: 
M = 0.08, SD = 0.09, t(127) = –6.50, p < .001, Cohen’s 
d = 0.55, BF10 > 100. A stronger prediction was that this 
effect might be related to TRCE interference, which was 
also predicted to be reduced for error interference in reac-
tive, but not TRCE RT interference. This prediction was 
partially confirmed, in that TRCE error interference in 
non-incentivised trials was numerically lower and close to 
statistically significant (M = 0.04, SD = 0.09), relative to 
baseline—M = 0.06, SD = 0.11, t(127) = 1.97, p = .051, 
Cohen’s d = 0.17, BF10 = 1.57 (Figure 4a, left side), but the 
effect lacked strong evidence. Conversely, TRCE RT inter-
ference in reactive (M = 80.45, SD = 166.06) was statisti-
cally greater when compared with baseline—M = 40.51, 
SD = 126.90, t(127) = 2.62, p = .010, Cohen’s d = 0.23, 
BF10 = 2.59 (Figure 4b, left side), but again this effect 
lacked strong evidence.

Proactive vs. reactive. We predicted that on non-incentivised 
trials, the TRCE error effect would be reduced in reactive 
relative to proactive. This prediction was confirmed, in 
that there was strong evidence that the TRCE error effect 
was lower in reactive (M = 0.04, SD = 0.09) compared with 
proactive—M = 0.09, SD = 0.12, t(127) = 4.56, p < .001, 
Cohen’s d = 0.40, BF10 > 100 (Figure 4a, left side). In addi-
tion, we predicted that in the proactive condition, there 
would be general response speeding relative to reactive, 
even on non-incentivised and low-conflict congruent  
trials. This effect was confirmed and also with strong  
evidence—proactive congruent RT: M = 746.98, SD =  
197.89, reactive congruent RT: M = 1,054.53, SD = 308.78, 
t(127) = –16.93, p < .001, Cohen’s d = 1.50, BF10 > 100 
(Figure 4a, right side). Key predicted effects for the 
Cued-TS are summarised in Table 3.

Sternberg

Baseline effects. We first verified the presence of standard 
WM load effects, by comparing the critical to higher load 
items. We expected higher error rates and longer RTs on 
the high-load items; there was strong evidence for these 
effects—errors: critical = 0.13 (0.09), high load = 0.21 
(0.09), t(127) = 11.31, p < .001, Cohen’s d = 1.00, 
BF10 > 100; RT: critical = 897.02 (160.91), high 
load = 943.34 (169.91), t(125) = 6.36, p < .001, Cohen’s 
d = 0.57, BF10 > 100. We also tested for the RN effect 
(RN − NN), which had strong evidence for both errors, 
M = 0.16, SD = 0.15, t(127) = 12.11, p < .001, Cohen’s 
d = 1.07, BF10 > 100, and RT, M = 128.05, SD = 110.77, 
t(127) = 13.08 p < .001, Cohen’s d = 1.16, BF10 > 100. 
Similarly, strong evidence was similarly obtained when 
examining non-critical (high-load) items for both errors, 
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M = 0.32, SD = 0.18, t(127) = 20.39, p < .001, Cohen’s 
d = 1.80, BF10 > 100, and RT, M = 174.25, SD = 190.14, 
t(127) = 10.29, p < .001, Cohen’s d = 0.92, BF10 > 100.

Proactive condition. We first tested that the load manipula-
tion was successful, comparing critical to low-load items, 
predicting lower error rates and faster RTs with lower load. 
These effects were confirmed with strong evidence—
errors: critical = 0.15 (0.11), low load = 0.05 (0.08), 
t(127) = 11.35, p < .001, Cohen’s d = 1.00, BF10 > 100; RT: 
critical = 912.65 (173.84), low load = 828.87 (163.50), 
t(126) = 11.28, p < .001, Cohen’s d = 1.00, BF10 > 100. The 
key prediction involved the critical items, which could be 
directly compared with baseline, which was predicted to 
show better performance on NP trials. This prediction was 
only partially confirmed, in that the effects were statisti-
cally significant for RT but lacking strong evidence, proac-
tive: M = 858.48, SD = 157.29, baseline: M = 890.12, 
SD = 166.92, t(127) = 2.60, p = .01, Cohen’s d = 0.23, 
BF10 = 2.47 (Figure 5a, right side); the effects were in the 
correct numerical direction, but not significant for errors, 
proactive: M = 0.12, SD = 0.11, baseline: M = 0.14, 
SD = 0.13, t(127) = 1.42, p = .159, Cohen’s d = 0.13, 
BF10 = 3.82 (Figure 5b, right side).

