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Existing approaches in the literature on cognitive control in conflict tasks almost exclusively target the
outcome of control (by comparing mean congruency effects) and not the processes that shape control.
These approaches are limited in addressing a current theoretical issue—what contribution does learning
make to adjustments in cognitive control? In the present study, we evaluated an alternative approach by
reanalyzing existing data sets using generalized linear mixed models that enabled us to examine trial-
level changes in control within abbreviated lists that varied in theoretically significant ways (e.g., proba-
bility of conflict; presence vs. absence of a precue). For the first time, this allowed us to characterize (a)
the trial-by-trial signature of experience-based processes that support control as a list unfolds under vari-
ous conditions and (b) how explicit precues conveying the expected probability of conflict within a list
influence control learning. This approach uncovered novel theoretical insights: First, slopes representing
control learning varied depending on whether a cue was available or not suggesting that explicit expect-
ations about conflict affected whether and the rate at which control learning occurred; and second, this
pattern was modulated by task demands and incentives. Additionally, analyses revealed a cue-induced
heightening of control in high conflict likelihood lists that mean level analyses had failed to capture.
The present study showed how control is shaped by the adaptive weighting of experience and expecta-
tions on a trial-by-trial basis and demonstrated the utility of a novel method for revealing the contribu-
tions of learning to control, and modulation of learning via precues.
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Attentional conflicts arise when goal-irrelevant information
competes with goal-relevant information to gain attentional prior-
ity. For example, an eye-catching billboard could cause attentional
conflicts, which may have some drivers mistakenly pass a desired
exit ramp. To minimize attentional conflicts from unwanted infor-
mation (e.g., billboards), cognitive control is required to prioritize
goal-oriented attentional allocation (e.g., searching for the exit
number). Control is adaptive in that it rapidly adjusts attention to
changing contexts and shifting goals when environmental changes
are detected or internal goals are updated.
The adaptive nature of cognitive control is exemplified by a

well-established pattern in the literature known as the list-wide
proportion congruence effect (LWPCE), which has been observed
in a variety of conflict tasks such as color-word Stroop (e.g., Kane

& Engle, 2003; Lindsay & Jacoby, 1994; Logan & Zbrodoff,
1979; Lowe & Mitterer, 1982; West & Baylis, 1998). The LWPCE
is the reduction in the magnitude of the Stroop effect in mostly
incongruent (MI) compared with mostly congruent (MC) lists.
Although there has been debate about the precise mechanisms
underlying the LWPCE (see Schmidt & Besner, 2008; for a con-
tingency learning account; see Schmidt, 2013; for a temporal
learning account; but see Cohen-Shikora et al., 2019; Spinelli &
Lupker, 2020), there is clear evidence supporting an attentional
control account which posits that the degree to which the word
and color are processed is globally adjusted based on the overall
likelihood of encountering conflict (for evidence from confound-
minimized designs, see Bugg, 2014; Bugg & Chanani, 2011; Bugg
& Gonthier, 2020; Gonthier et al., 2016; Hutchison, 2011; Spinelli
et al., 2019; for evidence in abbreviated lists, see Cohen-Shikora
et al., 2018; Colvett et al., 2020; for review, see Braem et al.,
2019; Bugg, 2012). In MI lists, the word dimension is processed
to a lesser degree relative to MC lists (Melara & Algom, 2003).

A key unanswered question is what processes bring about differ-
ent attentional control settings in each list. Often it has been
assumed that, as participants complete more trials (e.g., MC or MI)
in a list, they develop an explicit idea about a given conflict proba-
bility which leads to a strategic (e.g., Lowe & Mitterer, 1982) and/
or anticipatory adjustment in attentional control, aligning well with
a proactive account of control (Braver et al., 2007). However, Blais
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et al. (2012) challenged this notion by showing that emergent
awareness of conflict proportions is not a main contributor to the
LWPCE. In their study, participants completed multiple lists of the
color-word Stroop task over several days where LWPC varied from
5% to 95% between lists. At the end of each list, participants were
asked to estimate the proportion congruence of the list that they just
completed. One important finding was that participants were gener-
ally poor at providing accurate estimates, suggesting that awareness
of the conflict probability did not tend to emerge with experience.
Most interestingly for present purposes, the estimates of proportion
congruence did not correlate with the size of the LWPCE. In other
words, participants who were more aware of the proportions did not
exhibit larger LWPCEs on average as the proactive account would
suppose. This finding directly challenged a “strategic” interpretation
of the LWPCE (i.e., that participants intentionally assign differen-
tial weights to the color and word dimensions across lists) and indi-
cated instead that the modulations of the Stroop effect across lists
might be based on an implicit learning mechanism guided by expe-
rience. Hereafter we will refer to such a mechanism as experience-
driven control. That is, the experience of encountering relatively
more or less incongruent trials within a list, and thereby learning
about the probability of encountering each trial type, leads to differ-
ent attentional settings.1

The findings of Blais et al. (2012) did not, however, refute the
possibility that individuals could strategically adjust attention based
on explicit knowledge of the PC of a list, as manipulated for exam-
ple via precues. Indeed, some studies have demonstrated that ex-
plicitly provided information about upcoming conflict alone can
induce attentional control adjustments and thereby produce LWPCE
patterns (Bugg et al., 2015; Entel et al., 2014; for a related but
mixed set of findings using trial-by-trial precues, see Bugg &
Smallwood, 2016; Hutchison et al., 2016; Jiménez et al., 2020;
Wühr & Kunde, 2008). For example, Entel et al. (2014) showed
that the Stroop effect was greater when participants were instructed
that most of the upcoming trials in a list would be congruent but
smaller when participants were informed that most of the upcoming
trials would be incongruent although the actual proportion congru-
ency was 50% regardless of the instruction. In such cases modula-
tions of the Stroop effect across lists are based on explicit
knowledge about an upcoming event (e.g., a list with a low vs. high
conflict probability), which we will refer to as expectation-driven
control.

Role of Learning in Cognitive Control

The foundation of experience-driven control, including the
heightening of control (i.e., focusing more on the color and less on
the word dimension in a Stroop task) and the relaxation of control
(i.e., focusing more on the word dimension) in response to fre-
quent or infrequent experiences with conflict, respectively, is
learning (see, for example, Botvinick et al., 2001; see Verguts &
Notebaert, 2008; for a Hebbian learning account of control; see
Jiménez & Méndez, 2013; Schlaghecken & Martini, 2012; for evi-
dence that the absence of conflict can also serve as a signal for
learning and thereby control adjustments). In particular, attention
is adjusted based on one’s cumulative conflict experiences within
a context as goals become bound with features of the task via asso-
ciative learning networks (Abrahamse et al., 2016; see also Egner,
2014), a process referred to recently as context-control learning

(Chiu & Egner, 2019).2 In contrast, expectation-driven control,
particularly as investigated via explicit precues, need not involve
learning about conflict through experience because the information
that is used to guide adjustments in attention is explicitly provided
in advance of task performance.

Of course, descriptions like this treat these two sources as inde-
pendent origins of control, but it is conceivable that experience and
expectations coexist and interact to affect attention. For example,
one might anticipate that in the presence of a valid precue (but not
in its absence), all necessary information about upcoming conflict is
sufficiently conveyed and therefore control is not further adjusted
based on experiences with conflict during the task (i.e., control
learning does not occur; see, e.g., Hutchison et al., 2016; for evi-
dence that the LWPCE and the item-specific proportion congruence
effect are not observed when trial-by-trial precues are available).
Investigating how these sources of control operate, interact, and are
adaptively weighted is important because it informs the broader
question of how the control system achieves flexible adjustments to
attention.

Most analytical approaches that are used in experiments examin-
ing cognitive control in conflict tasks may, however, be limited in
addressing this question because these approaches almost exclu-
sively target the outcome of control (by comparing mean congru-
ency effects) and not the processes that shape control. Mean-level
analyses do not allow examination of the learning underlying control
nor how it interacts with explicit knowledge about upcoming con-
flict because both experience- and expectation-driven control result
in the same behavioral outcomes at the mean level (e.g., larger
Stroop effect in MC list). Herein, we develop a new analytical
approach that enables us to directly examine the contribution that
learning makes to adjustments in cognitive control, and how such
learning varies depending on explicit knowledge about upcoming
conflict. Specifically, we examine the trial-by-trial changes in the
degree and direction of control (i.e., control learning) in lists that dif-
fer in theoretically meaningful ways (e.g., proportion congruence
and the presence vs. absence of a precue).

An exception to the tendency to conduct mean-level analyses
comparing conditions such as MC and MI lists is an analytical
approach developed by Aben et al. (2017). Aben et al. developed a
statistical model to estimate the independent influence of each of
multiple prior trials on the current trial, thereby extending the con-
gruency sequence effect beyond a single prior trial in the flanker
task (see Dey & Bugg, 2020, for extensions of this model to color-
word and picture-word Stroop tasks). They found that control on
the current trial is influenced by conflict occurring up to 12 trials
back with more distant trials having a greater influence in MI com-
pared with MC lists. The present approach is distinct in that the
model of Aben et al. focused on the conflict adaptation weights
(beta coefficients) for each preceding trial (i.e., how conflict on
each preceding trial independently influenced the current trial),

1 Although such learning may be implicit in LWPC paradigms as
indicated by the findings of Blais et al. (2012), it is possible that
experience-driven control could in some cases be accompanied by
awareness of the information that supports the learning and instantiation of
different attentional settings.

2 Hereafter we refer to this process as “control learning” for short to
capture all information that may be learned in the context of MC and MI
lists and which contributes to changes in performance across a list.
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whereas the current model focuses on how the magnitude of the
Stroop effect changes across successive trials within a list. In other
words, their model captured how far back the control system looks
when “determining” the control state of the current trial by itera-
tively treating each trial3 within the 160-trial blocks as the current
trial and estimating average conflict adaptation weights for the 12
preceding trials (i.e., the model was backward looking). In con-
trast, our statistical model examined how cumulative experience
(i.e., performance on Trial 3 includes the influence of the two pre-
ceding trials; on Trial 8 it includes the influence of the seven pre-
ceding trials) shapes control trial-by-trial as a list unfolds using
abbreviated lists of 10 to 20 trials by deriving slopes representing
the average Stroop effect on each trial within a list (i.e., the model
was forward looking). To our knowledge, no prior work has inves-
tigated such trial-by-trial adjustments in the LWPC paradigm
(e.g., changes in Stroop effect as each list unfolds). Additionally,
we modeled this control learning in the presence and absence of a
precue, thereby allowing us to characterize the influence of
explicit knowledge about the upcoming probability of conflict on
control learning.
The present analytical approach therefore had two major goals.

The initial goal was to capture the learning processes underlying
the LWPCE. We predicted that the Stroop effect would gradually
increase or decrease from its baseline as participants experienced
increasing numbers of congruent or incongruent trials in MC and
MI lists, respectively. Such gradual changes in the Stroop effect
would be considered evidence of the learning that supports expe-
rience-driven control. The second and main goal was to examine
whether the evidence for experience-driven control is still
observed when knowledge about the upcoming conflict is avail-
able in the form of a valid precue (i.e., to address the question of
whether control learning occurs and/or is necessary in this case).
If attentional adjustments are completely driven by expectation-
driven control, then no evidence of learning should be found, as
indicated by the absence of trial-by-trial adjustments in the
Stroop effect across the list (i.e., a zero slope). However, if atten-
tional adjustments are driven by both expectation- and experi-
ence-driven control, we could expect to see a cue-induced shift in
control (i.e., as evidenced by the magnitude of the Stroop effect
being larger [MC] or smaller [MI] in cued vs. uncued lists) as
well as trial-by-trial adjustments (i.e., a nonzero slope) indicative
of learning. From a theoretical perspective, this analytical
approach can provide valuable insight into how people differen-
tially weight experience- and expectation-driven control when
both sources are available. The adaptive weighting of these two
sources depending on a variety of factors may be a hallmark of a
flexible control system.

