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Abstract

The domain of cognitive control has been a major focus of experimental, neuroscience, and 

individual differences research. Currently, however, no theory of cognitive control successfully 

unifies both experimental and individual differences findings. Some perspectives deny that there 

even exists a unified psychometric cognitive control construct to be measured at all. These 

shortcomings of the current literature may reflect the fact that current cognitive control 

paradigms are optimized for the detection of within-subject experimental effects rather than 

individual differences. In the current study, we examine the psychometric properties of the Dual 

Mechanisms of Cognitive Control (DMCC) task battery, which was designed in accordance with 

a theoretical framework that postulates common sources of within-subject and individual 

differences variation. We evaluated both internal consistency and test-retest reliability, and for 

the latter, utilized both classical test theory measures (i.e., split-half methods, intraclass 

correlation) and newer hierarchical Bayesian estimation of generative models. Although 

traditional psychometric measures suggested poor reliability, the hierarchical Bayesian models 

indicated a different pattern, with good to excellent test-retest reliability in almost all tasks and 

conditions examined. Moreover, within-task, between-condition correlations were generally 

increased when using the Bayesian model derived estimates, and these higher correlations 

appeared to be directly linked to the higher reliability of the measures. In contrast, between-task 

correlations remained low regardless of theoretical manipulations or estimation approach. 

Together, these findings highlight the advantages of Bayesian estimation methods, while also 

pointing to the important role of reliability in the search for a unified theory of cognitive control. 

Keywords: cognitive control, reliability, individual differences, Dual Mechanisms of 

Control, hierarchical Bayesian modeling
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On the Psychometric Evaluation of Cognitive Control Tasks: 

An Investigation with the Dual Mechanisms of Cognitive Control (DMCC) Battery

Cognitive control refers to the set of processes involved in deliberate regulation of 

information processing to facilitate goal-directed behavior (Miller & Cohen, 2001). Nearly a 

half-century of research in cognitive psychology has been devoted to the development of 

experimental task paradigms designed to investigate the processes involved in cognitive control

(Posner & Snyder, 1975). Well-known examples from this literature include the Stroop, Simon, 

Flanker, Stop-Signal, Cued Task-Switching, AX-CPT, and certain variants of the Sternberg item-

recognition task. Most of the research in this literature has focused on detailed investigation of 

individual tasks and “benchmark findings” (e.g., the classic Stroop interference effect), as a 

means of testing theories and models regarding core mechanisms of cognitive control (Braem et 

al., 2019; Bugg, 2012; Kiesel et al., 2010; Verbruggen & Logan, 2009). However, more recent 

work has focused on the question of whether cognitive control can be considered a domain-

general construct, with individuals varying systematically (i.e., in a trait-like fashion) in 

cognitive control functioning. This shift in the literature has prompted a focus on analyses and 

measurement of individual differences in cognitive control tasks and batteries (von Bastian et al.,

2020).

The current study is situated relative to other recent attempts investigating the 

measurement of individual differences in cognitive control function (Friedman & Miyake, 2017; 

Frischkorn et al., 2019; Paap & Sawi, 2016; Rey-Mermet et al., 2018; Whitehead et al., 2019). 

Specifically, we focus on one of the key issues that has become of recent interest and 

controversy within this literature; namely, whether it is fundamentally problematic to utilize 

classic cognitive control tasks, which were developed within the tradition of experimental 
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psychology, to assess individual differences in control functions (Cooper et al., 2017; Hedge, 

Powell, & Sumner, 2018; Tucker-Drob, 2011). The cognitive control tasks developed from the 

experimental tradition are popular because their effects replicate under a wide variety of research

settings and task conditions. This success is largely attributable to a combination of low 

between-subject variance and high within-subject variance. Unfortunately, an individual 

differences approach requires the opposite, i.e., high between-subject and low within-subject 

variance. As a result, when these tasks are used in individual differences research, the measures 

have often been found to be inconsistent and unreliable, which has been recently termed “the 

reliability paradox” (Hedge, Powell, & Sumner, 2018; Kucina et al., 2022; Rey-Mermet et al., 

2018; Rouder & Haaf, 2019).

The development of the Dual Mechanisms of Cognitive Control (DMCC) project and 

task battery (Braver et al., 2021; Tang, Bugg, et al., 2021) was in part motivated by this paradox. 

A key distinguishing feature of the DMCC battery is that the tasks included in the battery were 

specifically designed to test the Dual Mechanisms of Control theoretical framework. This 

framework postulates distinct proactive and reactive modes of control (Braver, 2012; Braver et 

al., 2007), that may reflect key dimensions of individual variation in control function. The Dual

Mechanisms of Control account provides a theoretical framework that 

decomposes cognitive control into two qualitatively distinct mechanisms – 

proactive control and reactive control (Braver, 2012; Braver et al., 2007). 

Proactive control refers to a sustained and anticipatory mode of control that 

is goal-directed, allowing individuals to actively and optimally configure 

processing resources prior to the onset of task demands. Reactive control, by

contrast, involves a transient mode of control that is stimulus-driven, and 
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relies upon retrieval of task goals and the rapid mobilization of processing 

resources following the onset of a cognitively demanding event (Braver, 

2012; Braver et al., 2007). In other words, proactive control is preparatory in 

nature, while reactive control operates in a just-in-time manner. The DMCC 

task battery includes conditions that are designed to experimentally and independently bias 

participants towards the use of proactive and reactive control modes. In the current paper, we 

utilize the DMCC battery as a vehicle from which to evaluate theoretically-designed cognitive 

control tasks from the perspective of psychometric reliability and individual differences. 

In contrast to the selection of tasks used in prior work, we explicitly developed the 

DMCC task battery to more closely exemplify the integrated experimental/correlational approach

first advocated by Cronbach (1957). As Cronbach (1957) articulated, experimental evidence is 

standardly utilized to inform normative models of the structure and function of cognitive 

abilities, while correlational/differential data is used to investigate individual differences in those

abilities and their role in real-world behavior. Ideally, the experimental and differential 

approaches inform each other, allowing for a theoretical framework that integrates different 

kinds of empirical evidence and accounts for inter-individual differences in terms of intra-

individual psychological processes. 

The goal of the current study is to test whether a task battery designed in accordance with

a unifying theoretical framework, can more successfully bridge the divide between experimental 

and differential approaches in cognitive control research. As the DMCC battery utilizes 

theoretically motivated task manipulations, a critical question is whether such manipulations 

exhibit increased sensitivity to variation in task performance that is due specifically to 

differences in cognitive control as specified by the theory. In classical test theory, this proportion
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of variability is referred to as “true score variance” (Novick, 1966). Tasks that have high true-

score variance are also expected to exhibit stronger reliability and validity (Chapman & 

Chapman, 1978). In the sections that follow, we briefly review the literature on individual 

differences in cognitive control, the approaches used to assess such individual differences, and 

measurement issues associated with the evaluation of task reliability. 

Measuring Individual Differences in Cognitive Control

Individual differences in cognitive control are associated with several important real-

world outcomes, including psychopathology (Snyder et al., 2015), impulsivity (Sharma et al., 

2014), addiction (Hester & Garavan, 2004), and age-related cognitive decline (Hasher et al., 

1991). The ability to engage cognitive control is strongly linked to working memory capacity, 

which is associated with a broad range of outcomes, including academic achievement (Alloway 

& Alloway, 2010; Gathercole et al., 2003), reading comprehension (Daneman & Carpenter, 

1980), mathematical ability (Ramirez et al., 2013), and multi-tasking (Redick et al., 2016). 

Cognitive control plays an important role in contemporary theories of intelligence. By some 

accounts, cognitive control is considered to be the primary source of variance in overall 

cognitive ability (Engle & Kane, 2004; Kovacs & Conway, 2016). 

Despite these established findings, a major concern in the field is that the tasks used to 

measure cognitive control often show poor reliability and weak correlational results. Recently, 

several research groups reported low task reliabilities and/or weak between-task correlations, 

especially with respect to tasks thought to index aspects of inhibitory control (Hedge, Powell, 

and Sumner, 2018, Rey-Mermet et al., 2018, and Stahl et al., 2014). For example, in the Hedge, 

Powell, and Sumner (2018) study, the median test-retest reliability across 7 classic experimental 

effects (e.g., Stroop, flanker) was surprisingly low, with a median of .401. Similarly, across 

1
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multiple studies, the correlation between flanker (Eriksen & Eriksen, 1974) and Stroop (Stroop, 

1935) effects was below .20 (Draheim et al., 2020; Gärtner & Strobel, 2019; Hedge, Powell, & 

Sumner, 2018; Rey-Mermet et al., 2018). Based on these and other similar dismal correlational 

results, Rey-Mermet et al. (2018) concluded, “we should perhaps stop thinking about inhibition 

as a general cognitive construct”. 