Reactive condition. We first tested that the load manipula-
tion was successful, as in the baseline condition, compar-
ing critical to high-load items, predicting higher error rates 
and slower RTs with higher load. These effects were con-
firmed with strong evidence, errors: critical = 0.09 (0.08), 
high load = 0.18 (0.09), t(127) = 14.52, p < .001, Cohen’s 
d = 1.28, BF10 > 100; RT: critical = 890.79 (143.43), high 
load = 948.47 (149.41), t(127) = 11.62, p < .001, Cohen’s 
d = 1.03, BF10 > 100. The key prediction was on critical 
items, which could be directly compared with baseline; we 
predicted a reduced RN effect in reactive. This prediction 
was confirmed. For errors, the RN interference effect was 
reliably reduced in the reactive condition, with strong evi-
dence (M = 0.10, SD = 0.12) relative to baseline, M = 0.16, 
SD = 0.15, t(127) = 4.37, p < .001, Cohen’s d = 0.39, 
BF10 > 100 (Figure 5b, left side). For RT, the effect was 
statistically significant, but lacked strong evidence, reac-
tive: M = 98.10, SD = 96.40; baseline: M = 128.05, 
SD = 110.77, t(127) = 2.48, p = .014, Cohen’s d = 0.22, 
BF10 = 1.86 (Figure 5a, left side).

Proactive vs. reactive. We predicted that for critical items, 
performance would be better in proactive on NP trials, but 
that the RN interference effect would be reduced in the reac-
tive condition. This prediction was only partially confirmed. 
Although RTs were numerically faster on NP trials in proac-
tive, relative to reactive, this effect was not statistically sig-
nificant, proactive: M = 858.48, SD = 157.29, reactive: 
M = 871.40, SD = 149.05, t(127) = 1.26, p = .210, Cohen’s 
d = 0.11, BF10 = 4.70 (Figure 5a, right side). Furthermore, 

contrary to our prediction, NP error rates were actually sig-
nificantly higher in proactive relative to reactive, though 
this lacked strong evidence; proactive: M = 0.12, SD = 0.11, 
reactive: M = 0.10, SD = 0.10, t(127) = –2.40, p = .018, 
Cohen’s d = 0.21, BF10 = 1.55 (Figure 5b, right side). Con-
versely, the RN effect provided strong evidence in support 
of the prediction, both in terms of errors—proactive: 
M = 0.22, SD = 0.20, reactive: M = 0.10, SD = 0.12, 
t(127) = 6.72, p < .001, Cohen’s d = 0.59, BF10 > 100—and 
RT, proactive: M = 194.77, SD = 148.99, reactive: M = 98.17, 
SD = 96.78, t(126) = 7.24, p < .001, Cohen’s d = 0.64, 
BF10 > 100 (Figure 5a and b, left side). Key predicted effects 
for the Sternberg are summarised in Table 4.

Discussion

The primary goal of this report was to comprehensively 
describe the newly developed DMCC task battery and to 
rigorously evaluate the degree to which experimental 
manipulations produce group-level shifts in proactive con-
trol and reactive control, as predicted by the Dual 
Mechanisms framework. In each of the four tasks, we 
compared task performance and primary outcome indices 
among the three conditions (baseline, proactive, reactive) 
to evaluate both convergent (cross-task) and divergent 
(discriminant) validity of the DMCC task battery in cap-
turing variations in the two cognitive control modes.

In the Stroop task, the list-wide and IS-PC manipula-
tions were generally successful in producing the predicted 
shifts towards proactive control and reactive control. In 
particular, three of the five key predictions were confirmed 
with strong evidence, except for the Stroop effect in reac-
tive relative to baseline for the PC-50 items (reac-
tive = baseline) and congruency cost (proactive < reactive), 
although both of these effects were in the correct numeri-
cal direction. For AX-CPT, findings indicated that the con-
text strategy manipulation and the probe cueing 
manipulation were successful in dissociating the two 
modes of control. All eight of the key predictions were 
confirmed with strong evidence. Similarly, many addi-
tional measures of historical interest (e.g., d′-context, PBI) 
also exhibited consistent patterns. For the Cued-TS, the 
reward and punishment incentive manipulations success-
fully produced differential effects on RT and error rates, 
supporting the dissociable nature of proactive control and 
reactive control. Specifically, four of the five key predic-
tions were confirmed with strong evidence; for the TRCE 
interference effect on error rate, the difference between 
reactive and baseline conditions was in the predicted direc-
tion but was not statistically significant. Finally, for the 
Sternberg WM task, the manipulations of WM load and 
RN trials did affect task performance in differential ways. 
In particular, five of the eight key predictions were con-
firmed with strong evidence. However, the performance of 
NP trials was the one condition across the four DMCC 
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tasks, in which our predictions were clearly disconfirmed. 
Specifically, the RT on NP trials in the proactive condition 
was not significantly faster than the reactive condition, and 
the NP trial error rate was in fact numerically higher in 
proactive compared with the reactive condition.