Overview of Data

To examine the adaptive weighting of expectations and experience,
the approach we adopted in the present study was to use linear mixed-
effects modeling (LMM) to reanalyze the five data sets reported by
Bugg et al. (2015). Bugg et al. (2015) developed a precued lists para-
digm, which comprised multiple abbreviated lists of MC or MI trials
with half of each list type preceded by an explicit precue. When partic-
ipants were cued, it was always a valid predictor of upcoming conflict
such that MI lists were preceded by an “80% conflicting” precue and

MC lists were preceded by an “80% matching” precue (with the
exception of Experiment 5, which we will return to later). For uncued
lists, question marks (“?????”) were presented indicating that the
upcoming list would be either MC or MI (50% were MC and 50%
were MI). The key comparison was the contrast between cued and
uncued lists within a given condition (e.g., MC or MI). In the case of
MC lists, a larger Stroop effect in cued compared with uncued lists
demonstrates a role for expectation-driven control, because experience
is 80% congruent in both list types and expectations should drive the
relaxation of attention. In the case of MI lists, a smaller Stroop effect
in cued compared with uncued lists demonstrates a role for expecta-
tion-driven control, because experience is 80% incongruent in both list
types and expectations should drive the heightening of attention.
Observing no difference between cued and uncued in either case (MC
or MI) implies that the precues did not affect control above and beyond
the adjustments in control afforded merely by experience with the list
(i.e., encountering and responding to congruent and incongruent trials).

In a series of five experiments, Bugg et al. analyzed mean level
performance data (for the entire list or just the first trial) using
ANOVAs (Table 1 presents the summary), with the first-trial analy-
ses providing a window into any effects of the precues prior to ex-
perience accruing during the list (i.e., a pure effect of expectation-
driven control). Bugg et al. found that the magnitude of the Stroop
effect was greater in a cued compared with uncued list for the MC
condition indicating a cue-induced relaxation of attentional control
(i.e., MC shift). However, in MI lists, the Stroop effect was equiva-
lent regardless of the cue condition suggesting the absence of the
cue-induced heightening of attentional control (i.e., absence of an
MI shift). In other words, the cue provided no additional reduction
in the Stroop effect beyond experience with the MI list alone. The
absence of the MI shift was striking given that the precue is pre-
sumably more useful when the upcoming task demand is high.
Alongside the consistently observed cue-induced MC shift, the ab-
sence implied that explicit information about upcoming conflict can
be used to relax but apparently not heighten control.

Given the mean performance patterns observed by Bugg et al.
(2015), one might be inclined to conclude that expectations were
weighted heavily throughout the MC lists such that little control
learning was necessary based on experience within the lists. In MI
lists, in contrast, one might conclude that the weighting of expect-
ations may have initially been high (at least in Experiments 3 and
4 given the first-trial patterns in the mean-level analyses indicating
an initial cue-induced heightening of control [i.e., MI shift]) but
the weighting apparently was updated (lowered) as control learn-
ing occurred within the list, leading to a shift toward heavier
weighting of experience (given no MI shift was observed when
mean list level performance was assessed). Although such conclu-
sions are not unreasonable, the key point for present purposes is
that the analytical approach of Bugg et al. was limited to mean dif-
ferences (i.e., coarse) and thus could not directly evaluate these
possibilities (or contrast them with alternatives; see section below
titled Model Predictions and Hypothetical Outcomes), which
require a finer-grained approach.

In contrast to analyzing mean Stroop performance via ANOVA,
LMM allows us to examine trial-level changes in control across

3 Starting with Trial 14 because the first trial was excluded and for each
“current trial” the 12 previous trials were modeled.
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trials, including in data sets with missing data,4 thereby enabling
us to characterize the trial-by-trial signatures of expectation- and
experience-driven control as these processes unfold within a list.
More specifically, LMM produces estimates of the Stroop effect on
each trial, and comparison across trials allows one to ascertain the
direction (as indicated by the relative decrease in [heightening of
attention] vs. increase in [relaxation of attention] the Stroop effect)
and degree of control (as indicated by the relative magnitude of the
Stroop effect). The experiments of Bugg et al. were ideal for these
purposes for two reasons. First, unlike traditional variants of the
list-wide proportion congruence manipulation that comprise �100
trials per list with a single item (congruent or incongruent) serving
in each trial position, the abbreviated lists paradigm employed by
Bugg et al. comprised 10-trial lists (except Experiment 5 which had
20 trials), and there were multiple lists representing low or high
conflict likelihood contexts (MC or MI, respectively) such that there
were multiple observations per trial position for a given list type.
Thus, Stroop effects could be modeled on a trial-by-trial basis
within lists whose length was ideally suited for modeling purposes
(i.e., if lists are too long, the models often fail to converge due to
insufficient numbers of observations). Second, Bugg et al. included
valid precues informing participants about the composition of the
list in half of the lists in their paradigm (except Experiment 5),
thereby enabling them to dissociate expectation-driven control from
experience-driven control (see Bugg & Diede, 2018, for replica-
tions with between-subjects manipulations of cuing; see also Liu &
Yeung, 2020, for reproductions of key findings reported by Bugg
et al., 2015, albeit in a task-switching paradigm). This enabled us to
model the data from each condition (cued vs. uncued crossed by
MC vs. MI), such that for each list type (e.g., MI), we were able to
characterize the learning that occurred based on experience within
the list (or the learning that did not occur) depending on what the
participants’ expectations were at the start of the list, as evidenced
by the trial-by-trial changes in the Stroop effect.

Model Predictions and Hypothetical Outcomes

In Figure 1, we propose five hypothetical outcomes (referred to
here and hereafter as “models”) characterizing the time-course of

influence for expectations and experience as trials accumulated
within a given list type (i.e., the Stroop effect as a function of trial
position) in the precued lists paradigm used in Bugg et al. (2015).
In all models, we predicted that the Stroop effect for the uncued
condition would show a significant slope indicating experience-
driven control learning (upward sloping for MC lists and downward
sloping for MI lists). In contrast, we expected to see variation in the
slopes and the overall magnitudes of the Stroop effect in the cued
condition depending on the model. Figure 1 describes the slopes
representing trial-by-trial changes in the Stroop effect predicted
from the five hypothetical models. Model 1 and Model 2 illustrate
hypothetical outcomes postulating that expectation- or experience-
driven control, respectively, is the sole source of control adjust-
ments. In specific, Model 1 predicts that participants may com-
pletely rely on (i.e., weight highly) the expectation signaled by the
precue. If so, then this model anticipates no experience-driven con-
trol (i.e., no control learning), which would be evidenced by a flat
slope across trials for the cued condition (see Model 1 of Figure 1).
In contrast, Model 2 predicts that the precue plays no role in atten-
tional control (see Model 2 of Figure 1) suggesting a pure weight-
ing of experience. Therefore, the cued slope would be identical to
the uncued slope as illustrated in Figure 1. Unlike Model 1 and
Model 2, it is possible to predict that expectation and experience
would interactively guide attentional control. Here, we refer to the
interactive models as hybrid models and the model predicted Stroop
effect is illustrated in Models 3–5 in Figure 1. The three hybrid
models illustrate different patterns of potential interactions between
the precue and control learning. Model 3 predicts that advanced
knowledge of upcoming conflict (the precue) should shift the initial
Stroop effect (i.e., on Trial 1 for which there is no prior experience)
in the corresponding direction (e.g., larger when precue is 80%
matching), but participants may still learn based on experience
within the list. Thus, the slope for the cued condition would not be

Table 1
Summary of Key Findings in Bugg et al. (2015)

Mean (1–10 trials) First trial

Experiment List type MC shift MI shift MC shift MI shift

Experiments 1 and 2 Yes No Yes No
Experiment 3 Unspeeded Yes No Yes No

Speeded Yes No Yes Yes
Experiment 4 Low incentives Yes No No No

High incentives Yes No Yes Yes

First half (1–10 trials) Second half (11–20 trials)

MC shift MI shift MC shift MI shift

Experiment 5 PC-50 Invalid cue Yes No No No

Note. MC = mostly congruent; MI = mostly incongruent; PC-50 = 50% congruent / 50% incongruent. For Experiments 1–4, MC shift indicates a larger
Stroop effect in the cued MC list compared with the uncued MC list and MI shift indicates a smaller Stroop effect in the cued MI list compared with the
uncued MI list. In Experiment 5, PC was 50% regardless of the cue type. For Experiment 5, MC shift indicates difference in Stroop effect between MC
and PC-50 cue. MI shift indicates difference in Stroop effect between MI and PC-50 cue. Unlike Experiments 1–4, which examined the cuing effect for
the first trial as a pure index for expectation-driven control, Experiment 5 analyzed the first and second half of the trials to examine the expectation- and
experience-driven control, respectively.

4 Because the Bugg et al. (2015) study was not originally designed to
test the trial-by-trial changes in expectation- and experience-driven control,
trial position was not orthogonally manipulated which resulted in missing
data for some conditions (e.g., not all participants had a congruent trial in
Position 4, for example, in MC lists).
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flat; however, it may be shallower than the uncued slope (we refer
to this model as “attenuated learning”). Model 3 thus anticipates a
similar pattern of results as Model 1, but a major difference from
Model 1 is that in Model 3 we predict nonzero slopes for both cued
and uncued conditions. Model 4 predicts that the precue might pri-
marily enhance experience-driven control learning by making par-
ticipants more sensitive to key environmental changes such as
proportion congruency. Therefore, the cued and uncued conditions
would not differ initially (no expectation-driven shift in control at
front end of list) but the cued slope would be steeper than the
uncued slope (we refer to this model as “facilitated learning”).
Finally, Model 5 predicts that the precue simply shifts the initial
starting point (degree to which word relative to color is processed
as evidenced by the magnitude of the Stroop effect) but does not
necessarily change the rate of control learning, as indicated by the
slope of the cued condition being parallel to the slope of the uncued
condition (see Model 5 of Figure 1).
It is worth noting that it is possible that the model that best

describes the data in the MC condition may be different from
the model that best describes the data in the MI condition. For
example, basing predictions on the results of Bugg et al. (2015),
one might expect to find that Model 1 best describes perform-
ance in the MC list (i.e., consistent effect of expectations across
the cued condition) and either Model 2 (i.e., experience-driven
effects only even in the cued condition) or Model 3 (i.e., a
short-lasting effect of expectations in the cued condition for
speeded or high incentive lists, consistent with the first-trial
analyses, with experience ultimately prevailing in the cued con-
dition) best describes performance in the MI list.
Examining which of the models described in Figure 1 best

describes the data under different conditions will provide novel
insights into the underlying learning that supports experience-
driven control in uncued lists, a question that is important in its
own right, and how explicit expectations influence this learning
process in cued lists on a continuous time scale.

General Method and Analytical Approach

The primary goal of the present study was to examine the trial-
by-trial signature of experience-driven control and how explicit
knowledge about upcoming conflict affects the nature of control
learning that is rooted in one’s experiences during the task. For the
analyses, we used the raw data from Experiments 1–5 of Bugg
et al. (2015), all of which utilized the precued lists paradigm.5 In
this paradigm, participants were shown a MI (“80% CONFLICT-
ING”), MC (“80% MATCHING”), or uninformative (uncued,
“??????”) precue at the beginning of each list. When the MI or
MC precue was presented, participants were explicitly told that
using the precue may benefit performance and were encouraged to
use the precue (except Experiment 5). Each participant completed
32–64 lists of 10 Stroop trials (20 trials in Experiment 5) with
equal numbers of lists assigned to each of the comparison condi-
tions.6 The experiments minimized item repetitions (e.g., BLUE in
red occurring twice) within a list by selecting congruent and
incongruent stimuli for MC and MI lists without replacement. The
other published data using the abbreviated, precued lists Stroop
paradigm were from a between-subjects design where half the

Figure 1
Illustration of Predicted Stroop Effect Over Time in Mostly Congruent (Upper Panel) and Mostly Incongruent Lists (Lower Panel) In
Precued Lists Paradigm

Note. Red lines indicate predicted Stroop effect for cued condition. Green lines indicate predicted Stroop effect for uncued condition. See the online
article for the color version of this figure.

5 As such, we inherit the limitations of the designs used in Bugg et al.
(2015); for example, the potential for ceiling effects to limit the extent to
which any additional increases in control can be observed based on pre-
cues in MI lists.