One of the key concerns raised by these findings is whether classic experimental tasks are

suitable for examining individual differences (Tucker-Drob, 2011). The current literature 

suggests three important issues that complicate the measurement of individual differences in 

cognitive control. One, experimental tasks are designed to minimize between-subject variance, 

which increases group-level sensitivity to experimental manipulations, but makes it difficult to 

tease apart individual variation and consistently rank individuals by performance; this factor may

be a primary source of poor reliability when such tasks are used in individual differences 

research (Hedge, Powell, & Sumner, 2018). Two, the popular use of difference scores further 

accentuates the issue of low reliability, because it increases the ratio of measurement error to 

between-subject error (Cronbach & Furby, 1970; Hedge, Powell, & Sumner, 2018). And three, 

the correlation between two measures of cognitive control (e.g., Stroop effect and flanker effect) 

will be constrained by the reliability of each measure, so conclusions drawn from the 

correlational results are themselves inconsistent and unreliable (Nunnally Jr., 1970; Parsons et 

al., 2019; Spearman, 1904). Thus, based on these reliability issues, it could be argued that the 

examination of relationships between individual difference measures extracted from 

experimental tasks (i.e., between-task relationships) maybe highly problematic in a foundational 

way (Spearman, 1910).

The Measurement and Reporting of Reliability

Test-retest reliability magnitude below .50 is considered poor (Koo & Li, 2016).
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 In addition to the concerns regarding the measurement of individual differences in 

experimental tasks, there are numerous issues related to the measurement and reporting of 

reliability itself. One of the most important issues is that reliability is actually only infrequently 

reported in cognitive individual differences analyses (Parsons et al., 2019). As described above, 

part of the reason may be that experimental researchers often have less fluency and familiarity 

with psychometric issues, including a confusion regarding the technical meaning of reliability as 

it is utilized in psychometrics. A potential source of confusion may be that the term “reliable” 

has different meanings in experimental versus correlational psychology. An experimental 

manipulation is “reliable” when the intended effect is replicated across multiple studies (in 

different labs, with different stimuli, etc.). In contrast, an individual differences measure is 

considered “reliable” when it consistently gives similar rankings for individuals. This lack of 

concern regarding psychometric reliability may be one of the reasons it has not been typically 

considered as a source of poor correlational results (Flake et al., 2017; Hussey & Hughes, 2020). 

Conversely, based on this confusion, some results may have been erroneously reported as 

replicable and generalizable, perhaps propagating false standards in the field (e.g., the replication

crisis). 

A second and more fundamental issue is that there is currently no gold-standard 

procedure for estimating reliability, particularly for experimental tasks (Parsons et al., 2019).  

Consequently, even when reliability is reported for these tasks, it is not always clearly 

communicated what estimation approach was utilized, which can lead to erroneous assumptions 

regarding the reliability of a particular experimental measure. Relatedly, although many 

statistical software packages supply functionality for computing reliability, these packages 

assume that the data conforms to analysis-specific assumptions which may not be valid for 
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common experimental tasks and measures. An illuminating example can be seen in the case of 

Cronbach’s alpha, a measure of internal consistency, which is probably the most common and 

well-known index of reliability. Alpha is most commonly derived by averaging the correlations 

between each item (trial) and the sum of the remaining items (trials). The default method offered 

in statistical software packages calculates alpha based on the assumption that items and the order

of the items are identical for all subjects. Furthermore, it is assumed that each item measures the 

same underlying construct, to varying degrees, as a function of item difficulty and 

discriminability. In survey research, this is often the case. However, in cognitive-behavioral 

tasks, trial order is often random. More concerning, the cognitive processes involved in task 

performance may change across trials, as a function of practice, fatigue, sequential effects, or 

strategy development/deployment. If these issues are ignored, which is typically the case, then 

reliability estimates may not be accurate or valid. Hence, Cronbach’s alpha is unsuitable for tasks

designed to measure individual differences in cognitive control. 

There are other issues with the use of Cronbach’s alpha as a measure of split-half 

reliability. Formally, if the assumptions above hold, Cronbach’s alpha is identical to the average 

of all correlations between two halves of the data. However, split-half reliability is most 

commonly calculated in a sample by splitting the data – once – into the first and second half or 

even- and odd-numbered trials, and computing the correlation between these measures. 

However, it has been demonstrated that split-half reliabilities based on these kinds of simple split

methods are unstable. Enock et al. (2012) showed that reliabilities vary depending on which 

trials were used in the partitioning. They recommend applying multiple random splits to the data 

to generate multiple split-half reliability estimates and then taking the average of all split-half 

estimates as the overall reliability estimate (Enock et al., 2012; Parsons et al., 2019). This 
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permutation-based method for calculating split-half reliability approximates Cronbach’s alpha

(Cronbach, 1951), while simultaneously avoiding the pitfalls described above. However, another 

important issue is that splitting the number of observations in half leads to underestimation. The 

Spearman-Brown (prophecy) formula can be applied to correct for this underestimation 

(corrected reliability = [2*reliability] / [1+reliability]), yet this correction approach is not well-

known or frequently utilized. 

A third important issue is that internal consistency reliability is not the same as test-retest 

reliability. The measurement and utilization of test-retest reliability can be used when the same 

individuals are measured on the same test on two or more assessment occasions. Test-retest 

reliability indices estimate the degree to which the measure provides stable rankings of 

individuals across time. The most well-established index of test-retest reliability is the Intraclass 

Correlation Coefficient (ICC), which indicates how well the measurements consistently rank-

order the subjects. However, one of the complexities of ICC, which has also created some 

confusion in its usage, is that there are 10 distinct forms available (Mcgraw & Wong, 1996). Yet 

only two forms are particularly pertinent for measures from cognitive experimental tasks (for a 

more in-depth discussion see Koo & Li (2016). 

A critical distinction in the use of ICC estimates is whether reliability is based on either 

consistency or the absolute agreement between the two measurements (e.g., the relationship). A 

consistency relationship is not affected by systematic changes (e.g., practice effects, learning 

between measurements) and only the consistency of the rank-order is rated. An absolute 

agreement relationship is one in which the two measurements are expected to be identical in 

rank-order and in value (e.g., session mean), in other words, this relationship is affected by 

systematic differences. For example: these two measurements {1,2,3}, {4,5,6} would have a 
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perfect consistent relationship (ICC (3,1) = 1.00), but the measurements would be far from 

absolute agreement (ICC (2,1) = .09). Thus, the type of relationship expected is a critical 

consideration when deciding which form of ICC to use when calculating test-retest reliability of 

samples from cognitive behavioral measures. If the researcher expects systematic differences 

between measurement occasions (e.g., practice effects), then the preferred form of ICC is the 

type termed ICC (3,1) in the standard terminological conventions developed by Shrout and Fleiss

(1979). Conversely, if systematic differences between occasions should be considered to be 

problematic for the reliability of a measure, then the ICC (2,1) type should be selected. 

Importantly, it is necessary for the researcher to explicitly specify which type of ICC was used 

for calculation, and the rationale for selection, so that no ambiguity exists with regard to 

interpretation. 

A final issue is that the traditional analytic approaches, such as ICC, may be sub-optimal, 

and actually even inappropriate, when calculating test-retest reliability in cognitive experimental 

tasks. Specifically, traditional approaches to test-retest reliability treat summary score measures 

(sometimes referred to as mean point-estimates; MPE) as representative indicators of 

performance; yet these measures do not consider trial-to-trial variability, which in itself could be 

an important source of individual differences (Haines et al., 2020; Lee & Webb, 2005; Rouder &

Haaf, 2019; Rouder & Lu, 2005). Indeed, Rouder and Haaf (2019) have presented evidence that 

by ignoring trial-to-trial variability, test-retest reliability is “greatly” attenuated (see also von 

Bastian et al., 2020). As an alternative approach, newer analytic methods, involving hierarchical 

modeling (also termed multilevel or linear mixed effects modeling), have been introduced for 

measuring reliability, which simultaneously assess between- and within-subject (i.e., trial-by-

trial) variation. Hierarchical modeling is a statistical framework for modeling data that have a 
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natural hierarchical structure. For example, data from cognitive-behavioral tasks often have trials

within subjects and subjects within groups (Gelman et al., 2013). By restructuring a model 

hierarchically, all individuals are considered in two contexts: in isolation, to determine how 

behavior varies across trials, and as a contributing member of a group, to determine how 

behavior varies across the group. This increases the number of available parameters from one 

(i.e., MPE) to multiple (e.g., mean, standard deviation). The model can now distribute 

uncertainty (e.g., measurement error) that exist in the data over those multiple parameters, which 

results in more precise estimates at both the individual and group levels (Kupitz, 2020). In 

particular, hierarchical models provide the means to appropriately correct for the attenuation of 

reliability that may occur when using more traditional methods. 