The key results from the Sternberg task, namely, less 
reliable effects and, in some cases, contrary patterns, may 
suggest a potential need for further task development and 
optimisation. Importantly, to our knowledge this is the first 
time that the proactive and reactive Sternberg task variants 
have been directly compared. Nevertheless, both the RN 
interference and the WM load effects were reliably dem-
onstrated in each condition, as longer RT and higher error 
rate were detected in high WM load trials relative to low-
load trials, and in RN trials relative to NN trials. These 
results suggested that both experimental manipulations 
were valid in terms of producing the basic effects.

Thus, when considered together, our evaluation of the 
DMCC task battery suggests that it exhibits substantial 
convergent and divergent validity. In terms of convergent 
validity, as just described, the experimental manipulations 
were generally effective in producing common experimen-
tal patterns in all four tasks, suggesting robust cross-task 
sensitivity to cognitive control demands (summarised in 
Tables 1 to 4). In terms of divergent validity, there were 
clear patterns of double dissociation, in that the behav-
ioural markers of proactive and reactive control could 
effectively be distinguished in all four tasks, with one set 
of measures showing the predicted proactive > reactive 
pattern, at least numerically (Stroop congruency cost, 
AX-CPT A-cue bias, Cued-TS TRCE error interference, 
Sternberg RN RT effect; see Figures 2 to 5 Panel (a), left 
side), and another set of measures showing the reverse pre-
dicted reactive > proactive pattern, again at least numeri-
cally (Stroop transfer cost, AX-CPT BX RT interference, 
Cued-TS non-incentivised C RT, Sternberg NP RT; see 
Figures 2 to 5 Panel (a), right side).

Notably, the online format of data collection proved to 
be a strength but may have also resulted in some limitations 
for this study. From a practical standpoint, the nature of this 
multi-session and multi-task study made frequent labora-
tory visits less optimal and more time-consuming for data 
collection of a large sample size. As such, the utilisation of 
an online format helped to lower the barrier for participa-
tion, faciltating the large-scale data collection effort. In par-
ticular, both researcher and participant burden were much 
reduced, since administration demands were largely auto-
mated and therefore less time-consuming. For participants, 
completing each session at their own convenience and from 
the comfort of their own home made study completion a 
much more attractive proposition. Nevertheless, by allow-
ing participants to take the tasks in a non-laboratory setting 
that precluded monitoring by the researchers, it is quite 
possible that potential distractions could have occurred 
during participant completion of study sessions. This is a 
well-known problem with online studies (Skitka & Sargis, 

2005), and some results have suggested possible impacts 
on task performance (Bauer et al., 2012; Skitka & Sargis, 
2005). However, in prior online studies in related domains, 
many key effects have been well replicated and indicate 
comparable patterns to those observed in laboratory set-
tings (e.g., Crump et al., 2013; Germine et al., 2012; Hicks 
et al., 2016). Similarly, in the current study, we were able to 
reproduce some of the same effects, for example, Stroop 
(Gonthier, Braver, et al., 2016), previously observed in 
laboratory settings, which provides some reassurance 
regarding the feasibility and validity of administering the 
task battery in an online format.

A key advantage of the online format of the DMCC task 
battery is that it can enable rapid future large-scale replica-
tion of the present findings, as well as additional investiga-
tion of cognitive control modes in different labs and in 
various populations. Indeed, in our opinion, one of the 
most potentially promising applications of the task battery 
is to test for potential changes in proactive and reactive 
control across different age groups (e.g., adolescents, older 
adults), or in various clinical populations (e.g., depression, 
attention deficit hyperactivity disorder, anxiety disorder). 
In fact, a novel aspect of this task battery is that it can pro-
vide valid and reliable proactive and reactive control 
assessments and measures across four different task 
domains, enabling a test for consistency of cognitive con-
trol profiles in different groups. We believe this is an 
important use of the task battery that will be of broad inter-
est to the wider research community.

Although the goal of this report was to describe and 
evaluate the validity of the DMCC task battery in terms of 
group effects, another important area of focus relates to the 
utility of the battery for individual differences analyses. A 
potential fruitful research direction is to examine individ-
ual differences in proactive control and reactive control 
modes, exploring putative state and trait factors that may 
influence cognitive control biases and task performance. 
In a companion paper, we provide extensive analyses of 
the psychometric characteristics of the DMCC task bat-
tery, in particular, focusing on test–retest reliability 
(Snijder et al., 2022). Indeed, in that paper, we were able to 
detect good to excellent reliability of all tasks and condi-
tions within the battery, using newer hierarchical Bayesian 
modelling, which recent work has suggested provides a 
more statistically appropriate means of estimating reliabil-
ity and individual differences in cognitive control tasks 
(Haines et al., 2020; Rouder & Haaf, 2019). Furthermore, 
in the current study, we also collected an additional set of 
individual difference measures—including both tasks of 
cognitive ability and self-report questionnaires indexing 
personality traits and psychological well-being—to enable 
analyses testing for linkages between these measures and 
the DMCC task battery. For instance, we provide a first 
case study illustration of the utility of such analyses in 
another companion paper, demonstrating the selective and 
specific relationship between the proactive condition of 
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the AX-CPT and individual differences in WM capacity 
(Lin et al., 2022). We plan to make the full DMCC dataset 
publicly available to enable further analyses of this type by 
interested researchers.