6 The total number of lists varied across experiments. Participants
completed 32 lists in both Experiments 1 and 2 (excluding PC-50 lists,
another type of list that appeared in Experiment 2), 64 lists in both
Experiments 3 & 4, and 28 lists in Experiment 5. Half of the lists were cued,
and the other half were uncued. Among the cued (or uncued) lists, half of the
lists were MC, and the other half were MI. For Experiments 3 & 4, half of
the lists were speeded or high incentive, and the other half were unspeeded
or low incentive, respectively. For MC lists, 8 trials were congruent while 2
trials were incongruent. For MI lists, 8 trials were incongruent, and 2 trials
were congruent. In Experiment 5, a list comprised 20 trials, which always
involved 10 congruent and 10 incongruent trials. The congruent and
incongruent trials were randomly distributed within the list.
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participants received cued lists and the other half received uncued
lists (Bugg & Diede, 2018). Although the overall mean-level pat-
terns were replicated in this study, using data from Bugg and
Diede was not ideal for present purposes because between-subjects
designs yield a weaker test, and we were particularly interested in
how the same individuals adaptively weighted expectations and
experience across lists.
The same data trimming criteria were applied as in the origi-

nal study (i.e., trials with incorrect, faster than 200-ms, or
slower than 3,000-ms responses were excluded; see Bugg et al.,
2015, for more details). Because of the skewedness of the (RT)
distribution,7 we used a generalized linear mixed-effect model
(GLMM) with a gamma distribution and identity link function
(Lo & Andrews, 2015) using lme4 package (Bates et al., 2015)
in R. We used GLMM instead of a linear mixed-effect model
because of the potential concerns related to RT transformation,
which has been known to distort additive effects that reside in
raw data structure (Balota et al., 2013). For each data set, MC
and MI lists were analyzed separately to simplify the model
structure.8 This was also justified because our main goal was to
contrast cued and uncued lists within a particular list type
(where experience was matched) to determine which model
from Figure 1 best characterized the contributions of expecta-
tions and experience within each LWPC condition. We planned
two GLMM models. The first GLMM included fixed effect fac-
tors of cue type (cued vs. uncued), trial type (congruent vs.
incongruent), and trial position (1–10) with random effect fac-
tors of response (e.g., color of the color word) and participant
(id). Although maximum random slope model is advisable (Barr
et al, 2013), we had to choose the random intercept model due
to the failure in model convergence.9 The fixed effect factors
except trial position were dummy coded: MC, congruent, and
uncued trials were coded as 0, MI, incongruent, and cued trials
were coded as 1. Data from each list type (MC and MI) were fit-
ted to a linear model: rt � Trial Type þ Cue þ Trial Positionþ
Trial Type:Cue þ Trial Type:Trial Position þ Trial Type:Cue:
Trial Positionþ (1jSubject) þ (1jResponse). Because Cue:Trial
Position was not theoretically relevant and exclusion of this term
did not change the model fit,10 we did not include this interaction
term. Additionally, for each list type (MC and MI), a second
GLMM model of rt � Trial Type þ Trial Position þ Trial Type:
Trial Position þ (1jSubject) þ (1jResponse) was separately fitted
to the cued and uncued lists to reveal the steepness of the indi-
vidual slope in each cue condition.
With regard to the GLMM output, for the present and subse-

quent analyses we focused on the Trial Type 3 Trial Position
interaction as an index for experience-driven control (i.e.,
changes in the Stroop effect across trials indicative of control
learning), the Trial Type 3 Cue interaction11 as an index for ex-
pectation-driven control (i.e., change in the Stroop effect
depending on the precue), and the Trial Type 3 Cue 3 Trial
Position interaction as a signature of cue-influenced control
learning (i.e., changes in the Stroop effect across trials depend-
ing on the precue), for each PC level. In addition, we used the
Trial Type 3 Trial Position interaction from the additional
GLMM analysis (the second model described above) that was
performed on the two subsets of data (segregated based on cue
type) as an index of experience-driven control in isolated cued
and uncued lists. Finally, to better understand the three-way

interaction, which is of great interest given our theoretical goals,
we plotted model-predicted Stroop effects as a function of trial
position and precue type. The evaluation of the best model that
explains the data was based on the correspondence with the
model-predicted outcomes (e.g., specific interactions; signifi-
cance of slopes) described above.

Analysis 1: Testing Dynamics of Experience- and
Expectation-Driven Control

The purpose of Analysis 1 was to reveal how the signature of
control learning changes as experience accumulates depending on
the availability of explicit knowledge about upcoming conflict.
We combined the data sets from Experiments 1 (N = 22) and 2
(N = 20) of Bugg et al. (2015) to predict the Stroop effect as a
function of the cue type (MC or MI) and accumulated number of
trials (trial position). The same pattern was observed across these
experiments (cue-induced MC shift but no cue-induced MI shift,
including in the first-trial analyses), and thus we combined them to
increase power.

Results

The fixed effect estimates from the GLMM results are in Table
2. Overall, incongruent trials were significantly slower than congru-
ent trials for both MC (b = 100.98, t = 20.65, p, .001) and MI lists
(b = 83.29, t = 18.82, p , .001), reflecting a typical Stroop effect.
There was a significant main effect of the cue for the MC lists (b =
�16.04, t = �6.15, p , .001) indicating that responses were faster
in cued compared with uncued lists. However, the main effect of
the cue was not significant for the MI lists (b = 3.27, t = .71, p =
.477). A significant main effect of trial position was reported in
the MC lists (b = �4.45, t = �8.54, p , .001), suggesting that
responses were facilitated as participants completed more trials
(i.e., faster at 10th trial than 1st trial). The same pattern was
observed for the MI lists, b = �1.96, t = �2.06, p = .040.

To test the signature of experience-driven control, we analyzed
the Trial Type 3 Trial Position interaction. For MC lists, the Trial
Type 3 Trial Position interaction was significant (b = 10.10, t =
8.26, p , .001), such that the Stroop effect incrementally increased
as participants experienced more MC trials. The Trial Type 3 Trial
Position interaction was also significant for MI lists with a negative
estimated coefficient (b = �2.95, t = �3.00, p = .003), indicating
that the Stroop effect decreased as participants experienced more
MI trials. Both patterns are consistent with the idea that control

7 See online supplemental materials for distribution of RT and Gamma
distribution fitted to the data.

8 Full model outcomes are available in online supplemental materials.
9 GLMM models failed to converge with inclusion of any of the random

slope factors.
10We used likelihood ratio test to compare the two nested models: one

with the Cue 3 Trial Position interaction and the other one without the
term.

11 Note that, in this model, the Trial Type 3 Cue interaction indicates
the difference in the Stroop effect between cued and uncued lists when trial
position is zero (i.e., zero experience). This is purely a theoretical estimate
of expectation-driven control since it is technically impossible to measure
performance at Trial 0 using an experimental procedure.
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learning occurred as participants experienced more trials and atten-
tion was adjusted based on this learning in the anticipated direction.
To examine the signature of expectation-driven control, we

examined the Trial Type3 Cue interaction. For MC lists, the Trial
Type 3 Cue interaction was highly significant with a positive beta
coefficient, b = 98.80, t = 20.13, p , .001, suggesting that the
Stroop effect was greater in the cued than the uncued lists. For MI
lists, however, the Trial Type 3 Cue interaction was not signifi-
cant, b = �8.99, t = �1.53, p = .125, indicating that the Stroop
effect was not modulated by the precue.
Lastly, the Trial Type 3 Cue 3 Trial Position interaction was

examined to reveal cue-influenced control learning. For MC lists,
the three-way interaction was significant, b = �9.11, t = �5.77,
p , .001, implying that the learning slope for uncued trials was
steeper than that of cued trials. However, for MI lists, the three-
way interaction was not significant, b = 1.53, t = 1.53, p = .126,
indicating that the precue did not influence the control learning
underlying experience-driven control.
To illustrate the influences of expectations and experience

within each list type, the Stroop effect as a function of proportion
congruency, cue type, and trial position was calculated from the
model predicted RT and plotted in Figure 2.
To further examine whether control learning occurred during

cued lists, we conducted the second set of GLMM analyses12 sepa-
rately for the cued and uncued conditions in MC and MI lists. For
the MC lists (Figure 2a), the uncued Stroop effect showed a grad-
ual increase as participants experienced more trials within the list.
The additional analysis confirmed this trend by showing that the
uncued slope was steeper than zero, b = 10.67, t = 6.48, p , .001.
Because no explicit cue was provided about upcoming conflict,
the significant slope highlights the fact that a gradual relaxation of
control occurred as participants experienced frequent congruent
trials, consistent with the notion that participants implicitly learn
about conflict probability (Blais et al., 2012). In contrast, the slope
analysis showed that the cued MC slope was not different from
zero, b = .26, t = .16, p = .870. In other words, the cued Stroop
effect was relatively stable regardless of the trial position suggest-
ing that participants adopted a relaxed control setting immediately
after being presented with a MC precue and did not relax it further
based on experience, indicating a pure influence of expectation-
driven control (i.e., no influence of control learning). Interestingly,
the Stroop effects for uncued and cued lists eventually converged
at the last trial (10th). The convergence may indicate a ceiling
effect (i.e., the Stroop effect has reached its functional maximum)
or suggest that participants calibrated their control settings in

uncued lists based on the learned conflict probability and these set-
tings ultimately converged with those that they would have imple-
mented had they received a precue (i.e., they did not over- or
undershoot in terms of the degree of control).

For the MI lists (Figure 2b), the Stroop effect decreased as par-
ticipants completed more trials but the cued and uncued slopes did
not differ (nonsignificant three-way interaction). The lack of a
three-way interaction suggests that experience-driven control
learning was not modulated by the presence of prior knowledge
about the amount of upcoming conflict. However, the slope analy-
sis showed that the uncued slope was different from zero, b =
�3.69, t = �2.80, p = .005, whereas the cued slope was not, b =
�.24, t = �.18, p = .860. This may suggest that the general trend
(i.e., uncued slope is steeper than cued slope) exists in MI lists
albeit the effect is weaker than that of MC lists (hence, the three-
way interaction was not significant).

Discussion

Applying a novel analytical approach, we reexamined the effect
of the precue manipulation on the experience-driven control learn-
ing process by modeling data from Experiment 1 and 2 of Bugg
et al. (2015). By using GLMM, we were able to test unique signa-
tures of experience-driven control, expectation-driven control, and
the conjoint influence of these two sources (i.e., cue-influenced
control learning). First, we found a significant Trial Type 3 Trial
Position interaction in MC and MI lists, which highlights the con-
trol learning underlying experience-driven control. The model pre-
dicted a gradual increment or decrement in the Stroop effect as
experience accumulated in MC or MI lists, respectively. Second,
we observed a Trial Type 3 Cue interaction that was significant
for MC but not MI lists, which is highlighting the fact that expec-
tation-driven control played a role in relaxing attentional control
but not in heightening it. Finally, and most interestingly, the three-
way interaction of Trial Type 3 Cue 3 Trial Position was signifi-
cant for MC lists but not for MI lists. The three-way interactions
are plotted in Figure 2 to highlight the slope difference in cued
and uncued lists. In MC lists (Figure 2a), the flat cued slope indi-
cates that the Stroop effect was not influenced by the accumulation
of experience (trial position), which clearly shows a sharp contrast
to the uncued slope that showed an increase in the Stroop effect
with accumulated experience (i.e., control learning). In MI lists

Table 2
Generalized Linear Mixed Model Output for Experiments 1 and 2 of Bugg et al. (2015)

Mostly congruent (MC) list Mostly incongruent (MI) list

Predictor Estimates 95% CI t p Estimates 95% CI t p

(Intercept) 646.01 [635.26, 656.75] 117.79 ,.001 672.93 [661.43, 684.44] 114.62 ,.001
Trial Type 100.98 [91.39, 110.56] 20.65 ,.001 83.29 [74.62, 91.96] 18.82 ,.001
Cue �16.04 [�21.16, �10.93] �6.15 ,.001 3.27 [�5.74, 12.29] 0.71 .477
Trial Position �4.45 [�5.47, �3.43] �8.54 ,.001 �1.96 [�3.84, �0.09] �2.06 .040
Trial Type 3 Trial Position 10.10 [7.71, 12.50] 8.26 ,.001 �2.95 [�4.88, �1.02] �3.00 .003
Trial Type 3 Cue 98.80 [89.18, 108.43] 20.13 ,.001 �8.99 [�20.47, 2.50] �1.53 .125
Trial Type 3 Cue 3 Trial Position �9.11 [�12.20, �6.02] �5.77 ,.001 1.53 [�0.43, 3.49] 1.53 .126

Note. CI = 95% confidence interval.