Additionally, these recent efforts have also pointed to the advantages of Hierarchical 

Bayesian models (HBM), relative to classic “frequentist” approaches. A key advantage of the 

HBM approach is that it can be used to specify a single model that jointly captures the 

uncertainty at both the individual- and group-level. Even in a typical study that involves a 

modest number of participants, each performing a limited number of trials with the observed data

confounded by measurement error, HBM can provide reasonable estimates of performance, by 

assuming that the data are generated from a population of infinite trials (Raudenbush & Bryk, 

2002; Snijders & Bosker, 1999). A second advantage of HBM is it enables explicit specification 

of distributions and associated parameters, which best fits a generative approach in which 

individual trial performance measures are thought to reflect samples drawn from these 

distributions. Among others, Haines et al. (2020) highlight the advantages of generative models, 

by suggesting that models more accurately “simulate data consistent with true behavioral 

observations at the level of individual participants”. In contrast to HBM, frequentist methods of 
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accounting for hierarchical sources of variability, such as structural equation modeling or 

classical attenuation corrections, do not provide a natural framework for generative modeling

(Kurdi et al., 2019; Westfall & Yarkoni, 2016). 

This brief review of the current state of research on individual differences in cognitive 

control function suggests that a barrier to progress is the lack of knowledge on the part of 

researchers coming from the cognitive experimental tradition, regarding some of the 

psychometric complexities associated with individual difference measurement. A potential 

remedy is for researchers to be more explicit regarding assumptions that are being utilized 

regarding measurement method. Part of this explicitness relates to the reporting of measurement 

reliability and the analytic approach used for estimation. Moreover, when possible, estimates of 

both internal consistency (i.e., permutation-based split-half) and temporal stability (i.e., test-

retest, ICC) forms of reliability should be assessed and reported. Finally, further investigation 

and comparison is needed between traditional frequentist and Bayesian approaches to estimation,

since the use of Bayesian approaches in individual differences analyses is a relatively new 

development in the literature.

Current Study

Here we provide an evaluation focused on the utility of cognitive control measures for 

individual differences research purposes; specifically, we examine the psychometric issues 

described above within the context of the DMCC battery. In particular, a key objective 

associated with the development of the DMCC battery was to examine how experimental 

manipulation of cognitive control mode affects individual difference properties of classic 

cognitive control tasks (Stroop, AX-CPT, Cued Task-Switching, and Sternberg). Our primary 

hypothesis was that these task manipulations would generate new sources of between-subject 
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variance, allowing for more reliable measurement of individual differences in cognitive control 

function (Cooper et al., 2017). More specifically, by employing task variants that induce the 

proactive and reactive control modes, respectively, a more mode-specific variance structure is 

hypothesized to emerge for each task variant (i.e., proactive and reactive variants). This should 

lower measurement error and, hence, improve both experimental robustness and individual 

differences reliability. In prior work, we demonstrated that the DMCC tasks generally exhibit 

robust effects of the experimental manipulations at the group level (Tang, Bugg, et al., 2021). 

However, it remains an open question as to whether the tasks also demonstrate strong 

psychometric reliability as individual difference measures of cognitive control ability. 

Consequently, we sought to assess task reliability in a systematic and comprehensive manner.

Another important focus of the paper was to compare traditional and the newer HBM 

approaches described above, for the assessment of psychometric reliability. The first set of 

analyses thus report reliability, both internal consistency and test-retest, employing traditional 

approaches based on summary score measures (MPEs) from each participant. In contrast, for the 

second set of analyses we implement hierarchical methods to incorporate modeling of trial-to-

trial variability (i.e., individual-level standard deviation) (Rouder & Haaf, 2019). Specifically, 

we directly compare the traditionally derived test-retest reliability measures with those derived 

from the HBM approach. Our second hypothesis was that traditional approaches would 

substantially under-estimate the degree of reliability present in cognitive control tasks, 

replicating prior findings (Rouder & Haaf, 2019). As a final analysis, we examined correlations 

present in the DMCC, both within-task (between control mode conditions) and between-task 

(same condition, across task), using both analytic approaches. Our third hypothesis was that 

Bayesian parameter estimates, if more reliable, would also be more suitable for individual 
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differences analyses that address the question of whether cognitive control can be considered a 

domain-general construct (i.e., with individuals varying in a consistent, trait-like manner). 

Method 

Subjects

Subjects were recruited via the Amazon Mechanical Turk (MTurk) online platform. After

reading a description of the study that indicated its multi-session nature and time commitment, 

interested subjects accessed a link which allowed them to review and sign the consent form. 

After consent was given, the web-links for the first session of the study were made available on 

MTurk. Subjects were not restricted with regard to age range, and as such a wide range was 

included in the sample (N=128; 22-64, M=37.11, SD=9.90; 82 females, 46 males). 

Design and Procedure

The study protocol consisted of 30 separate testing sessions that subjects completed in a 

sequential manner (15 for the test phase, and another 15 for retest). Subjects completed the 

sessions at a rate of 5 per week, i.e., taking 6 weeks to complete the full protocol. Baseline task 

variants were completed during the first and fourth week, the reactive task variants during the 

second and fifth week, and the proactive task variants were completed during the third and sixth 

week. Each session lasted approximately 20-40 minutes in duration, with the exception of the 

first session, which was 1 hour in duration (and included a Stroop practice to validate operation 

of vocal response recording, along with a battery of demographic and self-report questionnaires).

To both incentivize and prorate study completion, completion of the first session of both test and 

retest phases resulted in a $4 payment, each subsequent session was paid $2, with the exception 

of session 6 and 11, which were paid $4 for each. Additional bonuses of $20 were paid for 
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completion of the test phase and $30 for full study completion. Together, successful completion 

of the entire protocol resulted in a payment of $122.

For each completed session, the experimenter checked for overall accuracy and 

completion of each task and questionnaire to make sure that subjects were complying with 

instructions and maintaining sufficient attention to the task. A criterion of 60% accuracy and 

response rate was used to determine whether the data would be included, and the subject invited 

to remain in the study. For each task that did not meet the criterion, the experimenter attempted 

to communicate with the subject first to determine if they had trouble understanding the 

instructions or had technical difficulties. If so, the subject was given a second chance to complete

the task before a designated deadline. Within each of the test and retest phases, sessions were 

conducted in a fixed order for all subjects. 

Task Paradigms

Here we present a schematic representation of the tasks and their manipulations (see 

Figure 1). A more detailed task description is provided in Appendix C, so as not to increase the 

length of the primary text (see also Tang et al, 2021 for the theoretical rationale behind task 

manipulations). 
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Figure 1

DMCC Task Paradigms and Overview of Session Manipulations 

Note. For a more detailed description, see Appendix C. 
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Data Pre-Processing

To facilitate comparison of results across task paradigms, subjects who failed to complete

all 30 sessions were not included in the analyses reported here; data from 128 subjects entered 

the pre-processing stage. The remaining data were conservatively pre-processed in two steps: (1) 

removal of extreme outliers, and (2) winsorization of remaining outliers. In step 1, all 128 

subjects were screened for abnormalities such as extremely slow RTs or high error rates. We 

suggest that cut-off decisions are made based on the sample, and not on the tasks in this battery. 

RT plots were examined and cutoff decisions were made for each task separately. Trials with 

RTs slower than the cutoff threshold were discarded. The threshold for Stroop was 4000 ms; no 

RTs on correct trials surpassed the threshold. The threshold for AX-CPT was 2000 ms; no RTs 

on correct trials surpassed the threshold. The threshold for Cued Task-Switching was 5000 ms 

and resulted in 0.3% of the task’s data discarded. The threshold for Sternberg was 3000 ms; no 

RTs on correct trials surpassed the threshold. After discarding trials with these RT outliers, the 

number of trials per condition remained sufficient for analyses. Finally, all subjects in all 

sessions had a subject-level error rate below 40%; this cutoff is based on Gonthier et al. (2016). 