Another important use of the task battery is to elucidate 
the neural mechanisms associated with proactive and reac-
tive control. Indeed, in a large neuroimaging study, we have 
been utilising an almost identical version of the DMCC bat-
tery, with all the same tasks and conditions included and 
just slightly adapted for the neuroimaging task environ-
ment (Braver et al., 2021). Although this study is still ongo-
ing, we have validated that the battery can be used to 
identify consistent neural activity patterns, as well as pro-
active and reactive effects, across the four DMCC task 
domains within the fronto-parietal and cingulo-opercular 
brain networks that are thought to be the key substrates of 
cognitive control. Similarly, we have found that the DMCC 
battery provides a useful task context from which to 
explore: genetic similarity in cognitive control neural activ-
ity patterns among monozygotic twins (Tang et al., 2021); 
dissociability of neural control representations (Freund et 
al., 2021); and whole-brain neural modelling of cognitive 
control (Singh et al., 2022). We have already begun to pub-
licly release portions of the DMCC neuroimaging dataset 
(Etzel et al., 2022), so that others can explore brain–behav-
iour relationships, potentially making use of the proactive 
and reactive control metrics that we have validated here.

It is worth noting that our interest in optimising the 
study design for future investigations of individual differ-
ence led to the use of a fixed condition order across partici-
pants. For detection of individual differences, it is 
beneficial to have every participant perform the tasks in 
the same order, so that order effects do not serve as a 
between-individual confound variable. However, for stud-
ies of group and condition differences, as in the current 
article, counterbalancing of condition order is often a key 
feature, to enable examination and control of systematic 
order effects. For example, it is possible that some of the 
predicted patterns in proactive versus reactive compari-
sons that we did not observe in the current study (e.g., 
Stroop congruency cost, Sternberg NP effects) may have 
been affected by the order in which conditions were per-
formed (i.e., all participants performed the proactive con-
dition after reactive). Conversely, it is also possible that 
some of the observed effects with strong evidence may 
have been weaker, if aggregating data from other condition 
orders. Thus, a useful extension of the present study would 
be to run additional waves of data collection, with partici-
pants performing the battery with a different condition 
order to both replicate the current findings and also to test 
the impact of a different condition order (e.g., proactive 
before reactive) on the pattern of data. In this case, the 
online feature of the battery lowers the barrier for future 
waves of data collection in which to examine the effect of 
these types of design changes.

A central tenet of the DMCC framework is the domain-
generality of proactive and reactive control modes. The 
current findings provide support for domain-generality in 
that consistent shifts in control mode could be induced in 
each of the four tasks. Nevertheless, stronger evidence for 
domain-generality will require in-depth analyses of rela-
tionships among the tasks and indices of each control 
mode, potentially through multi-level, Bayesian, or latent-
variable modelling. Future investigations concerning the 
DMCC task battery will need to more systematically eval-
uate this domain-general hypothesis regarding cognitive 
control modes. As described above, we have made the 
DMCC task battery data publicly available (https://osf.io/
pqvga/), to encourage interested investigators to conduct 
further explorations. Similarly, to facilitate future develop-
ment of the battery, all task scripts and additional informa-
tion about the task battery are available at the DMCC 
project website (https://sites.wustl.edu/dualmechanisms/). 
It is our hope that the richness of the DMCC battery and 
associated dataset will open new avenues of research and 
assist other investigators in addressing key questions 
regarding the mechanisms of cognitive control.
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Note

1. The astute reader might notice that the use of green font cue 
to signal punishment incentive trials might be misaligned 
with the typical cultural/symbolic association of punish-
ment with red font. Indeed, it was our original intention to 
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program the task this way. The font assignment was in fact 
a programming error that was only detected after data col-
lection had been completed. Nonetheless, we expect that 
any potential effects of font colour were quite minor, as 
we observed the expected reactive control effects in Cued 
Task-Switching.