12 The full summary of the additional GLMM analysis is available in the
online supplemental materials.
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(Figure 2b), the learning slopes for cued and uncued lists were
equivalent unlike the sharp difference observed in MC lists.
We assume that the lack of a difference in slopes could be attribut-
able to the overall shift in the Stroop effect in the presence of the
cue being much smaller in MI lists (9 ms) compared with MC lists
(99 ms), which could result in a failure to detect cue-influenced
control learning.
Taken together, our findings best support Model 1 and Model 2

for MC and MI lists, respectively (see Figure 1). In specific, both
modeling results of MC lists and hypothesized outcomes from
Model 1 suggest that, with a valid precue, participants rely on ex-
pectation-driven control without necessarily learning about conflict
probability through experience. Our modeling results for MI lists
and hypothesized outcomes from Model 2 suggest that participants
did not adopt expectation-driven control in MI lists. That is, per-
formance in the list was influenced exclusively by control learning,
which was evidenced in MI lists.
In the next analysis, we performed the GLMM analysis on the

data from Experiment 3 to characterize experience-and expecta-
tion-driven control under conditions in which Bugg et al. (2015)
demonstrated that the precue was at least initially used (on the first
trial) in MI lists, in addition to its continued use in the MC lists.

Analysis 2: Testing the Role of Task-Demands

In Experiment 3, Bugg et al. (2015) presented the Stroop stimuli
for a brief time to encourage participants to prepare for stimuli in
advance by utilizing the precue information. In this speeded condi-
tion, they found that participants showed evidence of a cue-induced
MI shift showing a smaller Stroop effect in the cued compared with
uncued condition, but this difference was limited to the first trial.

Bugg et al. interpreted this to mean that participants initially
attempted to use the precue, but the effect of the precue quickly dis-
appeared. This could occur either because it is too demanding to sus-
tain heightened control across multiple trials or because experience
took over as participants encountered more trials. Here, we reana-
lyzed the Experiment 3 data (N = 22) of Bugg et al. to further inves-
tigate how the increased task demands affected experience-driven
control learning when the cue was present as well as when it was
absent, as well as the possibility that the heightening of control in
response to the cue may have extended beyond the first trial.

Results

We modeled the data separately for speeded and unspeeded
lists, as well as for the different PC levels (MC and MI) as in the
preceding analysis. This was done because our main interest was
to examine the different trial-by-trial learning signatures between
cued and uncued lists and to simplify the model structure for the
sake of avoiding failed model convergence.

Unspeeded MC

The fixed effects estimates from the GLMM output are in Table
3. The GLMM analysis for the unspeeded MC condition revealed
that the main effects of trial type (b = 147.68, t = 17.78, p , .001)
and cue (b = �14.03, t = �3.56 p , .001) were significant sug-
gesting that overall responses were slower in incongruent than
congruent trials and cued trials were faster than uncued trials. The
main effect of trial position (b = �3.24, t = �4.40 p , .001) was
also significant showing that overall RT decreased as participants
completed more trials. The Trial Type 3 Trial Position interaction
(indicative of control learning), b = .83, t = .46, p = .642, and Trial

Figure 2
Model-Predicted Stroop Effect (Solid Lines) as a Function of Cue and Trial
Position of (a) Mostly Congruent (MC) and (b) Mostly Incongruent (MI) Lists in
Experiments 1 and 2 of Bugg et al. (2015)

Note. Each data point indicates the mean Stroop effect calculated from raw data. The
color and shape of each point marker indicate the cue type (red/circle: cued, green/triangle:
uncued). Error bars depict 61 standard error. See the online article for the color version of
this figure.
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Type 3 Cue interaction (indicative of expectation-driven control),
b = �12.21, t = �1.43 p = .151, were not significant. The three-
way interaction was significant (b = 10.13, t = 4.25 p , .001),
however, the pattern was unexpected. The magnitude of the Stroop
effect increased as participants completed more trials (indicating
control learning) when there was a precue (see Figure 3a). How-
ever, the Stroop effect was consistent regardless of the number of
trials completed when there was no precue, indicating no signifi-
cant control learning.

Unspeeded MI

The fixed effects estimates from the GLMM output are in Table
3. The main effect of trial type was significant, b = 91.45, t = 14.73
p , .001, indicating a typical Stroop effect. However, main effects
of cue, b = �5.19, t = �.99 p = .323, and trial position, b = �1.94,
t = �1.59, p = .112, were not significant. The Trial Type 3 Trial
Position interaction was not significant, b = �2.10, t = �1.59, p =
.112. However, the Trial Type 3 Cue interaction was significant,
b = �19.81, t = �2.63 p = .009, such that the Stroop effect was
smaller with the cue compared with without the cue (i.e., cue-
induced MI-shift). Finally, the three-way interaction was not signifi-
cant, b = 2.27, t = 1.64, p = .100, suggesting the learning slope was
equivalent for cued and uncued lists (see Figure 3b).

Speeded MC

The fixed effects estimates from the GLMM output are in Table
4. We found a significant main effect of trial type (b = 115.17, t =
15.34, p , .001) and cue (b = �13.37, t = �4.23, p , .001), sug-
gesting that overall RT was faster for congruent compared with
incongruent and cued compared with uncued trials, respectively.
Unlike the unspeeded MC list, we found a significant Trial Type 3
Trial Position interaction (b = 5.25, t = 3.21, p = .001), indicating
that the overall Stroop effect increased as participants completed
more trials indicative of control learning, and a significant Trial
Type 3 Cue interaction (b = 50.10, t = 6.63, p , .001), suggesting
a greater Stroop effect in cued than uncued lists. Finally, the three-
way interaction was significant (b = �4.38, t = �2.15, p = .032),
implying a trend whereby the difference between the cued and
uncued Stroop effect was attenuated as participants experienced
more trials within a list (see Figure 3c).

Speeded MI

The fixed effects estimates from the GLMM output are in Table
4. Again, the main effect of trial type was significant, b = 105.20,

t = 11.66, p , .001, reflecting the Stroop effect. The main effect
of trial position was not significant, b = 2.18, t = 1.75, p = .080.
However, the Trial Type 3 Trial Position interaction was signifi-
cant (b = �6.59, t = �4.33 p , .001) such that the Stroop effect
decreased as participants completed more trials, consistent with
control learning. The main effect of cue was not significant, b =
1.86, t = .36, p = .720. However, a significant Trial Type 3 Cue
interaction (b = �32.62, t = �5.06, p , .001) showed that the
Stroop effect was overall smaller for the cued than uncued condi-
tion, revealing a cue-induced MI-shift. In addition, a significant
three-way interaction (b = 5.14, t = 4.14, p , .001) confirmed a
significant slope difference between the cued and uncued lists with
a steeper slope in the uncued lists (see Figure 3d).

The model-predicted Stroop effects are plotted in Figure 3, illustrat-
ing the slopes for the unspeeded and speeded MC and MI lists. The
model-predicted Stroop effects for the unspeeded MC list (see Figure
3a) showed an unexpected, reversed pattern such that the predicted
Stroop effect increased as participants completed more trials only
when the precue was provided (i.e., there was no such trend observed
for uncued lists). The second GLMM analysis additionally confirmed
the pattern that the slope was significantly greater than zero for the
cued lists (b = 9.66, t = 3.22, p = .001), but it was not different from
zero for the uncued lists (b = 2.77, t = 1.25, p = .210). For unspeeded
MI lists (Figure 3b), there was no evidence of a cue-induced difference
in the learning slope as evidenced by the lack of a three-way interac-
tion. The second GLMM analysis confirmed that both cued (b =�.77,
t = .38, p = .700) and uncued (b = �3.05, t = �1.51, p = .130) slopes
were not different from zero.

For the speeded MC lists (Figure 3c), the slope was steeper in
the uncued lists compared with the cued lists replicating Analysis
1. However, the second GLMM analysis13 confirmed that neither
cued or uncued slopes were different from zero (uncued: b = 5.27,
t = 1.25, p = .210, cued: b = .51, t = .18, p = .86) in this condition.
For the speeded MI lists, we found evidence for cue-influenced
control learning as indicated by a difference in the learning slope
for cued and uncued lists (i.e., a significant three-way interaction;
see Figure 3d). The slope was steeper for the uncued than cued
lists, suggesting that the Stroop effect decreased as participants
completed more incongruent trials especially in uncued lists. The
second analysis revealed that the slope was different from zero for
the uncued lists (b = �5.87, t = �3.36, p , .001) but not different
from zero for the cued lists (b = �3.20, t = �1.78, p = .075).

Table 3
Generalized Linear Mixed Model Output of Unspeeded Condition in Experiment 3 of Bugg et al. (2015)

Mostly congruent (MC) list Mostly incongruent (MI) list

Predictor Estimates 95% CI t p Estimates 95% CI t p

(Intercept) 664.98 [631.36, 698.60] 38.76 ,.001 707.84 [691.52, 724.19] 85.01 ,.001
Trial Type 147.68 [131.41, 163.96] 17.78 ,.001 91.45 [79.28, 103.62] 14.73 ,.001
Cue �14.03 [�21.74, �6.33] �3.56 ,.001 �5.19 [�15.50, 5.12] �0.99 .323
Trial Position �3.24 [�4.69, �1.80] �4.40 ,.001 �1.94 [�4.33, 0.46] �1.59 .112
Trial Type 3 Trial Position 0.83 [�2.68, 4.35] 0.46 .642 �2.10 [�4.70, 0.49] �1.59 .112
Trial Type 3 Cue �12.21 [�28.89, 4.48] �1.43 .151 �19.81 [�34.57, �5.05] �2.63 .009
Trial Type 3 Cue 3 Trial Position 10.13 [�5.46, 14.81] 4.25 ,.001 2.27 [�0.44, 4.98] 1.64 .100

Note. CI = 95% confidence interval.

13 The full model outcomes are available in the online supplemental
materials.
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Discussion

Applying our novel analytical approach again, here we examined
the signatures of expectation- and experience-driven control under con-
ditions that encouraged use of the precue in a subset of the lists (i.e.,
speeded condition). There were several important findings highlighting
the nature of adaptive weighting of expectation- and experience-driven
control. First, we found the Trial Type 3 Cue interaction was signifi-
cant in all conditions (except the unspeeded MC list), illuminating a
cue-induced shift in control based on expectations. In contrast to Anal-
ysis 1, the model-predicted Stroop effects were smaller with the precue
under both MI lists (unspeeded and speeded). Second, we found that
the Trial Type 3 Trial Position interaction was significant for both
MC and MI lists, but this was limited to the speeded condition. In

other words, participants were able to learn a given conflict probability
based on cumulative experience particularly when the stimulus presen-
tation was speeded. This was somewhat surprising because the
unspeeded condition in Experiment 3 was identical to Experiment 1
except that participants were given the speed cue (e.g., “SLOWER
SPEED”). We speculate that, under the unspeeded instruction particu-
larly with the “easier”MC cues, participants might have taken a break
and disengaged from using the cue, but we reserve further discussion
of the role of task demands for the General Discussion. Third and
most interestingly, for the first time in the present study, we found a
significant three-way interaction for MI lists which serves as evidence
that control learning varied depending on whether a precue was avail-
able, and this interaction was observed in the speeded condition where
precue use was encouraged by presenting the Stroop stimuli for a brief

Figure 3
Model-Predicted Stroop Effect (Solid Lines) as a Function of Cue and Trial
Position of (a) Unspeeded Mostly Congruent (MC), (b) Unspeeded Mostly
Incongruent (MI), (c) Speeded MC, and (d) Speeded MI Lists in Experiment 3 of
Bugg et al. (2015)

Note. Each data point indicates the Stroop effect calculated from raw data. The color and shape
of each point marker indicates the cue type (red/circle: cued, green/triangle: uncued). Error bars
depict 61 standard error. See the online article for the color version of this figure.