No subjects were discarded based on this first step.

In step 2, a winsorization procedure was conducted on RT data at the trial level (i.e., data 

split by phase, session, trial type, and subject). The winsorization parameters for RTs were as 

follows: RTs lower than 200 ms were replaced by RTs of 200 ms and RTs above the mean plus 3

standard deviations were replaced by RTs of the mean plus 3 standard deviations. Across the 

four tasks 1.9% of RT observations were adjusted by the procedure. The adjustments did not 

vary considerably across tasks, sessions, or trial types. For error rate, the winsorization procedure

was conducted at the level of trial type (data split by phase, session, subject, and trial type), 
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instead of at the subject level, which was examined in the first step of pre-processing. Following 

the cutoff used by Gonthier et al. (2016), error rates above 40% were replaced with error rates of 

40%. This resulted in nearly 5% of error rates being adjusted for the AX-CPT and Sternberg 

tasks (i.e., 4.78%, 4.69%, respectively). The Stroop and Cued Task-Switching adjustments were 

much lower at .07% and 1.69%, respectively. Examining this more carefully revealed repeated 

subpar performance for some subjects (e.g., consistently greater than 80% error rate, large 

proportion of observations without responses) which inflated the winsorization adjustment rates. 

Those subjects were excluded from the final sample. We retained 126 subjects for Stroop, 121 

for AX-CPT, 128 for Cued Task-Switching, and 126 for Sternberg. Subjects for the between-task

correlations were selected pairwise and depending on the task pairing resulted in either a sample 

size of 120 or 122.

Data Analyses 

We assessed individual differences reliability (both split-half and test-retest) of the 

measures taken from the four DMCC tasks within each of three sessions (e.g., baseline, 

proactive, reactive). The analyses reported in the main text focused on the critical conditions of 

the tasks (e.g., Stroop biased condition, task-switching biased condition, Sternberg list-length 5 

condition). The critical conditions were designed specifically to allow for comparison across 

tasks and analytic methods. Full descriptive statistics and experimental results by session, task, 

and trial type are reported in Tang et al. (2021). Additional reliability analyses (using traditional 

approaches only) of other non-critical conditions are reported in the Appendix. In addition to 

examining the reliability of each critical condition measure, we also examined the strength of 

correlation between measures, focusing on both within-task, between-condition correlations 

(e.g., Stroop baseline vs. Stroop proactive) and between-task, same-condition correlations (e.g., 
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AX-CPT reactive vs. Sternberg reactive). If reliability serves as a bottleneck that limits the 

magnitude of between-measure correlations, then one might predict that measures showing 

higher reliability would also show stronger correlations.  

Reliability Estimates: Traditional Approach

Both internal consistency and test-retest forms of reliability were calculated, based on 

traditional psychometric approaches. Internal consistency estimates were calculated as 

permutation-based split-half correlations. The data were repeatedly (5000 permutations) and 

randomly split into halves, which were then correlated and a Spearman-Brown correction was 

applied. The estimates reported here are an average of those 5000 corrected correlations. Test-

retest reliabilities are reported as intraclass correlation coefficients (ICC). Because practice 

effects are expected to occur from session to session and from test to retest phases, the ICC 

relationship parameter was examined as both absolute agreement (ICC(2,1)) and consistency 

(ICC(3,1)), as per the Shrout and Fleiss (1979) convention. The former is sensitive to changes in 

the mean between repeated measures, whereas the latter appropriately corrects for such changes. 

Here, we report both forms for comparison purposes.

Reliability Estimates: Hierarchical Bayesian Model

In addition to the traditional psychometric approach to test-retest reliability estimation, 

HBM was also used to generatively model the reaction time difference score effects from the 

four tasks in the Dual Mechanisms of Cognitive Control (DMC) task battery. Specifically, the 

Stroop effect, the BX interference effect from the AX-CPT, Task Rule Congruency Effect (TRCE)

from the cued task switching task, and the recency effect from the Sternberg task. To facilitate 

the comparison between traditionally and HBM derived estimates, we limit the examination to a 

reaction time model only. This approach has the added benefit that a single modeling approach 
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can be utilized for all conditions in all tasks. Furthermore, specifying such a generative model 

encapsulates the shared assumptions among the tasks: (1) reaction time cannot be negative; (2) 

reaction time responses vary around some central tendency (this is ignored with MPE); (3) the 

central tendency varies per subject; (4) within-individual (i.e., trial-by-trial) variability varies per

subject; and (5) reaction time distributions from cognitive-behavioral tasks tend to be right-

skewed (Wagenmakers & Brown, 2007). Although the HBM approach works for accuracy 

measures as well, it would require a significantly different model, which is outside of the scope 

of the current study. In the HBM approach, it is important that estimation of test-retest reliability 

considers trial variability at the individual-level; hence, the individual-level distribution is 

defined first, followed by the group-level distribution. Given the additional complexity and lower

reader familiarity with the HBM approach, we next provide an elaborated description of these 

distributions and parameters. 

Individual-level reaction time response distributions are here conceptualized as coming 

from a lognormal distribution, satisfying the skewed distribution assumption (assumption 5). The

distribution is further shaped by mean and standard deviation parameters, which both vary per 

subject and between each condition (satisfying assumptions 2, 3, and, 4). Theoretically, the 

distribution parameters are not expected to vary much between the test and retest phase. 

However, for test-retest reliability purposes, the model assumes unique distributions for each 

phase as well.

RT i , c, p Lognormal¿
¿

Formally, in equation 4, RT i , c, pis the observed reaction time data for subject i = {1,…, 

N}, in condition c = {control, interference}2, during phase p = {test, retest}. Lognormal ¿ 

2
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signifies that the data are drawn from a generative process producing a skewed distribution, 

shaped by a mean and standard deviation parameter for each subject, condition, and phase 

combination. A lognormal distribution has an asymmetrical spread; more variability is found on 

the right-side (i.e., slow reaction times) of the central tendency than the left-side (i.e., fast 

reaction time). Importantly, the lognormal distribution has a property that determines how the 

mean and standard deviation interact, allowing the model to fit the many different shapes of 

reaction time distributions produced by the ~ 120 subjects. Wagenmakers and Brown (2007) 

show that this property adheres to a law of [reaction] time, which states that in reaction time 

performance, the standard deviation increases linearly with the mean. In other words, the slower 

a subject’s mean reaction time, the more individual-level variability they show. Additionally, to 

ensure that the individual-level standard deviation parameters are greater than 0, they are 

exponentially transformed. 

Individual-level parameters are informed by group-level parameters, and vice versa. 

Here, the hierarchy of the model is constructed so that the individual-level distribution 

parameters from Equation 4, denoted by μi , c, p and σ i ,c , p, are drawn from group-level normal 

distributions (i.e., prior models), with unobserved (i.e., unknown) means and standard deviations 

(sd): 

μi , c, p Normal (μmean , c , p , μsd ,c , p )
¿σ i, c , p Normal (σmean , c, p , σ sd , c, p )

(5)

By defining these prior models, the group-level distribution allows for the pooling of 

information across subjects. Each of the individual-level parameters, μi , c, p and σ i ,c , p, inform the 

2 Control corresponds to non-interference trial types (e.g., Stroop congruent, Sternberg novel 
negative). Interference corresponds to interference trial types (e.g., AX-CPT AY and BX, task-
switching incongruent).
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group-level means and standard deviations, μmean , c, p , μsd ,c , p and σ mean ,c , p , σ sd ,c , p, which in turn 

inform all other individual-level parameters. This mutual interaction creates hierarchical 

pooling, regressing the individual-level parameters towards a group mean (also called shrinkage 

or regularization), and increases the precision of Bayesian estimation (Gelman et al., 2013). 

Bayesian modeling allows for such a “joint model” specification, in which the individual-level 

and group-level parameters are estimated simultaneously. This embodies the generative 

perspective (Haines et al., 2020). 