References

Barch, D. M., & Ceaser, A. (2012). Cognition in schizophre-
nia: Core psychological and neural mechanisms. Trends in 
Cognitive Sciences, 16(1), 27–34. https://doi.org/10.1016/j.
tics.2011.11.015

Barch, D. M., Yodkovik, N., Sypher-Locke, H., & Hanewinkel, M. 
(2008). Intrinsic motivation in schizophrenia: Relationships 
to cognitive function, depression, anxiety, and personality. 
Journal of Abnormal Psychology, 117(4), 776–787. https://
doi.org/10.1037/a0013944

Bauer, R. M., Iverson, G. L., Cernich, A. N., Binder, L. M., 
Ruff, R. M., & Naugle, R. I. (2012). Computerized neu-
ropsychological assessment devices: Joint position paper 
of the American Academy of Clinical Neuropsychology 
and the National Academy of Neuropsychology. Archives 
of Clinical Neuropsychology, 27(3), 362–373. https://doi.
org/10.1093/arclin/acs027

Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J. C., Weissman, 
D. H., Notebaert, W., & Egner, T. (2019). Measuring adap-
tive control in conflict tasks. Trends in Cognitive Sciences, 
23(9), 769–783. https://doi.org/10.1016/j.tics.2019.07.002

Braver, T. S. (2012). The variable nature of cognitive control: A 
dual mechanisms framework. Trends in Cognitive Sciences, 
16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010

Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the 
many varieties of working memory variation: Dual mecha-
nisms of cognitive control. In C. Jarrold (Ed.), Variation in 
working memory (pp. 76–106). Oxford University Press.

Braver, T. S., Kizhner, A., Tang, R., Freund, M. C., & Etzel, J. 
A. (2021). The dual mechanisms of cognitive control pro-
ject. Journal of Cognitive Neuroscience, 33(9), 1990–2015.
https://doi.org/10.1162/jocn_a_01768

Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). 
Flexible neural mechanisms of cognitive control within 
human prefrontal cortex. Proceedings of the National 
Academy of Sciences, 106(18), 7351–7356. https://doi.
org/10.1073/pnas.0808187106

Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural 
mechanisms of transient and sustained cognitive control 
during task switching. Neuron, 39(4), 713–726. https://doi.
org/10.1016/s0896-6273(03)00466-5

Braver, T. S., Satpute, A. B., Rush, B. K., Racine, C. A., & 
Barch, D. M. (2005). Context processing and context main-
tenance in healthy aging and early stage dementia of the 
Alzheimer’s type. Psychology and Aging, 20(1), 33–46. 
https://doi.org/10.1037/0882-7974.20.1.33

Bugg, J., & Crump, M. (2012). In support of a distinction 
between voluntary and stimulus-driven control: A review 
of the literature on proportion congruent effects. Frontiers 
in Psychology, 3, Article 367. https://doi.org/10.3389/
fpsyg.2012.00367

Bugg, J. M. (2014a). Conflict-triggered top-down control: Default 
mode, last resort, or no such thing? Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 40(2),  
567–587. https://doi.org/10.1037/a0035032

Bugg, J. M. (2014b). Evidence for the sparing of reactive cogni-
tive control with age. Psychology and Aging, 29(1), 115–
127. https://doi.org/10.1037/a0035270

Bugg, J. M., & Braver, T. S. (2016). Proactive control of irrel-
evant task rules during cued task switching. Psychological 
Research, 80(5), 860–876. https://doi.org/10.1007/s00426-
015-0686-5

Bugg, J. M., & Chanani, S. (2011). List-wide control is not 
entirely elusive: Evidence from picture–word Stroop. 
Psychonomic Bulletin & Review, 18(5), 930–936. https://
doi.org/10.3758/s13423-011-0112-y

Bugg, J. M., & Dey, A. (2018). When stimulus-driven control 
settings compete: On the dominance of categories as cues 
for control. Journal of Experimental Psychology: Human 
Perception and Performance, 44(12), 1905–1932. https://
doi.org/10.1037/xhp0000580

Bugg, J. M., & Hutchison, K. A. (2013). Converging evidence for 
control of color–word Stroop interference at the item level. 
Journal of Experimental Psychology: Human Perception 
and Performance, 39(2), 433–449. https://doi.org/10.1037/
a0029145

Bugg, J. M., Jacoby, L. L., & Chanani, S. (2011). Why it is too 
early to lose control in accounts of item-specific proportion 
congruency effects. Journal of Experimental Psychology: 
Human Perception and Performance, 37(3), 844–859. 
https://doi.org/10.1037/a0019957

Burgess, G. C., & Braver, T. S. (2010). Neural mechanisms of inter-
ference control in working memory: Effects of interference 
expectancy and fluid intelligence. PLOS ONE, 5(9), Article 
e12861. https://doi.org/10.1371/journal.pone.0012861

Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). 
Pupillometric and behavioral markers of a developmen-
tal shift in the temporal dynamics of cognitive control. 
Proceedings of the National Academy of Sciences, 106(14), 
5529–5533. https://doi.org/10.1073/pnas.0810002106

Chun, C. A., Ciceron, L., & Kwapil, T. R. (2018). A meta-analy-
sis of context integration deficits across the schizotypy spec-
trum using AX-CPT and DPX tasks. Journal of Abnormal 
Psychology, 127(8), 789–806. https://doi.org/10.1037/
abn0000383