1572 SUH AND BUGG

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



duration. The slope difference suggests that participants might have
heightened control immediately following the precue and maintained
the heightened control within the cued MI list but in uncued MI lists
the attentional control was gradually heightened as participants
encountered incongruent trials. However, in contrast to the MI speeded
condition, the three-way interaction was not significant in the MI
unspeeded condition suggesting that participants used the precue to
heighten control, but it did not change the control learning process.
To sum, the modeling results from speeded MC and MI lists

best support Model 1 as they showed flat slopes for the cued lists
and relatively steeper slopes for the uncued lists. This suggests
that control learning did not occur in the presence of the precue in
both list types. The reversed trend observed in unspeeded MC lists
could be explained by Model 4, because the results showed that
the slope was steeper when cued and not different from zero in the
uncued condition. This may suggest that a certain level of demand
on preparatory control is necessary for the adoption of expecta-
tion-driven control, and potentially such a demand may facilitate
control learning and thereby experience-driven control. Finally,
the results from the unspeeded MI lists support none of the pro-
posed models. There was evidence for expectation-driven control
in this condition (Stroop effect was overall smaller in presence of
the cue), but the results do not support Model 1 because the cued
and uncued slopes were not different from zero indicating a lack
of control learning even in the uncued condition.

Analysis 3: Testing the Role of Motivation

The data from Experiment 4 (N = 48) of Bugg et al. (2015) were
used for Analysis 3. In this experiment, in addition to being cued as to
whether the upcoming list would be MC or MI, participants were also

cued as to whether the upcoming list would be related to potential gain
of low or high incentive (points). Incentives were earned (or not) as
noted at the end of each list based on participants’ performance within
the list relative to a set of baseline lists at the beginning of the experi-
ment. The mean-level analyses in Bugg et al. showed that participants
used the precue to heighten control in MI lists when high incentives
were expected but just as in Experiment 3, the cue-induced MI-shift
was observed only for the first trial. The current analysis allows us to
additionally examine whether incentives influence control learning and
thereby experience-driven control, as well as the role of expectations
(precues) in shaping this learning in MC and MI lists.

Results

Low-Incentive MC

The fixed effects estimates from the GLMM output are in Table 5.
The main effect of trial type, b = 109.96, t = 31.83, p, .001, and trial
position, b =�3.77, t =�7.93, p, .001, were significant indicating a
typical Stroop effect as well as a practice effect such that overall RT
decreased as more trials were experienced. The main effect of cue was
not significant, b = �3.92, t = �1.68, p = .093, suggesting that overall
RT was similar between the cued and uncued conditions. A significant
Trial Type 3 Trial Position interaction, b = 7.31, t = 6.87, p , .001,
revealed experience-driven control such that the overall Stroop effect
increased as participants experienced more trials. In addition, the Trial
Type 3 Cue interaction was significant, b = 51.98, t = 10.95, p ,
.001, highlighting expectation-driven control. The Stroop effect was
greater for the cued than uncued lists. Finally, the three-way interaction
was significant, b = �4.75, t = �3.34, p , .001, demonstrating that
the learning slope for uncued lists was steeper than that for the cued
lists.

Table 4
Generalized Linear Mixed Model Output of Speeded Condition in Experiment 3 of Bugg et al. (2015)

Mostly congruent (MC) list Mostly incongruent (MI) list

Predictor Estimates 95% CI t p Estimates 95% CI t p

(Intercept) 506.57 [489.03, 524.12] 56.59 ,.001 540.25 [525.21, 555.29] 70.39 ,.001
Trial Type 115.17 [100.46, 129.89] 15.34 ,.001 105.20 [87.52, 122.87] 11.66 ,.001
Cue �13.37 [�19.57, �7.17] �4.23 ,.001 1.86 [�8.37, 12.09] 0.36 .720
Trial Position �0.95 [�2.13, 0.23] �1.58 .114 2.18 [�0.26, 4.63] 1.75 .080
Trial Type 3 Trial Position 5.25 [2.04, 8.45] 3.21 .001 �6.59 [�9.57, �3.61] �4.33 ,.001
Trial Type 3 Cue 50.10 [35.99, 66.21] 6.63 ,.001 �32.62 [�45.26, �19.98] �5.06 ,.001
Trial Type 3 Cue 3 Trial Position �4.38 [�8.37, �0.38] �2.15 .032 5.14 [2.71, 7.57] 4.14 ,.001

Note. CI = 95% confidence interval.

Table 5
Generalized Linear Mixed Model Output of Low Incentive Condition in Experiment 4 of Bugg et al. (2015)

Mostly congruent (MC) list Mostly incongruent (MI) list

Predictor Estimates 95% CI t p Estimates 95% CI t p

(Intercept) 562.22 [520.86, 603.59] 26.64 ,.001 585.52 [576.23, 594.81] 123.56 ,.001
Trial Type 109.96 [103.19, 116.73] 31.83 ,.001 104.68 [93.70, 115.66] 18.68 ,.001
Cue �3.92 [�8.48, 0.65] �1.68 .093 2.86 [�7.30, 13.01] 0.55 .582
Trial Position �3.77 [�4.70, �2.84] �7.93 ,.001 �0.77 [�2.45, 0.92] �0.89 .373
Trial Type 3 Trial Position 7.31 [5.23, 9.40] 6.87 ,.001 �3.33 [�5.37, �1.30] �3.21 .001
Trial Type 3 Cue 51.98 [42.68, 61.29] 10.95 ,.001 �7.02 [�17.98, 3.94] �1.26 .209
Trial Type 3 Cue 3 Trial Position �4.75 [�7.54, �1.96] �3.34 ,.001 1.13 [�0.71, 2.97] 1.20 .230

Note. CI = 95% confidence interval.
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Low-Incentive MI

The fixed effects estimates from the GLMM output are shown in
Table 5. The main effect of trial type, b = 104.68, t = 18.68, p ,
.001, was significant. However, the main effect of cue, b = 2.86, t =
.55, p = .582, and trial position, b = �.77, t = �.89, p = .373, were
not significant. The Trial Type3 Trial Position interaction was sig-
nificant, b = �3.33, t = �3.21, p = .001, indicating an experience-
driven heightening of control such that the Stroop effect decreased
as the number of trials completed increased. However, the Trial
Type 3 Cue interaction, b = �7.02, t = �1.26 p = .209, and three-
way interaction, b = 1.13, t = 1.20, p = .230, were not significant.

High-Incentive MC

The fixed effects estimates from the GLMM output are summar-
ized in Table 6. For the high-incentive MC list, we found a signifi-
cant main effect of trial type (b = 119.14, t = 27.63, p , .001),
suggesting that overall RT was faster for the congruent compared
with incongruent trials. Also, the main effect of cue (b = �16.54,
t = �7.18, p , .001) was significant, showing that overall RT was
faster in cued lists compared with uncued lists. A significant main
effect of trial position (b = �3.32, t = �7.74, p , .001) indicated a
practice effect such that overall RT was facilitated as participants
completed more trials. The Trial Type 3 Trial Position interaction
was also significant, b = 3.66, t = 3.48, p , .001, demonstrating
that the Stroop effect increased as the amount of experience
increased (i.e., control learning). In addition, the Trial Type 3 Cue
interaction was significant, b = 46.46, t = 12.53, p , .001, showing
a signature of expectation-driven control such that the Stroop effect
was greater in cued lists than in uncued lists. However, the three-
way interaction was not significant, b = �1.48, t = �1.12, p = .261.

High-Incentive MI

The fixed effects estimates from the GLMM output are shown in
Table 6. For the high-incentive MI list, the same analysis was con-
ducted revealing a significant main effect of trial type, b = 99.60, t =
24.32, p , .001, and cue, b = 13.08, t = 3.50, p , .001. The esti-
mated coefficient for the main effect of the cue was positive indicat-
ing that participants slowed responses in cued lists compared with
uncued lists. Interestingly, the Trial Type 3 Trial Position interac-
tion was not significant, b = �.86, t = �1.00, p = .317. In contrast,
the Trial Type 3 Cue interaction was significant, b = �11.35, t =
2.69, p = .007, reflecting that the Stroop effect was smaller for the
cued compared with the uncued lists. The three-way interaction was

not significant, b = �.21, t = �.25, p = .804, which highlights the
fact that learning slopes for cued and uncued lists were not different.

The model-predicted Stroop effects are plotted in Figure 4, illustrat-
ing the slopes for the low-incentive and high-incentive MC and MI
lists. The low-incentive lists largely replicated the pattern observed in
Analysis 1. The three-way interaction was significant for the MC lists,
but not for the MI lists. For the low-incentive MC lists (Figure 4a), the
slope was greater than zero for the uncued lists (b = 7.02, t = 3.65, p,
.001) but not different from zero for the cued lists (b = 2.60, t = 1.35,
p = .180). For the low-incentive MI lists (Figure 4b), the slope was
smaller than zero in the uncued lists (b = �4.75, t = �1.51, p = .002)
but it was not different from zero in the cued lists (b = �.88, t = �.60,
p = .547). For the high-incentive lists, the three-way interaction was not
significant in either MC (Figure 4c) or MI lists (Figure 4d). The second
GLMM analysis14 revealed that the slope was greater than zero in the
uncued (b = 4.11, t = 2.14, p = .032) but not in the cued (b = 1.89, t =
.90, p = .370) high-incentive MC lists. For the high-incentive MI lists,
the slope was not different from zero for either uncued (b = �1.21, t =
�.73, p = .46) or cued (b =�.33, t =�.23, p = .82) lists.

Discussion

We tested how expectation- and experience-driven control is
modulated by the amount of expected incentives (i.e., motivation)
by examining slopes of learning for each combination of list type
(MC vs. MI) and incentives (low vs. high). Unlike the mean-level
analyses of Bugg et al. (2015) that suggested the cue-induced MI
shift under the high incentive condition was restricted to the first
trial of the list, we found that the MI shift was not limited to the
first trial. Instead, it was consistently observed throughout the list
(see Figure 4d), as in the MC condition. This suggests that, under
expected high incentives, participants used the precue at the begin-
ning of the list to heighten (MI) or relax (MC) control and seemed
to rely on the cued information throughout the list (i.e., heavily
weight expectations). This interpretation is reinforced by the lack
of a three-way interaction for either high incentive MC or MI lists
although there was an overall cue-induced MC and MI shift (i.e.,
change in the Stroop effect based on the cue). This pattern also
shows a contrast to the modeling outcomes from the speeded con-
dition of Analysis 2 where both the three-way (cue-influenced con-
trol learning) and Trial Type 3 Cue interactions (cue-induced
shifts) were significant. For low incentive conditions, the analysis

Table 6
Generalized Linear Mixed Model Output of High Incentive Condition in Experiment 4 of Bugg et al. (2015)

Mostly congruent (MC) list Mostly incongruent (MI) list

Predictor Estimates 95% CI t p Estimates 95% CI t p

(Intercept) 551.78 [542.05– 561.50] 111.21 ,.001 567.23 [560.07, 573.40] 137.07 ,.001
Trial Type 119.14 [110.69, 127.60] 27.63 ,.001 99.60 [91.02, 107.78] 24.32 ,.001
Cue �16.54 [�21.05, �12.02] �7.18 ,.001 13.08 [7.75, 19.79] 3.50 ,.001
Trial Position �3.32 [�4.17, �2.48] �7.74 ,.001 �1.10 [�2.96, 0.74] �1.37 .171
Trial Type 3 Trial Position 3.66 [1.60, 5.73] 3.48 ,.001 �0.86 [�3.13, 1.34] �1.00 .317
Trial Type 3 Cue 46.46 [39.19, 53.73] 12.53 ,.001 �11.35 [�17.84, �3.77] �2.69 .007
Trial Type 3 Cue 3 Trial Position �1.48 [�4.05, 1.10] �1.12 .261 �0.21 [�1.94, 1.27] �0.25 .804

Note. CI = 95% confidence interval.

14 The full summary of the additional GLMM analysis is available in the
online supplemental materials.
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replicated key findings of Analysis 1, showing that participants
instantly relaxed attentional control following the MC cue but not
following the MI cue resulting in an absence of a cue-induced
attentional shift in the latter condition.
The GLMM results indicated that the data from high incentive MC

lists best support Model 5 (see Figure 1), given that the expectation-
and experience-driven control showed an additive effect. However, the
data from high incentive MI lists are not perfectly consistent with any
of the proposed models because both uncued and cued slopes were not
different from zero suggesting the absence of experience-driven con-
trol. The low incentive MC and MI lists are best explained by Models
1 and 2, respectively, just as in Analysis 1.
A very interesting observation was that when high incentives were

available in the MI lists, we found evidence of weak experience-driven

control (e.g., flat slopes indicating a lack of control learning). One
could interpret this such that, once the context (e.g., high incentive)
was mapped to a control setting (e.g., expectation-driven), participants
tended to stick to the mapped control setting instead of switching
regardless of environmental input (e.g., accumulated conflict informa-
tion via experience). On this view, it is possible that the lack of control
learning could be due to the participants’ tendency to stick with using
the cue under high incentives.