Keen observers will notice that the group-level distributions are both modeled as normal, 

whereas the individual-level distributions are lognormal. Recall that the individual-level standard

deviation parameter (Equation 4; exp(σ ¿¿ i , c , p)¿) was exponentially transformed to force it to 

assume positive values only. Mathematically, when y has a normal distribution then the 

exponential function of y has a lognormal distribution. It follows then, that the group-level 

distribution modeled on the individual-level standard deviation parameter ¿¿) corresponds to a 

lognormal distribution. 

Another key aspect of HBM is the definition of prior probability distribution, which 

expresses a prior belief about an underlying distribution of interest. Here, parameter estimation is

rather robust to prior models, because the priors are rather diffuse and the sample sizes of 

observed data are relatively large. The prior model for the group-level mean parameters were 

specified as normal. 

μmean ,c , p Normal (0,1 )

¿σ mean ,c , p Normal (0,1 )

(6)

The prior model for the group-level standard deviations parameters were specified as 

half-normal (i.e., if y is a normal distribution, then | y | is a half-normal distribution, folded along 
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the mean with the purpose of consisting of only positive values). Because the individual-level 

standard deviation parameter is exponentially transformed, the group-level distribution assumes 

only positive values.

μsd , c , p Half−Normal (0,1 )

¿σ sd ,c , p Half−Normal (0,1 )

(7)

All model parameters were estimated with Stan (Stan Development Team, 2020b) 

through an interface in R, called RStan (Stan Development Team, 2020a). All models were fit 

with 3 chains of 3000 iterations after 1000 warm-up iterations. For each of the four tasks in the 

task battery, the model was fit three times (e.g., once for each task-variant), resulting in 12 model

fits. From the model fits we extracted three families of parameters; mu, sigma and also delta. 

After the parameters are estimated and extracted, it is straight forward to generate a difference 

score estimate, which shall be referred to as delta (i.e., ∆). 

∆ i ,test=μi , interference ,test−μi ,control ,test
¿∆ i ,retest=μi ,interference ,retest−μi , control, retest

(8)

Furthermore, the individual-level means (i.e., μi , c, p; referred to as mu) and standard 

deviations (i.e., σ i ,c , p; referred to as sigma) were extracted for each condition and phase. All R 

scripts and the Stan model file are available on https://osf.io/pqvga/. A graphical representation 

of the model is included as well (see Figure 2). The extracted delta, mu, and sigma parameters 

for each task and session combination are available on https://osf.io/pqvga/. All relevant 

convergence statistics have been extracted and are visually presented on https://osf.io/pqvga/ as 

well.

Figure 2

https://osf.io/pqvga/
https://osf.io/pqvga/
https://osf.io/pqvga/
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A Structured Schematic Representation of the Hierarchical Model

Note. i = subject; c = condition; p = phase; sd = standard deviation; µi = individual-level mean 
parameter; σi = individual-level variability parameter.

Between-Measure Correlations

For computation of the comprehensive between-task correlations that are reported in the 

Appendix, we utilized Spearman’s rho (ρ). In particular, Spearman’s rho (ρ) is a good non-

parametric substitute for the parametric Pearson’s r, since Pearson’s r assumes that the 

relationship between two variables is both monotonic and linear (among other assumptions). The

relationship between RT and error rate indices of cognitive-behavioral tasks is often monotonic, 

but not necessarily linear (Hedge, Powell, Bompas, 2018). Thus, Spearman’s rho will likely 

provide a more robust alternative, since the Pearson’s r assumptions are not likely to be met. 

However, for the between-task and within-task analyses discussed in the Results section below, 

the focus was on reaction time indices associated with common difference score measures (e.g., 
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RT Stroop effect). Hence, with the linearity assumption met, we employed Pearson r correlations

for the latter hierarchical Bayesian within-, and between-task, correlational analyses. 

Results

Reliability Estimates: Traditional Approach

Due to the large number of measures, all reliability estimates are presented in Appendix 

A (Tables A1-A6). There, a full report includes internal consistency and test-retest reliabilities 

for the aggregate measures (mean RT, error rate) for all trial types, across all tasks and sessions. 

Although the aggregate measures are briefly discussed, only the difference score results are 

presented here due to their theoretical importance as measures of cognitive control, and within 

the DMCC battery (Tang, Bugg, et al., 2021). Table 1 presents both the split-half and test-retest 

reliability estimates for RT, computed separately for each control mode condition (baseline, 

reactive, proactive), for each task paradigm (3x3x4 = 36 estimates total). The corresponding 36 

error rate estimates are shown in Table 2. In addition, for the AX-CPT task, four additional 

derived indices were also examined in addition to the difference scores (A-cue bias, d’-context, 

and Proactive Behavioral Index (PBI) for both RT and errors; see Table 3). These AX-CPT 

derived estimates have been commonly employed as theoretically-sensitive measures of 

cognitive control in this task, and have also been the focus of prior psychometric investigations

(Boudewyn et al., 2015; Cohen et al., 1999; Richmond et al., 2015; Stawarczyk et al., 2014). 

Consequently, they were also of particular interest, to determine whether psychometric 

properties were improved within the context of the DMCC battery and experimental 

manipulations. For ease of interpretation, estimates of test-retest reliability below .50 are 

considered poor; between .50 and .75 are considered moderate; between .75 and .90 are 

considered good; and above .90 are considered excellent (Koo & Li, 2016). However, these 
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thresholds are somewhat arbitrary; they are offered here as a guide. Of course, the qualitative 

description of reliability is not a substitute for understanding the numerical estimate in its 

context. 

As expected, the reliabilities of difference score measures were weaker than the 

reliabilities of aggregate measures. For example, the split-half reliability for Stroop incongruent 

RT was on average .99 across sessions, Stroop congruent RT was on average .99 across sessions 

(see Appendix A), but the reliability of the RT Stroop effect was on average .73 across sessions. 

The same general pattern is observed for the test-retest reliability RT estimates: .89, .89, .22, 

respectively. This pattern is observed across all tasks, for both split-half and test-retest reliability 

estimates, for both RT and accuracy measures. 
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Table 1 

Reaction Time Reliability across Sessions

Measure Split-half (95% CI) ICC2,1 (95% CI) ICC3,1 (95% CI) M Range

Baseline

Stroop Effect .73 (.57–.83) .32 (.16–.47) .34 (.17–.48) 137 ms -267 – 385 ms
BX Interference .68 (.56–.77) .36 (.20–.51) .50 (.35–.62) 75 ms -109 – 872 ms
TRCE .39 (.10–.61) .30 (.13–.45) .30 (.13–.45) 77 ms -319 – 921 ms
Recency Effect -.02 (-.26–.24) .20 (.02–.36) .20 (.02–.36) 117 ms -201 – 480 ms
Proactive
Stroop Effect .59 (.31–.77) .34 (.18–.49) .34 (.18–.49) 83 ms -200 – 300 ms
BX Interference .74 (.65–.82) .57 (.44–.69) .51 (.36–.63) 51 ms -91 – 493 ms
TRCE .52 (.28–.68) .38 (.22–.52) .36 (.20–.50) 62 ms -236 – 683 ms
Recency Effect .18 (-.05–.42) .19 (.02–.34) .20 (.02–.36) 169 ms -180 – 560 ms
Reactive
Stroop Effect .87 (.78–.92) .33 (.17–.48) .33 (.17–.48) 93 ms -480 – 479 ms
BX Interference .67 (.56–.76) .52 (.39–.64) .47 (.32–.60) 125 ms -52 – 510 ms
TRCE .55 (.38–.69) .46 (.31–.59) .43 (.28–.57) 94 ms -642 – 967 ms
Recency Effect .12 (-.15–.38) .21 (.05–.37) .22 (.05–.38) 85 ms  -176 – 350 ms

Note. Split-half is an average of the test and retest phase split-half reliabilities. ICC2,1 is a two-way random 
effects, absolute agreement, single rater Intraclass Correlation Coefficient; a measure of test-retest reliability. 
ICC3,1 is a two-way mixed effects, consistency, single rater Intraclass Correlation Coefficient; a measure of 
test-retest reliability. CI = confidence interval. M = mean. 
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Table 2 

Error Rate Reliability across Sessions

Measure Split-half (95% CI) ICC2,1 (95% CI) ICC3,1 (95% CI) M Range

Baseline

Stroop Effect .45 (.22–.62) .26 (.10–.42) .27 (.10–.42) 3.0 % -5 – 26 %

BX Interference .62 (.50–.72) .15 (-.01–.31) .18 (.01–.35) 1.08 -.52 – 2.83

TRCE .52 (.38–.64) .33 (.17–.47) .24 (.07–.40) 7.1 % -12 – 56 %

Recency Effect
.20 (-.02–.40)