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). 
Evaluating Amazon’s Mechanical Turk as a Tool for 
Experimental Behavioral Research. PLOS ONE, 8(3), Article 
e57410. https://doi.org/10.1371/journal.pone.0057410

De Pisapia, N., & Braver, T. S. (2006). A model of dual control mech-
anisms through anterior cingulate and prefrontal cortex interac-
tions. Neurocomputing: An International Journal, 69(10–12), 
1322–1326. https://doi.org/10.1016/j.neucom.2005.12.100

Dey, A., & Bugg, J. M. (2021). The timescale of control: A meta-
control property that generalizes across tasks but varies 
between types of control. Cognitive, Affective, & Behavioral 
Neuroscience, 21(3), 472–489. https://doi.org/10.3758/
s13415-020-00853-x

Etzel, J. A., Brough, R. E., Freund, M. C., Kizhner, A., Lin, Y., 
Singh, M. F., Tang, R., Tay, A., Wang, A., & Braver, T. S. 
(2022). The Dual Mechanisms of Cognitive Control data-
set, a theoretically-guided within-subject task fMRI battery. 
Scientific Data, 9(1), Article 114. https://doi.org/10.1038/
s41597-022-01226-4

https://doi.org/10.1016/j.tics.2011.11.015
https://doi.org/10.1016/j.tics.2011.11.015
https://doi.org/10.1037/a0013944
https://doi.org/10.1037/a0013944
https://doi.org/10.1093/arclin/acs027
https://doi.org/10.1093/arclin/acs027
https://doi.org/10.1016/j.tics.2019.07.002
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1162/jocn_a_01768
https://doi.org/10.1073/pnas.0808187106
https://doi.org/10.1073/pnas.0808187106
https://doi.org/10.1016/s0896-6273(03)00466-5
https://doi.org/10.1016/s0896-6273(03)00466-5
https://doi.org/10.1037/0882-7974.20.1.33
https://doi.org/10.3389/fpsyg.2012.00367
https://doi.org/10.3389/fpsyg.2012.00367
https://doi.org/10.1037/a0035032
https://doi.org/10.1037/a0035270
https://doi.org/10.1007/s00426-015-0686-5
https://doi.org/10.1007/s00426-015-0686-5
https://doi.org/10.3758/s13423-011-0112-y
https://doi.org/10.3758/s13423-011-0112-y
https://doi.org/10.1037/xhp0000580
https://doi.org/10.1037/xhp0000580
https://doi.org/10.1037/a0029145
https://doi.org/10.1037/a0029145
https://doi.org/10.1037/a0019957
https://doi.org/10.1371/journal.pone.0012861
https://doi.org/10.1073/pnas.0810002106
https://doi.org/10.1037/abn0000383
https://doi.org/10.1037/abn0000383
https://doi.org/10.1371/journal.pone.0057410
https://doi.org/10.1016/j.neucom.2005.12.100
https://doi.org/10.3758/s13415-020-00853-x
https://doi.org/10.3758/s13415-020-00853-x
https://doi.org/10.1038/s41597-022-01226-4
https://doi.org/10.1038/s41597-022-01226-4


Tang et al. 23

Freund, M. C., Bugg, J. M., & Braver, T. S. (2021). A represen-
tational similarity analysis of cognitive control during color-
word Stroop. Journal of Neuroscience, 41(35), 7388–7402. 
https://doi.org/10.1523/JNEUROSCI.2956-20.2021

Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., 
Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as good as 
the lab? Comparable performance from Web and lab in cogni-
tive/perceptual experiments. Psychonomic Bulletin & Review, 
19(5), 847–857. https://doi.org/10.3758/s13423-012-0296-9

Gonthier, C., Braver, T. S., & Bugg, J. M. (2016). Dissociating 
proactive and reactive control in the Stroop task. Memory & 
Cognition, 44(5), 778–788. https://doi.org/10.3758/s13421-
016-0591-1

Gonthier, C., Macnamara, B. N., Chow, M., Conway, A. R., & 
Braver, T. S. (2016). Inducing proactive control shifts in the 
AX-CPT. Frontiers in Psychology, 7, Article 1822. https://
doi.org/10.3389/fpsyg.2016.01822

Haines, N., Kvam, P. D., Irving, L. H., Smith, C., Beauchaine, T. 
P., Pitt, M. A., Ahn, W., & Turner, B. (2020). Theoretically 
informed generative models can advance the psychological 
and brain sciences: Lessons from the reliability paradox. 
PsyArXiv. https://doi.org/10.31234/osf.io/xr7y3

Hautus, M. J. (1995). Corrections for extreme proportions and 
their biasing effects on estimated values of d.’ Behavior 
Research Methods, Instruments & Computers, 27(1),  
46–51. https://doi.org/10.3758/BF03203619