So far, we have shown that the signature of control learning (i.e.,
slope) varies based on the availability of the precue as well as the
demand for preparatory control and motivation. In uncued lists, this
signature can be taken as a relatively pure index of experience-driven
control. In cued lists, this signature represents the potentially conjoint
influences of experience-driven and expectation-driven control since

Figure 4
Model-Predicted Stroop Effect (Solid Lines) as a function of Cue and Trial
Position of (a) Low Incentives Mostly Congruent (MC), (b) Low Incentives
Mostly Incongruent (MI), (c) High Incentives MC, and (d) High Incentives MI
Lists in Experiment 4 of Bugg et al. (2015)

Note. Each data point indicates the Stroop effect calculated from raw data. The color and shape
of each point marker indicates the cue type (red/circle: cued, green/triangle: uncued). Error bars
depict 61 standard error. See the online article for the color version of this figure.
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the precue was always valid (i.e., the MI precue was always fol-
lowed by an MI list and the MC precue was always followed by
the MC list). To address this limitation, Bugg et al., in their
Experiment 5, tested pure expectation-driven control by examin-
ing the effect of MC and MI cues while holding experience con-
stant (50% congruent) between lists. The results showed that
participants used the MC cue to relax attention but there was no
evidence that participants used the MI cue to heighten attention.
In addition, the cue-induced shift in attentional control was only
evident for the first half of trials but not for the second half of the
trials, implying a decay in expectation-driven control over time.
In the following analysis, by using the data from Experiment 5

of Bugg et al. we tested a signature of pure expectation-driven
control that was never directly examined previously. Unlike the
former analyses, where the primary interest was testing differences
in trajectories of experience-driven control (control learning)
between cued and uncued lists (slopes), Analysis 4 aimed to inves-
tigate the isolated effect of the precue while the experience was
fixed rather than when experience covaried with the precue.

Analysis 4: Testing the Pure Effect of Expectation-
Driven Control

Experiment 5 of Bugg et al. (2015) examined the effects of precues
when proportion congruency (experience) was fixed to 50% across lists
and a misleading precue (80% matching [MC], 80% conflicting [MI])
or a valid cue (50% matching/conflicting) was presented, and these con-
ditions were compared with uncued lists. Selectively in the first half of
trials, the mean Stroop effect was larger when participants were pre-
sented with a MC compared with a MI precue even though the actual
proportion congruency was equivalent highlighting a pure expectation-
driven modulation of control. This modulation was driven by a differ-
ence between the MC cued lists and the validly cued lists (the difference
between the MI cued lists and the validly cued lists was nonsignificant).
Here, we reanalyzed Experiment 5 (N = 35) of Bugg et al. (2015) by
using GLMM. The experimental design was identical to previous stud-
ies except there were 20 trials per list (compared with 10 trials per list in
Experiment 1–4). In the model, we submitted all 20 trials to analysis
(rather than analyzing the first half [first 10 trials] separately from the

second half [second 10 trials] as in Bugg et al., 2015) and the precue
type (MC cue, MI cue, valid cue, uncued) was coded as a categorical
variable by having the uncued condition as a reference condition.

Results

The fixed effects estimates from the GLMM output are shown in
Table 7. The GLMM analysis revealed that the main effect of trial
type was significant, b = 111.82, t = 40.90, p , .001, revealing a
typical Stroop effect. Compared with the uncued condition, there
was not an effect of cuing for the MC cue, b = 4.53, t = 1.82, p =
.070, MI cue, b = 3.10, t = 1.41, p = .158, or valid cue, b = 2.99, t =
1.66, p = .097, suggesting that the overall RT was not modulated by
the precue. The main effect of trial position, b = .10, t = .53, p =
.598, and the Trial Type 3 Trial Position interaction, b = .42, t =
2.35, p = .216, were not significant indicating the lack of experi-
ence-driven modulation in control in the reference group (uncued
condition). The Trial Type 3 Cue interaction was significant with
the MC cue, b = 27.86, t = 10.22, p , .001, suggesting that the
magnitude of the Stroop effect was larger with the cue compared
with the uncued condition. Interestingly, the same interaction with
the MI cue was also significant, b = 7.50, t = 3.33, p , .001, with a
positive beta estimate, suggesting that the Stroop effect was larger
when followed by the MI cue compared with that of the uncued
condition.15 Unlike the misleading cues, with the valid 50% congru-
ent cue, the Trial Type 3 Cue interaction was not significant, b =
�2.77, t = �1.20, p = .230. Of primary interest, the three-way inter-
action of Trial Type 3 Cue 3 Trial Position was significant with

Table 7
Generalized Linear Mixed Model Output of Cue Conditions (“MC Cue,” “Valid Cue,” “MI Cue,” Versus “Uncued”) in Experiment 5
of Bugg et al. (2015)

Predictor Estimates 95% CI t p

(Intercept) 620.89 [616.01, 625.77] 249.34 ,.001
Trial Type 111.82 [106.46, 117.18] 40.90 ,.001
MC Cue 3.10 [�1.27, 7.42] 1.41 .158
Valid Cue 2.99 [�0.54, 6.53] 1.66 .097
MI Cue 4.53 [0.36, 9.41] 2.83 .070
Trial Position 0.10 [�0.27– 0.47] 0.53 .598
Trial Type 3 Trial Position 0.42 [�0.25, 1.09] 2.35 .216
Trial Type 3 MC Cue 27.86 [22.46, 33.26] 10.22 ,.001
Trial Type 3 Valid Cue �2.77 [�7.30, 1.76] �1.20 .230
Trial Type 3 MI Cue 7.50 [3.08, 11.92] 3.33 ,.001
Trial Type 3 MC Cue 3 Trial Position �1.06 [�1.92, �0.21] �2.45 .014
Trial Type 3 Valid Cue 3 Trial Position 0.16 [�0.93, 0.62] �0.39 .693
Trial Type 3 MI Cue 3 Trial Position �1.21 [�1.99, �0.43] �3.04 .002

Note. The interpretation of the cuing effects should be made in comparison with the uncued list, which served as the reference group in this model.
Additionally, note that the Trial Type 3 Trial Position interaction represents that interaction within the reference group (uncued lists). MC = mostly con-
gruent; MI = mostly incongruent; CI = 95% confidence interval.

15 At first glance, this may seem surprising considering that the MI cue
is expected to heighten control. It is helpful to remember that the beta
estimate for the Trial Type3 Cue interaction indicates the difference in the
Stroop effect between cued and uncued lists when trial position is zero (i.e.,
zero experience; see Footnote 11). If one extends the blue/solid (cued MI)
and yellow/dashed (uncued) lines to position zero in Figure 5c (see also
Figure 6c the), the blue/solid line is above the yellow/dashed line (meaning
a larger Stroop effect for MI cued than uncued). The positive beta estimate
might also be an artifact of the linear assumption that we had taken in the
GLMM analysis, as Figure 5c suggests that initially (in Trial Positions 1
and 2) the cueing effect was in the right direction for the MI condition (see
also Figure 6c).
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Figure 5
Model-Predicted Stroop Effect as a Function of Cue and Trial Position for (a)
Mostly Congruent (MC) Cue, (b) Valid Cue, and (c) Mostly Incongruent (MI)
Cue in Experiment 5 of Bugg et al. (2015)

Note. Each data point indicates the Stroop effect calculated from raw data. The solid and
dashed lines indicate the cued (80% matching, 50% matching, & 80% conflicting) and
uncued conditions, respectively, in Panels a - c. Error bars depict 61 standard error. See
the online article for the color version of this figure
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the MC cue, b = �1.06, t = �2.45, p = .014, and the MI cue, b =
�1.21, t = �3.04, p = .002, but not with the valid cue, b = .16, t =
�.39, p = .693.
The three-way interactions are illustrated in Figure 5. As Figure

5a shows, with the MC cue, the Stroop effect was initially large but
decreased as the list progressed, resulting in a larger cuing effect in
the initial part of the list. With the MI cue (Figure 5c), the Stroop
effect also decreased as the list progressed. There was no effect of
the valid cue as the overlapping trend lines in Figure 5b indicate.
The second GLMM analysis was conducted to examine individ-

ual slopes separately. The results showed that all slopes were not
different from zero, MC cue (b = �1.14, t = �1.56, p = .118), MI
cue (b = .28, t = .50, p = .618), valid cue (b = .09, t = .19, p = .853),
and uncued (b = �.23, t = �.41, p = .679). The results of the indi-
vidual slope analyses, especially for MC cued lists, were surprising,
given the significant Trial Type 3 Cue 3 Trial Position interaction
(see Table 7). To examine whether the lack of steepness in the indi-
vidual slopes might be attributable to the noisiness of the individual
trial position estimates, we combined adjacent trials (e.g., Trials 1
and 2) so that each chunked trial unit had more observations (result-
ing in a total of 10 positions as in Analyses 1–3).16 Figure 6 illus-
trates the three-way interactions with the chunked trial position.
The model outcome with the chunked trial position mirrored the

original results (see full results from Table S21 in the online sup-
plemental materials). The individual slope analysis showed that,
with the chunked trials, the slope was significantly steeper than
zero for MC cued lists (b = �2.46, t = �2.38, p = .018). However,
slopes with MI cue, valid cue, and uncued lists were not different
from zero (see Table S22 in the online supplemental materials for
the full summary).

Discussion

We reanalyzed Experiment 5 of Bugg et al. (2015) where the
experience was matched across all lists to be 50% congruent, and
a precue provided invalid information such that 80% of

upcoming trials will be conflicting or matching, or valid informa-
tion (50% congruent). The results of Bugg et al. suggested that
expectation-driven control influenced performance in the initial
trials, whereas experience-driven control dominated in the later
trials. We investigated these patterns further with GLMM and
found several interesting patterns that were not revealed from the
mean-level analysis in the original report. With the MC cue (Fig-
ures 5a and 6a), the Stroop effect initially increased indicative of
a relaxation of control and then gradually decreased as experi-
ence accumulated (as participants learned the list was 50% con-
gruent). Given that experience did not change over the course of
the list (i.e., the entire list was 50% congruent), we believe the
initial shift and later decay can be interpreted as a waxing and
waning of the expectation-driven control. With the MI cue, the
model-predicted Stroop effect showed that the changes were less
pronounced immediately following the precue and were rela-
tively gradual thereafter as can be seen by the decreases in the
Stroop effect with increasing trial position (Figure 5c). This pat-
tern is clearly contrasting to the typical effects of the MI cue as
illustrated in the model-predicted Stroop effects from Analyses 2
and 3 (in Figures 3d and 4d) that showed immediate changes in
the Stroop effect following the precue when there was a signifi-
cant cue-induced shift in the MI list (speeded & high incentive
MI conditions). However, the raw data plotted in Figures 5c and
6c raise the possibility that there was an initial heightening of
control immediately following the MI cue (as is apparent at Trial
Position 1 and Trial Chunk 1, respectively) but it was not

Figure 6
Model-Predicted Stroop Effect as a Function of Cue and Trial Chunk for (a) Mostly Congruent
(MC) Cue, (b) Valid Cue, and (c) Mostly Incongruent (MI) Cue in Experiment 5 of Bugg et al.
(2015)

Note. Each data point indicates the Stroop effect calculated from raw data. The solid and dashed lines indi-
cate the cued (80% matching, 50% matching, & 80% conflicting) and uncued conditions, respectively, in
Panels a - c. Error bars depict 61 standard error. See the online article for the color version of this figure.

16We thank Giacomo Spinelli for suggesting this approach. For
completeness, we also re-analyzed the data from Analysis 1–3 using the
chunked trials approach and the results are available in the online
supplemental materials (Table S15–S20). The results replicated the original
pattern of results but some beta estimates, those originally not significant,
became significant (three-way interaction of MI lists in Analysis 1, Trial
Type 3 Cue interaction of unspeeded MC lists in Analysis 2, steepness of
slope of uncued speeded MC lists in Analysis 2).
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captured by the linear model. We consider this possibility further
in the General Discussion.