.33 (.16–.47) .27 (.11–.43) 13.8 % -12 – 60 %

Proactive

Stroop Effect .46 (.10–.68) .39 (.23–.53) .39 (.24–.53) 1.7 % -4 – 18 %

BX Interference .62 (.50–.72) .28 (.11–.44) .41 (.25–.54) .93 -.50 – 2.47

TRCE .52 (.38–.64) .51 (.37–.63) .52 (.38–.64) 10.7 % -14 – 56 %

Recency Effect
.32 (.11–.49)

.39 (.23–.53) .28 (.12–.44) 20.6 % -25 – 60 %

Reactive

Stroop Effect .88 (.84–.92) .78 (.70–.84) .78 (.70–.84) 2.3 % -28 – 21 %

BX Interference .72 (.62–.80) .39 (.20–.55) .59 (.46–.69) .93 -.27 – 3.18

TRCE .52 (.36–.66) .35 (.19–.49) .33 (.16–.47) 5.1 % -11 – 54 %

Recency Effect
.78 (.72–.84)

.42 (.27–.55) .34 (.18–.49) 8.3 % -25 – 50 %

Note. Split-half is an average of the test and retest phase split-half reliabilities. ICC2,1 is a two-way random 
effects, absolute agreement, single rater Intraclass Correlation Coefficient; a measure of test-retest reliability. 
ICC3,1 is a two-way mixed effects, consistency, single rater Intraclass Correlation Coefficient; a measure of 
test-retest reliability. CI = confidence interval. M = mean. 
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Table 3 

AX-CPT Derived Indices Reliability across Sessions

Measure Split-half (95% CI) ICC2,1 (95% CI) ICC3,1 (95% CI) M Range

Baseline

A-cue bias .56 (.42–.67) .18 (.01–.34) .29 (.12–.45) .09 -1.14 - .87

d′ context .78 (.70–.84) .36 (.16–.52) .44 (.28–.57) 2.85 -.23 – 4.4

PBIerror .69 (.59–.77) .16 (-.01–.32) .11 (-.07–.28) -.18 -.94 - .89

PBIrt .66 (.55–.75)
.31 (.10–.48) .34 (.17–.49) .03 -.40 - .24

Proactive

A-cue bias .79 (.71–.85) .59 (.47–.70) .54 (.40–.65) .37 -1.99 – 1.47

d′ context .81 (.73–.86) .55 (.41–.66) .62 (.50–.72) 3.09 -.92 – 4.40

PBIerror .80 (.73–.86) .54 (.40–.65) .57 (.43–.68) .16 -.89 - .94

PBIrt .78 (.70–.84) .61 (.49–.71) .58 (.44–.69) .09 -.26 - .32

Reactive

A-cue bias .52 (.38–.64) .45 (.29–.58) .36 (.20–.51) .06 -.80 - .82

d′ context .79 (.72–.85) .66 (.54–.75) .64 (.52–.74) 2.93 .58 – 4.4

PBIerror .65 (.53–.74) .23 (.06–.39) .42 (.26–.56) -.09 -.93. - .86

PBIrt .52 (.37–.64) .44 (.29–.58) .40 (.24–.55) .02 -.30 - .21

Note. Split-half is an average of the test and retest phase split-half reliabilities. ICC2,1 is a two-way random 
effects, absolute agreement, single rater Intraclass Correlation Coefficient; a measure of test-retest reliability. 
ICC3,1 is a two-way mixed effects, consistency, single rater Intraclass Correlation Coefficient; a measure of 
test-retest reliability. CI = confidence interval. M = mean. 

For the Stroop, cued task-switching, and AX-CPT summary score estimates the reliability

results yield mixed conclusions. The split-half estimates indicate mostly moderate to good 

reliability, for both RT and error rate (  = .65, range = .39 – .88). However, the test-retest x̅

estimates indicate poor reliability, regardless of which ICC computation was used. ICC2,1:  x̅

= .40, range = .15 – .78; ICC3,1:  = .42, range = .11 – .78. Unfortunately, the session level x̅

manipulations (i.e., proactive and reactive variants) did not produce demonstrative improvements

in reliability. Although reliability was generally highest in the reactive session, the overlapping 

confidence intervals across sessions suggests that this was not a robust effect. 
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The reliability of the AX-CPT derived indices revealed a similar pattern as the difference 

score measures; the split-half reliability estimates were stronger than test-retest estimates. In 

contrast, two novel and interesting patterns emerged. First, all four proactive session derived 

indices were internally consistent, with split-half estimates ranging from .78–.81. Second, split-

half estimates for d′-context exceeded .75 in all sessions and thus is considered to be internally 

consistent as well. This suggest that the reliability of the d′-context and the proactive indices will 

not pose a bottleneck when used to examine between-measure correlations. 

In the Sternberg task, the recency effect measure was found to be generally unreliable, in 

both RT and error rate. The poor reliability and high variability of the Sternberg estimates may 

stem from the task design (i.e., low number of observations available to calculate a difference 

score). To induce proactive control, recent negative (RN) trials were presented infrequently in 

the baseline and proactive sessions, with only 8 RN trials per subject. It is therefore not advised 

to calculate a traditional difference score from the current Sternberg paradigm for use in 

individual differences research. 

Overall, the reliability analyses computed in the traditional manner did not support our 

primary hypothesis that theoretically-based task manipulations would improve reliability 

estimates. That said, the difference between split-half and test-retest estimates of reliability is 

intriguing and may provide some insight into the measurement of cognitive control; we discuss 

this finding in more detail in the discussion section. We next examined whether the reliability 

analyses produce different results when computed using HBM approaches to estimation.
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Reliability Estimates: Hierarchical Bayesian Modeling Approach

As shown in the first set of analyses, we were not able to extract reliable individual 

differences from experimental task difference score measures. The goal of the second set of 

analyses was to examine whether modeling trial-level variability improved reliability estimation 

of the data from the DMCC task battery. Test-retest reliability estimates for the delta parameter 

(i.e., difference score; ∆ i ,test ,∆i , retest) were calculated for each task and session combination and 

shown in Figure 3, indicated as HBM. Importantly, test-retest reliability is calculated as a 

Pearson r correlation between the test and retest phase estimates r(∆¿¿1 ,∆2)¿. Pearson r is 

chosen over an Intraclass Correlation Coefficient (ICC), because much of the variance has been 

modeled out by the sigma parameter, and to replicate the generative modeling approach of prior 

work similar to the current study (i.e., Haines et al., 2020; Rouder & Haaf, 2019). For a 

comparison between the traditional and HBM approach, the corresponding mean point-estimate 

of test-retest reliability (also using Pearson r to increase comparability) is provided as well in 

Figure 3. As guidelines for test-retest reliability, we again follow Koo and Li’s (2016) thresholds

(i.e., respectively, poor, moderate, good, excellent : < .50, .50 – .75, .75 – .90, > .90). Although 

those guidelines are for ICC, commonly accepted test-retest correlation guidelines based on 

Pearson’s product-moment correlation coefficient do not exist to our knowledge. 

In contrast to the traditional psychometric approach to estimating test-retest reliability 

(i.e., based on mean point estimates), which indicated poor-to-moderate test-retest reliability (  =x̅

.39), the HBM extracted estimates of test-retest reliability could be classified as good to excellent

(all above .75,  = .85), with the only possible exception being the Sternberg recency effect in x̅

the reactive condition (r = .52). The strong reliability estimates obtained using the HBM 

approach are consistent with Haines et al., (2020), and Rouder and Haaf (2019). The test-retest 
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estimates of the delta parameter indicate that HBM can indeed provide reliable individual 

differences from cognitive control tasks, even with a difference score index. An additional 

interesting pattern emerged when comparing test-retest reliability in the different control mode 

conditions. In particular, reliability was highest for the proactive session (  = .94; vs.  = .82 for x̅ x̅

baseline, and  = .79 for reactive), as was the case with ICC from the first set of analyses. x̅

Figure 3

Test-Retest Reliability Estimates of Difference Score Parameters from the DMCC Task Battery 

Note. HBM = Pearson correlation coefficient of delta estimates obtained by Hierarchical Bayesian 
Modeling; MPE = Pearson correlation coefficient obtained from traditional Mean Point Estimates 
approach; n ranges between 106 and 122; different n sample sizes due to additional multivariate outlier 
removal. Panel A: Distribution of observed reliability estimates, split by analysis type for comparison. 
Panel B: Density plot to visualize uncertainty of HBM delta estimate, dashed line of respective MPE 
estimates for comparison of reliability magnitude.