Hicks, K. L., Foster, J. L., & Engle, R. W. (2016). Measuring 
working memory capacity on the web with the online work-
ing memory lab (the OWL). Journal of Applied Research 
in Memory and Cognition, 5(4), 478–489. https://doi.
org/10.1016/j.jarmac.2016.07.010

Hutchison, K. A. (2011). The interactive effects of listwide con-
trol, item-based control, and working memory capacity on 
Stroop performance. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 37(4), 851–860. https://
doi.org/10.1037/a0023437

Jacoby, L. L., Lindsay, D. S., & Hessels, S. (2003). Item-specific 
control of automatic processes: Stroop process dissocia-
tions. Psychonomic Bulletin & Review, 10(3), 638–644. 
https://doi.org/10.3758/bf03196526

Janowich, J. R., & Cavanagh, J. F. (2018). Delay knowledge and 
trial set count modulate use of proactive versus reactive con-
trol: A meta-analytic review. Psychonomic Bulletin & Review, 
25(4), 1249–1268. https://doi.org/10.3758/s13423-018-1502-1

Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proac-
tive interference in working memory. Neuroscience, 139(1),  
181–193. https://doi.org/10.1016/j.neuroscience.2005.06.042

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cor-
tex in working-memory capacity, executive attention, and 
general fluid intelligence: An individual-differences per-
spective. Psychonomic Bulletin & Review, 9(4), 637–671. 
https://doi.org/10.3758/bf03196323

Lin, Y., Brough, R. E., Tay, A., Jackson, J. J., & Braver, T. S. 
(2022). Working memory capacity preferentially enhances 
implementation of proactive control. https://doi.org/https://
doi.org/10.31234/osf.io/wvpbn

Lindsay, D. S., & Jacoby, L. L. (1994). Stroop process disso-
ciations: The relationship between facilitation and inter-
ference. Journal of Experimental Psychology: Human 
Perception and Performance, 20(2), 219–234. https://doi.
org/10.1037//0096-1523.20.2.219

Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be mis-
led: Facilitative effects of increasing the frequency of con-
flicting stimuli in a Stroop-like task. Memory & Cognition, 
7(3), 166–174. https://doi.org/10.3758/BF03197535

Los, S. A. (1996). On the origin of mixing costs: Exploring 
information processing in pure and mixed blocks of tri-
als. Acta Psychologica, 94(2), 145–188. https://doi.
org/10.1016/0001-6918(95)00050-X

Meiran, N. (1996). Reconfiguration of processing mode prior 
to task performance. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 22(6), 1423–1442. 
https://doi.org/10.1037/0278-7393.22.6.1423

Meiran, N., & Kessler, Y. (2008). The task rule congru-
ency effect in task switching reflects activated long-term 
memory. Journal of Experimental Psychology: Human 
Perception and Performance, 34(1), 137–157. https://doi.
org/10.1037/0096-1523.34.1.137

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of pre-
frontal cortex function. Annual Review of Neuroscience, 24, 
167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

Minear, M., & Shah, P. (2008). Training and transfer effects in 
task switching. Memory & Cognition, 36(8), 1470–1483. 
https://doi.org/10.3758/MC.336.8.1470

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. 
H., Howerter, A., & Wager, T. D. (2000). The unity and 
diversity of executive functions and their contributions 
to complex “Frontal lobe” tasks: A latent variable analy-
sis. Cognitive Psychology, 41(1), 49–100. https://doi.
org/10.1006/cogp.1999.0734

Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). 
Cognitive control, goal maintenance, and prefrontal func-
tion in healthy aging. Cerebral Cortex, 18(5), 1010–1028. 
https://doi.org/10.1093/cercor/bhm135

Richmond, L. L., Redick, T. S., & Braver, T. S. (2015). 
Remembering to prepare: The benefits (and costs) of 
high working memory capacity. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 41(6), 
1764–1777. https://doi.org/10.1037/xlm0000122

Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch 
between simple cognitive tasks. Journal of Experimental 
Psychology: General, 124(2), 207–231. https://doi.
org/10.1037/0096-3445.124.2.207

Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individ-
ual differences in experimental tasks. Psychonomic Bulletin 
& Review, 26(2), 452–467. https://doi.org/10.3758/s13423-
018-1558-y

Servan-Schreiber, D., Cohen, J. D., & Steingard, S. (1996). 
Schizophrenic deficits in the processing of context. 
A test of a theoretical model. Archives of General 
Psychiatry, 53(12), 1105–1112. https://doi.org/10.1001/
archpsyc.1996.01830120037008

Shiffrin, R. M., & Schneider, W. (1977). Controlled and auto-
matic human information processing: II. Perceptual learn-
ing, automatic attending and a general theory. Psychological 
Review, 84(2), 127–190. https://doi.org/10.1037/0033-
295X.84.2.127