General Discussion

The present study had two major goals. One was to examine the
learning processes underlying the LWPCE (experience-driven
control). The second and main goal was to reveal whether such
learning processes are influenced by precued knowledge about
prospective conflict (expectation-driven control). First, we summa-
rize the main findings informing how cognitive control is shaped
by the adaptive weighting of experience and expectations.
In Analyses 1–4, we demonstrated the unique signatures of ex-

perience-driven control (control learning) and expectation-driven
control, and their interaction by modeling slopes of the Stroop
effect as a function of the accumulated experience in MC and MI
lists and comparing the slopes between uncued and cued condi-
tions. The modeling results revealed several important observa-
tions that have never been illuminated in prior studies that used
mean level analyses. To begin with, we summarize three major
findings. First, the analyses revealed evidence of control learning
underlying the LWPCE for the first time. In our modeling results,
the Trial Type 3 Trial Position interaction17 showed that the
Stroop effect exhibited a gradual increase or decrease as experi-
ence accumulated in MC and MI lists, respectively (see Table 8).
This incremental pattern suggests that participants relaxed or
heightened the extent of attentional control by continuously updat-
ing information about upcoming conflict from experience via
learning processes.
Second, we found different signatures of control learning depend-

ing on the presence of a precue in select data sets.18 In the modeling
output, we were able to verify this by evaluating the Trial Type 3
Cue3 Trial Position interaction. With the precue, the learning effect
was often absent or weak, showing a relatively stable Stroop effect
regardless of the amount of experience. This pattern fits well with
our initial prediction of Model 119 (see Figure 1), which illustrates a
dominant expectation-driven control when the precue is available.

However, it is notable that the extent to which experience-driven
control was modulated by the precue was more consistently evident
in MC lists compared with MI lists as the latter list type showed a
marginal or nonsignificant three-way interaction in all but one of the
MI data sets (see Table 8), which is more consistent with Model 2.
Although the three-way interactions in MI lists often failed to reach
statistical significance, the predicted RT consistently illustrated a rel-
atively flatter slope (i.e., Stroop effect as a function of trial position)
with the cue compared with without the cue (consistent with Model
1). Therefore, the lack of interaction may reflect a lack of statistical
power as the effect of the cue on the Stroop effect tended to be
weaker in MI lists.20 This may have made it difficult to detect a
modulating effect of the cue on patterns of control learning.

Table 8
Summary of Model Output in Analyses 1–3

Data set Condition Predictor

MC MI

Estimated
coefficient p Model

Estimated
coefficient p Model

Analysis 1 (Experiment 1
and 2 of Bugg et al., 2015)

Trial Type 3 Cue 98.90 ,.001
Model 1

�8.99 .125
Model 2Trial Type 3 Trial Position 10.10 ,.001 �2.95 .003

Trial Type 3 Cue 3 Trial Position �9.11 ,.001 1.53 .126
Analysis 2 (Experiment 3 of

Bugg et al., 2015)
Unspeeded Trial Type 3 Cue �12.21 .151

Model 4
�19.81 .009

—Trial Type 3 Trial Position 0.83 .642 �2.10 .112
Trial Type 3 Cue 3 Trial Position 10.13 ,.001a 2.27 .100

Speeded Trial Type 3 Cue 50.10 ,.001
Model 1

�32.62 ,.001
Model 1Trial Type 3 Trial Position 5.25 .001 �6.59 ,.001

Trial Type 3 Cue 3 Trial Position �4.38 .032 5.14 ,.001
Analysis 3 (Experiment 4 of
Bugg et al., 2015)

Low incentive Trial Type 3 Cue 51.98 ,.001
Model 1

�7.02 .209
Model 2Trial Type 3 Trial Position 7.31 ,.001 �3.33 .001

Trial Type 3 Cue 3 Trial Position �4.75 ,.001 1.13 .230
High incentive Trial Type 3 Cue 46.46 ,.001

Model 5
�11.35 .007

—Trial Type 3 Trial Position 3.66 ,.001 �0.86 .317
Trial Type 3 Cue 3 Trial Position �1.48 .261 �0.21 .804

Note. — = Data do not fit in any of the proposed models. The model refers to the predicted model that is most consistent with the GLMM outcomes (see
Figure 1 for reference). MC = mostly congruent, MI = mostly incongruent.
a Estimated b parameter showed a reversed direction.

17 The Trial Type 3 Trial Position interaction was significant in a
meaningful direction in the following conditions: MC and MI lists in
Analysis 1, speeded condition of Analysis 2, low incentive condition of
Analysis 3, and MC list only in high incentive condition in Analysis 3.

18 In MC lists, the three-way interaction was significant in Analysis 1,
the speeded condition of Analysis 2, and the low incentives condition in
Analysis 3. In MI lists, the interaction was significant in the speeded
condition of Analysis 2.

19 Our interpretation that the overall data fit with the prediction of
Model 1 is based on a relatively strict interpretation of the data, namely that
in the cued condition the slope was not different from zero. However, there
often was a nonsignificant slope in the expected direction for the cued
condition, which raises the possibility that the slope is real, but detecting
the effect may require more power than the individual analyses reported in
this manuscript can offer especially considering experience-driven learning
is reduced in cued conditions. If the slope is real, then a different model
(e.g., Model 3) may be the better fitting model. We thank Giacomo Spinelli
for pointing this out.

20 Supporting this view, the chunked trial position analysis (see Table
S15 and S16 in the online supplemental materials), which is presumably a
more powerful approach because the individual cells (each chunked trial
position) are based on more observations, revealed that Model 1 might be
the best fitting model for MI lists in Analysis 1 (three-way interaction was
significant, b = 3.45, t = 1.98, p = .048, and Trial Type 3 Cue interaction
was marginally significant, b =�11.05, t =�1.91, p = .056).
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Lastly, in Analysis 2 and 3, the expectation-driven control var-
ied based on the demand on preparatory control as well as the
magnitude of projected incentives. In specific, we found that both
MC and MI lists showed a robust cuing effect (Trial Type 3 Cue
interaction) when the use of the precue was encouraged (speeded
lists in Analysis 2 and high incentive lists in Analysis 3). In con-
trast, when the use of the precue was relatively not encouraged
(unspeeded lists in Analysis 2 and low incentive lists in Analysis
3), the cuing effect was weaker or even absent. These results con-
firm the initial observations of Bugg et al. (2015) but extend them
by showing that, in contrast to the conclusion of Bugg et al., the
cue-induced shift in MI lists was not limited to the first trial (Bugg
et al. found a cuing effect on the first trial but not in the analysis
comparing mean Stroop effects for the entire list). Taken together,
these three major findings provide converging evidence to support
the notion that the weighting of experience- and expectation-
driven control appears to be dependent on the demand on prepara-
tory control as well as motivation to utilize the cue.

Speed Versus Incentives

In the experiments that yielded data for Analysis 2 and Analysis
3, speed and incentive manipulations were used to facilitate the
adoption of the precue by participants. Although both manipula-
tions had the same general purpose, they seem to be tapping
slightly different operating principles. For example, in the speeded
condition of Analysis 2, the cue was intended to have participants
preload (especially in MI lists) a “focused” attentional setting prior
to the stimulus (e.g., color word) onset because the stimulus was
expected to remain on the screen for a brief time. On the other
hand, in the high incentive condition of Analysis 3, the cue primar-
ily aimed to increase the level of participants’ motivation by hav-
ing them actively gathering and utilizing information that would
benefit performance including the precue. Therefore, it is possible
that speed and incentive manipulations are fundamentally different
in terms of whether the use of the precue was caused by external
factors such as experimental structure or internal factors such as
motivation. However, the mean level analyses of Bugg et al. could
not inform this possibility. In line with this possibility, the model-
ing outputs of Analysis 2 and Analysis 3 showed contrasting pat-
terns (see model-predicted Stroop effects in Figures 3 and 4). In
Analysis 2 speeded condition, there was evidence for cue-influ-
enced control learning in MC and MI lists such that the difference
between the cued and uncued slopes was significant (flatter for
cued). In Analysis 3 high incentive condition, although the precue
shifted the Stroop effect in MC and MI lists, the uncued and cued
slopes were parallel to each other in both list types (i.e., there was
no evidence for cue-influenced control learning). This is theoreti-
cally interesting because it suggests that, under prospective high
incentives, the cue heightened control while concurrently enabling
control learning, whereas in the speeded conditions, the cue
heightened control but attenuated control learning (such that the
effect of the cue was more apparent early in the list before experi-
ence caught up in the uncued condition). Another interesting find-
ing from Analysis 3 is that both cued and uncued slopes in high
incentive MI lists were not different from zero, indicating the ab-
sence of control learning. One possible post hoc explanation is
that, when highly motivated, people rely more on explicitly pre-
sented knowledge (i.e., certainty) and such heavy reliance on the

explicit source of information (expectations) counteractively pre-
vents recruitment of experience-driven control.

Asymmetric Effect of Precue

In the present study, we found a persistent MC-shift but mixed
evidence of an MI-shift (see Table 8). This asymmetric cuing
effect is not completely unexpected given similar results have
been reported in the literature, including in the data used in the
present analyses (Bugg et al., 2015; Correa et al., 2009; Ghinescu
et al., 2010; Gratton et al., 1992; Liu & Yeung, 2020; see also
Bugg & Diede, 2018). What causes this asymmetric influence of
the precue remains an open question.

The original and follow-up studies (Bugg et al., 2015; Bugg &
Diede, 2018) discussed two possibilities that could explain the
lack of MI-shift (i.e., Trial Type 3 Cue interaction). First, in an
MI list, it is possible that participants might have already reached
the ceiling in minimizing word reading in the current paradigm
even without the cue, leaving no extra room for adjustment in
attentional control. Second, it is also plausible to assume that par-
ticipants simply did not use the cue because they thought the cue
was not useful. In line with this, Gratton (1992) provided a similar
explanation such that the lack of an MI-shift could be due to a ceil-
ing effect or low demand of the cue use. Recently, Aben et al.
(2017) suggested an alternative explanation interpreting the asym-
metry as a consequence of different timescales of control between
MC and MI lists. According to them, attentional control operates
on a longer timescale in frequent conflict contexts (MI lists) and
therefore a cue-induced heightening of attentional control could
not be achieved in a relatively short time scale after the cue was
provided in 10-trial lists. They also attributed the prevalent MC-
shift to the fact that attentional control works in a relatively shorter
timescale in rare conflict contexts (MC lists), thus it allows the
cue-induced adjustment in control within a range of 10 trials. This
is an interesting possibility. The new analyses performed herein
suggest this explanation may not be complete because, when the
MI-shift was observed, it was more evident during the early trials
within the list.

Although all the prementioned explanations provide reasonable
accounts, empirical evidence is still lacking primarily because the
prior cuing literature has been focused on the role of the precue as
an information carrier rather than understanding how people
actually use the cue. In Bugg et al. (2015), some efforts were made
to further explore the absence of an MI-shift by encouraging precue
use in Experiments 3 and 4. By using the same data sets, but apply-
ing GLMM, the current analyses revealed that an MI-shift was
observable when the use of the precue was encouraged, thereby
providing support for the view that participants may have otherwise
defaulted to not utilizing the precue.