Between-Measure Correlations

Next, our analyses compared the traditional MPE estimates with the HBM derived ones, 

when examining correlations between conditions. We began by focusing on correlations within 

the same task, between sessions (see Figure 4). Because these are within-task correlations, we 
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expected them to be consistently positive, and overall relatively high, since the experimental 

manipulations of cognitive control mode are quite subtle. Thus, they provided a potentially more 

useful testbed from which to examine the relationship between reliability of measures and their 

correlations. Interestingly, again a clear pattern emerged differentiating the two approaches. In 

particular, the within-task correlations derived with the traditional approach were moderate (  x̅

= .31), with a maximum correlation (between AX-CPT baseline and AX-CPT proactive) of r 

= .43, and 5 of the 12 correlations below r = .25.  In contrast, for the HBM derived correlations, 

the values were substantially higher (  = .45), with a maximum correlation (between Stroop x̅

baseline and Stroop proactive) of r = .76, and only 2 of the 12 correlations below r = .25.  

Indeed, 10 of the 12 correlations were numerically greater when based on the HBM estimates; 

the only exceptions involved the AX-CPT reactive condition (baseline - reactive, proactive - 

reactive).

Figure 4

Within-Task Correlations of Difference Score Parameters from the DMCC Task Battery 

Note. HBM = Pearson correlation coefficient of delta estimates obtained by Hierarchical Bayesian 
Modeling; MPE = Pearson correlation coefficient obtained from traditional Mean Point Estimates 
approach; n = 104. Distribution of observed correlations within-task, split by analysis type for 
comparison. 

  To further examine the relationship between the test-retest reliabilities and within-task 

correlations, we also tested an even stronger hypothesis: that the increase in reliability observed 
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in the HBM estimates would predict the increase in within-task correlation that we observed. To 

conduct these analyses, we first computed r-to-z transformations, to linearize the r-values. 

Indeed, the results were supportive of the hypothesis (see Figure 5). For the MPE-derived 

estimates, the average reliability was highly predictive of within-task correlation (r=.79), and a 

similar predictive relationship was found for the HBM-derived estimates (r=.66). Moreover, 

when looking at the increased reliability of the HBM-derived estimates relative to MPE, this was

also strongly predictive of the increase in within-task correlation value (r=.63). Thus, when 

examining the within-task relationships, we find clear support for the hypothesis that the 

improvement in correlation magnitude that we observed in the HBM extracted values is related 

to the gain in reliability that was also observed.  

Figure 5

Relationship Between Reliability and Within-Task Correlations 

Note. MPE = Pearson correlation coefficient obtained from traditional Mean Point Estimates approach; 
HBM = Pearson correlation coefficient of delta estimates obtained by Hierarchical Bayesian Modeling; n 
= 104. Both reliability and within-task correlations were r-to-z transformed. Grey area is 95% confidence 
interval around linear regression line.

Lastly, we conducted a more comprehensive examination of between-task correlations 

present in the DMCC battery, first using the traditional MPE estimates. Because of the large 

number of tasks, conditions, and measures, we relegate full reporting of these correlations to 

Appendix B, and only provide a brief summary here. In total, we examined 198 between-task 
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correlations, but of these only 12 were above r = .25, with the median correlation of r = .13. This

value is on par with the so-called “crud factor” in differential psychology, which refers to the 

idea that correlations with magnitudes between 0 and .20 should be interpreted as nothing but 

noise (Lykken, 1968; Meehl, 1986; but see Orben & Lakens, 2020 for a recent critique). 

We then focused on between-task, same-condition correlations (e.g., correlation of Stroop

baseline to AX-CPT baseline) and compared between traditional MPE and HBM approaches to 

test-retest reliability of key difference score measures (see Table 4). With both approaches, a 

similar pattern emerged, with all of the 18 correlations between -.25 and +.25. Moreover, there 

was no consistent difference between the correlations computed from the traditional MPE (  x̅

= .01) and HBM estimated values (  = -.01). Thus, the results of this analysis do not support our x̅

hypothesis that the increased test-retest reliabilities observed in the HBM parameters would also 

translate into higher between-task correlations. 
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Table 4

Between-Task Correlations of Reaction Time Difference Score Parameters.

Session Index 1 Index 2 MPE HBM n

Baseline Stroop Effect BX Interference .12 .10 90
Baseline TRCE -.10 .02 90
Baseline Recency Effect .16 -.02 90
Baseline BX Interference TRCE .07 .03 90
Baseline Recency Effect .05 -.13 90
Baseline TRCE Recency Effect -.04 .00 90
Proactive Stroop Effect BX Interference -.03 .01 76
Proactive TRCE .20 .01 76
Proactive Recency Effect .01 -.07 76
Proactive BX Interference TRCE -.10 -.13 76
Proactive Recency Effect .07 -.04 76
Proactive TRCE Recency Effect -.16 -.13 76
Reactive Stroop Effect BX Interference .11 .08 107
Reactive TRCE -.13 -.09 107
Reactive Recency Effect -.07 -.05 107
Reactive BX Interference TRCE -.08 -.02 107
Reactive Recency Effect .15 .22 107
Reactive TRCE Recency Effect -.09 -.04 107

Note. Indices are based on averaged test and retest phases. MPE = Pearson r correlation of Mean Point 
Estimated differences scores; HBM = Pearson r correlation of Hierarchical Bayesian Modeling estimated 
differences scores; TRCE = Task Rule Congruency Effect. Variability in sample sizes due to between-
task differences in acceptable performance.
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Discussion

The goal of the current study was to examine psychometric reliability in experimental 

tasks of cognitive control. To this end, we utilized the new DMCC task-battery, as it includes 

classic cognitive control tasks, but with theoretically-derived task variants and experimental 

manipulations based on the dual mechanisms of control framework (Braver, 2012; Braver et al., 

2021). Our primary hypothesis was that the theoretically-based development and optimization of 

the tasks would create new sources of between-subject variance to improve individual 

differences. However, when using traditional statistical approaches (i.e., split-half, ICC), 

psychometric analyses suggested that our theoretically-optimized task battery did not improve 

reliability above and beyond that of existing tasks and batteries. Plainly stated, the reliability of 

the DMCC task battery measures, when computed with popular difference score indices, were 

moderate at best, which is quite consistent with prior psychometric reports using different task 

variants (von Bastian et al., 2020 see also; Hedge, Powell, & Sumner, 2018; Rouder & Haaf, 

2019). In particular, when analyses were conducted with traditional psychometric methods, there

was no evidence in support of our primary hypothesis that the theoretically-motivated task 

manipulations would improve reliability in cognitive control tasks.

One important finding was that the reliability estimates focused on internal consistency 

(i.e., split-half indices) were almost always higher than those focused on temporal stability (i.e., 

test-retest; i.e., ICC2,1 & ICC3,1). Given that split-half methods are calculated on a single 

timepoint measure, and test-retest on two (or more) timepoint measures, this finding is not 

surprising. But it does reaffirm that the two methods cannot be treated as interchangeable indices

of reliability. When possible, an index of both internal consistency and temporal stability should 

be reported. Importantly, the observed discrepancy indicates that our measures of cognitive 
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control have some internal consistency, but additional work needs to be conducted to determine 

why temporal stability appears to be lower than desirable. In our case, the “additional work” 

meant that we investigated whether traditional psychometric statistics might not be appropriate 

or well-aligned for the calculation of individual differences in experimental cognitive control 

tasks.

Towards this end, we conducted a second set of analyses that replicated recent studies in 

utilizing hierarchical Bayesian modeling (HBM) as an alternative approach that might be better 

suited for reliability estimation with cognitive experimental tasks (Chen et al., 2021; Haines et 

al., 2020; Rouder & Haaf, 2019). In particular, we found that with HBM methods highly reliable 

cognitive control indices can be obtained, even when using indices derived from difference 

scores. Specifically, our findings indicate that test-retest reliability estimates for the delta 

(difference score) parameters in our sample can be almost always classified as good, and 

sometimes even excellent. This finding is a striking one, in comparison with the weak and 

moderate intraclass correlation coefficients (ICC) observed in the traditional set of analyses. The 

HBM analyses clearly suggest that accounting for individual-level variability and the type and 

shape of the distribution, can “rescue” the reliability estimation, using the formulation of Rouder 

and Haaf (2019). Interestingly, it was also found that in both the traditional and HBM analyses, 

reliability estimates were highest for the proactive task variants, which also supports our 

hypothesis that theoretical motivated task manipulations may contribute to improved reliability.