Singh, M. F., Wang, A., Cole, M., Ching, S., & Braver, T. S. 
(2022). Enhancing task fMRI preprocessing via individu-
alized model-based filtering of intrinsic activity dynamics. 
NeuroImage, 247, Article 118836. https://doi.org/10.1016/j.
neuroimage.2021.118836

https://doi.org/10.1523/JNEUROSCI.2956-20.2021
https://doi.org/10.3758/s13423-012-0296-9
https://doi.org/10.3758/s13421-016-0591-1
https://doi.org/10.3758/s13421-016-0591-1
https://doi.org/10.3389/fpsyg.2016.01822
https://doi.org/10.3389/fpsyg.2016.01822
https://doi.org/10.31234/osf.io/xr7y3
https://doi.org/10.3758/BF03203619
https://doi.org/10.1016/j.jarmac.2016.07.010
https://doi.org/10.1016/j.jarmac.2016.07.010
https://doi.org/10.1037/a0023437
https://doi.org/10.1037/a0023437
https://doi.org/10.3758/bf03196526
https://doi.org/10.3758/s13423-018-1502-1
https://doi.org/10.1016/j.neuroscience.2005.06.042
https://doi.org/10.3758/bf03196323
https://doi.org/https://doi.org/10.31234/osf.io/wvpbn
https://doi.org/https://doi.org/10.31234/osf.io/wvpbn
https://doi.org/10.1037//0096-1523.20.2.219
https://doi.org/10.1037//0096-1523.20.2.219
https://doi.org/10.3758/BF03197535
https://doi.org/10.1016/0001-6918(95)00050-X
https://doi.org/10.1016/0001-6918(95)00050-X
https://doi.org/10.1037/0278-7393.22.6.1423
https://doi.org/10.1037/0096-1523.34.1.137
https://doi.org/10.1037/0096-1523.34.1.137
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.3758/MC.336.8.1470
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1093/cercor/bhm135
https://doi.org/10.1037/xlm0000122
https://doi.org/10.1037/0096-3445.124.2.207
https://doi.org/10.1037/0096-3445.124.2.207
https://doi.org/10.3758/s13423-018-1558-y
https://doi.org/10.3758/s13423-018-1558-y
https://doi.org/10.1001/archpsyc.1996.01830120037008
https://doi.org/10.1001/archpsyc.1996.01830120037008
https://doi.org/10.1037/0033-295X.84.2.127
https://doi.org/10.1037/0033-295X.84.2.127
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836


24 Quarterly Journal of Experimental Psychology 00(0)

Skitka, L. J., & Sargis, E. G. (2005). The Internet as psycho-
logical laboratory. Annual Review of Psychology, 57(1),  
529–555. https://doi.org/10.1146/annurev.psych.57.102904 
.190048

Snijder, J., Tang, R., Bugg, J., Conway, A. R. A., & Braver, T. 
S. (2022). On the psychometric evaluation of cognitive con-
trol tasks: An investigation with the Dual Mechanisms of 
Cognitive Control (DMCC) Battery. PsyArXiv. https://doi.
org/10.31234/osf.io/z7ury

Speer, N. K., Jacoby, L. L., & Braver, T. S. (2003). Strategy-
dependent changes in memory: Effects on behavior and brain 
activity. Cognitive, Affective, & Behavioral Neuroscience, 
3(3), 155–167. https://doi.org/10.3758/cabn.3.3.155

Spinelli, G., Perry, J. R., & Lupker, S. J. (2019). Adaptation to 
conflict frequency without contingency and temporal learn-
ing: Evidence from the picture–word interference task. 
Journal of Experimental Psychology: Human Perception 
and Performance, 45(8), 995–1014. https://doi.org/10.1037/
xhp0000656

Sternberg, S. (1966). High-speed scanning in human memory. 
Science, 153(3736), 652–654. https://doi.org/10.1126/sci-
ence.153.3736.652

Tang, R., Etzel, J. A., Kizhner, A., & Braver, T. S. (2021). 
Frontoparietal pattern similarity analyses of cognitive 
control in monozygotic twins. NeuroImage, 241, Article 
118415. https://doi.org/10.1016/j.neuroimage.2021.118415

https://doi.org/10.1146/annurev.psych.57.102904.190048
https://doi.org/10.1146/annurev.psych.57.102904.190048
https://doi.org/10.31234/osf.io/z7ury
https://doi.org/10.31234/osf.io/z7ury
https://doi.org/10.3758/cabn.3.3.155
https://doi.org/10.1037/xhp0000656
https://doi.org/10.1037/xhp0000656
https://doi.org/10.1126/science.153.3736.652
https://doi.org/10.1126/science.153.3736.652
https://doi.org/10.1016/j.neuroimage.2021.118415