Motivation or willingness to use the precue seems to play a role
in MC lists as well. In Analysis 2 unspeeded MC lists, we observed
an unexpected pattern showing a gradual relaxation in control in the
cued lists (evidence for control learning) but lack of such an effect
in uncued lists. Although it is speculative, when the perceived
demand of control is relatively low (as in MC unspeeded lists when
MC speeded lists also exist), the precue might facilitate control
learning that otherwise would not occur without the cue. Regardless
of whether this speculation is true, the asymmetric pattern compar-
ing speeded and unspeeded conditions provides a hint of a
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minimum amount of task (cue) demand that may be a prerequisite
to produce the MC shift.
Why do MI lists require a stronger motivation or demand to en-

courage use of the precue compared with MC lists although the
precue is presumably more beneficial in high conflict contexts?
We speculate that the answer may reflect decision making princi-
ples centered on tradeoffs between reward and cost. It has been
suggested that people tend to perceive cognitive effort as a cost in
the decision-making process, namely the “law of least mental
effort” (Braver et al., 2014; Kool et al., 2010; Shenhav et al.,
2013). According to this view, if the perceived subjective value of
goal-directed behavior (e.g., naming the color) is greater than the
perceived cost related to the effort, people are willing to make an
effortful choice. What this account illustrates aligns well with the
lack of MI-shift that we observed in Analysis 1, in the unspeeded
lists in Analysis 2, and in the low incentive lists in Analysis 3, and
other cuing studies. It is possible that participants did not use the
precue in these MI lists because the perceived value of the
expected cognitive effort associated with utilizing the precue was
less than that of the color naming behavior in this high conflict
context. However, when high incentives were provided as in Anal-
ysis 3, the perceived value of using the precue may have been
greater than that of the color naming behavior and thus partici-
pants made a costly choice by adopting the precue. Additional em-
pirical validation must follow in future studies.

The Role of Cue Validity

In Analysis 4, we examined isolated effects of expectations by
reanalyzing the data set of Experiment 5 in Bugg et al. (2015) that
used the invalid cues (in addition to a validly cued and an uncued
condition) while keeping the experience constant at 50% congru-
ent. Consistent with the original finding of Bugg et al. (2015), we
found a significant slope difference between uncued and mislead-
ing cue conditions. Both MC and MI cues showed negative slopes.
The negative slope with the MC cue (Figures 5a and 6a) suggests
that participants temporarily relaxed control followed by the MC
cue, but gradually abandoned relying on the cued information as
they accumulated experience. However, the slope was also nega-
tive with the MI cue (Figures 5c and 6c), meaning the model pre-
dicted that the Stroop effect would decrease over the course of the
list, suggesting that participants maintained the heightened control
state during the entire list. The negative slope was surprising
because we initially expected that the Stroop effect would decrease
immediately following the cue and then gradually increase toward
the end of the list as they abandoned the cue (with accumulated ex-
perience). There are a few possible explanations for the negative
slope with the MI cue. First, it is possible that the negative slope
could be an artifact of the linear model that we used in the GLMM
analysis. Supporting this idea, the raw data points in Figure 5c (or
Figure 6c) at Trial Position 1 (or Trial Chunk 1) indicate that there
was an initial heightening of control following the MI cue, but this
was not captured by the model. Alternatively, it is possible that the
negative slope reflects the true nature of expectation-driven control
following an MI cue, but it was not revealed earlier in Analyses
1–3 because there was not enough room for control to be exerted
further (i.e., ceiling effect) in the MI lists used in those analyses. If
this is true, the flat slope that we reported earlier with the valid MI
cue could have been a negative slope if there was room for

additional control heightening. Lastly, we speculate that the nega-
tive slope may reflect the asymmetry in shifting attentional con-
trol. Abrahamse et al. (2013) found that the LWPC effect was
smaller when participants performed traditional (long) lists in the
MI-MC compared with MC-MI order, a pattern called the asym-
metrical list shifting effect. Drawing on this effect, it is possible
that participants had a hard time detecting the list PC (that half the
trials were congruent/incongruent) and/or relaxing control after
they initially heightened control following the MI cue (as indicated
by trial Chunk 1 in Figures 5c and 6c), resembling the MI-MC
shift. Though additional data are needed to further examine these
possibilities, the results of Analysis 4 showed that expectations
alone affect control and may change one’s perceptions of experi-
ence, thereby influencing the development of an optimal control
strategy.

Limitations and Future Directions

Although our results provide novel insights into how the cogni-
tive control system achieves an optimal behavioral outcome
through adaptive weighting of expectations and experience, as
illustrated by the trial-to-trial changes in the Stroop effect under
cued and uncued conditions, which has never been investigated
previously, there are several limitations that could be potentially
addressed by future studies. First, in the present analyses, many
conditions were never directly compared (e.g., MC vs MI, speeded
vs. unspeeded, high incentives vs. low incentives, etc.) because
those comparisons were outside the scope of our primary goals
and complex models with additional factors often fail to converge
especially with a limited sample size. However, with a larger data
set, future studies will be able to run a complex model to directly
test how adaptive weighting of expectation- and experience-driven
control interact with factors such as PC or incentives.

Second, there may be additional models that merit consideration
beyond the five models we specified in the introduction section.21

For example, precues might induce an immediate shift in expecta-
tion-driven control (as in Models 1, 3, and 5) and simultaneously
boost experience-driven control learning (as in Model 4). More
generally, models that embrace the theoretically plausible possibil-
ity that precue usage may vary across trials independent of varia-
tions owing to experience-driven control learning should be
considered in future research. For example, it is possible that par-
ticipants might get better at translating their expectations into
attentional biasing strategies across trials. Alternatively, it may be
that sustaining a heightened state of control in response to an MI
precue may be difficult such that use of the precue decays across
trials, or the precue may simply be forgotten. Indeed, the precue
was always presented once at the beginning of the list in the stud-
ies we modeled. To prevent the retrospective forgetting of the
cued information, future studies might consider modifying the
way that the precue is presented, for instance it could remain on
the screen during the task. This may yield stronger or longer-last-
ing effects of the cue (e.g., in MI lists) or be more likely to lead to
cue-influenced control learning (changes in the slope in the pres-
ence vs. absence of the cue). Additionally, we recognize that the
assumption of a linear relationship between the amount of

21We thank Tobias Egner and Giacomo Spinelli for suggesting
consideration of these other model possibilities.
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experience and corresponding changes in control might not reflect
the true nature of learning. Indeed, it is possible that the signature
of experience-driven control would be better captured with a non-
linear function, such as a typical learning curve that is well fitted
by an exponential function (Ebbinghaus, 1885/1913). Similarly, it
is possible that the signature of expectation-driven control may
also be better captured by a nonlinear function. For example, in
Analysis 4, the best-fitting line for the MI precue may be one that
shows an initial dip (implying an initial heightening of control
[consistent with the first trial chunk]) followed by a peak (imply-
ing some relaxation of control) and subsequently a gradual
reheightening of control.
Third, the present analyses were limited to the abbreviated lists

paradigm and the color-word Stroop task. Therefore, generaliza-
tion to longer-list paradigms and other tasks remains to be tested.
With respect to list length, we are only picking up on the initial
stages of experience-driven control learning in our 10-item (or 20-
item as in Analysis 4) lists. The learning dynamics would likely
look different in longer lists, for example, the rate of control learn-
ing would possibly asymptote at some point.
Fourth, as Bugg et al. (2015) acknowledged, the design of the

experiments does not allow us to break down what we referred to
as experience-driven control learning into various sources (i.e.,
conflict probabilities, contingencies, temporal rhythms, control
states, etc.). Therefore, we cannot pinpoint what exactly is learned
trial-to-trial that changes the magnitude of the Stroop effect. How-
ever, there is evidence from the abbreviated list paradigm showing
that when there are four inducer items (i.e., four colors/words that
are MC or MI within the MC and MI lists) as in the present lists,
performance differences are also detected on diagnostic trials (i.e.,
stimuli comprised of differing colors/words that are 50% congru-
ent in MC and MI lists) consistent with the view that the lists
induce differences in control at the list level (Cohen-Shikora et al.,
2018). Future studies could shed further light on this question by
examining whether there are unique signatures of learning (i.e.,
slopes) depending on the source using the analytic approach we
developed, and relatedly whether evidence for cue-influenced con-
trol learning varies depending on the information communicated
by the cue. The cues in the present study explicitly informed par-
ticipants of the conflict probability within a list. Informing partici-
pants of contingencies (i.e., when you encounter BLUE it will
usually be in blue ink) instead could have different effects (e.g.,
there may not be a cuing effect) and may interact differently with
control learning.
One source whose putative role we were able to explore more

directly in the current study was episodic binding (e.g., Giesen
et al., 2019; Schmidt et al., 2020), and namely the extent to which
our effects are better described by episodic contributions (repeti-
tion of word-distractor pairings within a list) as opposed to control
or control learning.22 The fact that the slopes for control learning
tended to be steeper in MC and MI lists is potentially consistent
with such an account and could reflect that there are more likely to
be repetitions of the same word-distractor pairing in MC lists than
MI lists (given there are only four possible congruent pairings
compared with 12 possible incongruent pairings). To examine
such episodic contributions, we performed three steps. First, we
used the combined data set from Analysis 1, which represents the
basic LWPC manipulation, and we examined the LWPC effect
when prior exact repetitions were excluded. The results showed

that the LWPC effect remained intact (typical pattern) and robust
even in a quite restrictive case where we excluded exact repetitions
occurring as many as eight trials back in the list (see Figure S8 in
the online supplemental materials). Second, we ran a GLMM anal-
ysis to examine the contribution of prior repetitions (n � 1, n �
2. . .n � 9) to the LWPC effect (see Table S10 in the online sup-
plemental materials). The key results were that (a) the LWPC
effect remained significant regardless of the inclusion of prior rep-
etitions and (b) the n � 1 and n � 2 repetition effects were signifi-
cant. This means that although episodic effects may be at play in
the present paradigm, at least for exact repetitions that occur one
or two trials back, controlling for such effects does not eliminate
the LWPC effect. Based on these results, it seems hard to claim
that the experience effect (LWPC) reflects episodic binding
instead of learning. However, because the learning component is
really captured more directly by the slopes, in the third step the
same GLMM models as originally reported for Analysis 1 (and
then all subsequent analyses) were run after excluding exact repe-
titions (as in Analysis 3 of Schmidt et al., 2020). The results of
these new analyses mirrored the original models (that did not
exclude exact repetitions; see Table S11–S14 in the online supple-
mental materials for the full summary). Collectively, the findings
of these additional analyses suggest the experience-based adjust-
ments underlying the LWPC effect result from a learning process
as opposed to episodic repetition effects, and the learning process
is driven by experiences with conflict (past experiences with con-
trol) and not simply repetition of recent trials.23

Despite those limitations, our findings convey novel information
that informs understanding of the flexible and adaptive nature of
cognitive control. We suggest that the modeling approach intro-
duced in the present study, in conjunction with the abbreviated-
lists paradigm, could be broadly used to examine dynamic signa-
tures of cognitive control including the learning of control based
on experiences that accumulate across time, a goal that is not read-
ily achieved and/or possible with a traditional mean level analysis.

Conclusion

The purpose of this study was to examine the learning processes
that underlie the LWPCE and whether prior knowledge about
upcoming conflict via explicit precues influences such learning
processes. Applying a novel analytic approach, we showed for the
first time a gradual increase and decrease in the Stroop effect as ex-
perience unfolded in uncued MC and MI lists, revealing a signature
of experience-driven learning that underlies differences in control
between lists (i.e., the LWPCE). However, when a precue was pre-
sented to signal the upcoming conflict, we observed evidence that
the cue influenced the signature of learning, in addition to shifting
overall Stroop effects (e.g., larger in MC and smaller in MI lists).
Specifically, the evidence for learning was often absent or weak,
showing a relatively stable Stroop effect regardless of the amount

22We thank Luis Jiménez for raising this possibility and encouraging us
to run additional analyses to test for episodic effects.

23 It is worth noting that this conclusion is nonetheless compatible with
the possibility that LWPC effects may reflect adjustments that are based on
relatively recent learning (of control) based on conflict experiences within a
list and not an accumulation of all prior experiences within the list (see,
e.g., Colvett et al., 2020; Jiménez & Méndez, 2013).
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of experience within the list. This pattern was more consistently
observed in MC than in M Ilists, although not exclusively so, and
the pattern suggests that in the cued lists control was mainly driven
by explicit knowledge of conflict probability (i.e., expectations) and
not the adaptive learning processes. In addition, our analyses also
revealed that increased task demands (speeded) and motivation
(high incentives) tended to shift the weighting in favor of expecta-
tions based on the precue, including in MI lists where Bugg et al.
(2015) had previously found cuing effects to be limited to the first
trial. We suggest that the present findings provide a proof-of-princi-
ple so to speak demonstrating that the analytical approach intro-
duced and applied for the first time herein could be widely applied
in future studies to enhance our understanding of (a) hidden learn-
ing processes that underlie cognitive control and (b) how control is
optimized via the adaptive weighting of learning and external
knowledge (experience and expectations).
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