One of the primary reasons for the enduring importance and need for attention to 

reliability measures is the view – which is well-accepted in the psychometric literature (Hedge, 

Powell, & Sumner, 2018; Parsons et al., 2019; Rouder et al., 2019; Spearman, 1904) – that 

reliability might serve as a bottle-neck or constraint on the ability to detect correlations between 
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measures of individual differences. The key point is that, for measures with low reliability, there 

should be reduced sensitivity for the detection of between-measure correlations. Yet this 

assumption has been rarely experimentally tested (Cooper et al., 2017). In our analyses, we did 

in fact, find support for this contention, when examining correlations between DMCC task 

measures within tasks (i.e., between control modes; baseline, proactive, reactive). Specifically, 

we assumed that within-task correlations could be treated as “benchmarks” since we assumed 

ground-truth positive correlations, given that the same participants were performing subtle 

variants of the same task across sessions. Indeed, we found that not only was test-retest 

reliability increased with HBM estimates relative to the traditional ICC measures, but also so 

were the within-task correlations. In fact, the data also provided support for the assumption that 

the degree of improvement in within-task correlation was directly tied to the increase in 

reliability observed with HBM estimates. Thus, the results provide clear support for the 

psychometric perspective, in demonstrating the importance of reliability, as well as the improved

potential to estimate individual differences in cognitive control with HBM-based approaches. 

Unfortunately, the one dimension in which the increased reliability obtained with HBM-

estimates did not translate into improved correlation strength, was in the correlations observed 

between DMCC tasks. Here, we observed on average quite low correlations (less than 0.2) that 

did not differ between measures derived from traditional difference scores and those from HBM-

based estimates. Thus, at least in the case of the DMCC task battery, it cannot be claimed that the

weak between-task correlations are due to the unreliability of the measures. Indeed, the contrast 

among the within-task and between-task correlations is striking. Moreover, it clearly points to 

the need for future research to understand the basis for the repeated findings of low between-task

correlations among cognitive control measures (von Bastian et al., 2020), particularly given that 
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our results argue against an interpretation in terms of low measurement reliability. We discuss 

this issue further below, along with other limitations of the current work and fruitful directions 

for further research. 

Limitations and Future Directions

The current study design, though promising for validation of the dual mechanisms of 

control theoretical framework and newly developed DMCC task battery, does come with some 

limitations. First, it is important to acknowledge the fully online format of the design. This 

design has clear and significant advantages, the foremost of which is that the multi-session 

nature of the study would place a stronger burden on participants if frequent laboratory visits 

were required. Moreover, at the time of this writing, the worldwide pandemic has accelerated 

this shift of experimental research towards an online format. Finally, much work has validated 

online task administration as a viable format for cognitive tasks, with many important results 

replicated (Anwyl-Irvine et al., 2021; Bridges et al., 2020; Chaytor et al., 2021; Crump et al., 

2013; Pronk et al., 2021). Nevertheless, the online format also has a number of drawbacks, which

are well-known in the literature. These include reduced experimental control over the task 

environment, and an increased risk of potential distractions being present. 

Another limitation of the design comes from the fact that not all of the tasks are 

optimized to be delivered in a test-retest format. In addition to standard concerns about practice 

effects impacting retest sessions, the DMCC battery also includes some tasks and conditions that 

are likely to be more impacted by prior experience than others. For example, in the Cued-TS 

proactive and reactive conditions, incentives are given based on performance, although these are 

not present in the baseline condition. During the initial baseline condition, participants are not 

told about the potential for incentives in the subsequent proactive and reactive sessions. 
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However, during the retest baseline session, they do have this knowledge, which could impact 

the cognitive strategies used in this session. Likewise, in the AX-CPT proactive condition, 

participants receive explicit strategy training for how to utilize the contextual cues. Again, in the 

preceding baseline test session, which is otherwise identical to proactive, they have not yet 

received this strategy training, but in the retest baseline sessions participants have already had 

much experience in following the strategy instructions, which could also impact their 

performance in this session. Thus, in future investigations of test-retest reliability with the 

DMCC battery, it would be useful to reconsider the manipulations used for the proactive and 

reactive sessions, to minimize the carry-over effects of prior practice. 

The current study adds to a growing literature highlighting the promise and potential of 

HBM approaches for analyzing cognitive experimental tasks. Yet, currently these types of 

Bayesian analyses are still relatively rare in the literature; consequently, there is still a poor 

understanding of how they are different from traditional analyses, or how effects might diverge. 

Given the lack of widespread adoption of HBM methods, we opted for a more conservative 

approach, of first presenting results from traditional psychometric analyses of reliability, before 

comparing them with HBM estimates. We utilized Bayesian models that estimated effects for 

each task-variant separately, following current literature (Haines et al., 2020; Rouder & Haaf, 

2019). However, the approach could be expanded to a single all-encompassing model. In 

particular, it should be possible to develop a generative model in which the different conditions 

and even different tasks are assumed to be additional level(s) of hierarchy from which the 

distributions arise (i.e., analogous to the way participants are drawn from a higher-level 

distribution). Our current model benefits from shared information across subjects and trial-types 

(i.e., congruent, incongruent), but only within one variant (i.e., baseline, proactive, reactive) of 
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each task-paradigm. A complete generative model has the benefit of between-condition and 

between-task information sharing as well. However, building full generative models will 

increase the complexity of the modeling endeavor, so it is worthwhile to progress in a more 

incremental fashion. Nevertheless, the promise of the current approach suggests that further 

development of Bayesian statistical approaches to task parameter estimation may be a 

particularly worthwhile direction for the field (Gelman et al., 2013; Lee & Wagenmakers, 2014; 

McElreath, 2020).

As part of the limitations of the current study, we acknowledge recent work suggesting 

that analyses solely based on reaction time measures also pose a challenge in interpreting results.

For example, Draheim and colleagues (2019, 2020) have argued that the use of reaction time 

difference scores “is the primary cause of null and conflicting results” when examining 

individual differences in attentional control. Their work suggests that measures based on 

accuracy rather than reaction time can improve reliability, intercorrelations among tasks, latent 

factor scores, and associations with measures of working memory and fluid intelligence. 

Although it was beyond the scope of the current study, it is of course possible to use HBM 

approaches with accuracy measures as well, which suggests another possible direction for future 

work (Lin et al., 2022). Other work by Hedge and colleagues (2021) suggests the importance of 

cognitive modeling to properly estimate latent processes (diffusion model for conflict tasks;

Ulrich et al., 2015). In this work it was found that, when conflict processes were decomposed 

from non-conflict processes, only weak correlations (r < .05) were observed between conflict 

process across different cognitive control tasks. Contrarily, correlations between model 

parameters representing processing speed and strategy were consistently positive, with moderate 

to strong correlations. As a combined resolution, future work would do well to use cognitive 
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models that account for the speed-accuracy tradeoff and the multiple latent processes that 

underlie observed measures.

The key unresolved question from the current study relates to the low between-task 

correlations observed, even among the theoretically-derived tasks that comprise the DMCC 

battery. These findings are not unprecedented; indeed, they are quite consistent with a number of

prior studies that have examined correlations among cognitive control measures through task 

batteries and latent variable modeling (Draheim et al., 2020; Rey-Mermet et al., 2018; von 

Bastian et al., 2020). Nevertheless, the current results are quite discouraging, as they increase 

doubt on the domain-generality of cognitive control constructs. In some ways, however, the 

results are also discrepant from work that has been emerging from the neuroimaging literature, 

which has also become more attuned to questions of individual differences and domain-

generality (Dubois & Adolphs, 2016; Elliott et al., 2020; Finn et al., 2017; Freund et al., 2021; 

Gratton et al., 2018). 

Indeed, within the neuroimaging literature, an important emerging finding is that 

although lower-dimensional (e.g., “univariate”) descriptions may not be reliable for 

characterizing individual differences in brain activity, higher-dimensional (e.g., multivariate) 

descriptions can be quite discriminative. This can be seen most clearly in “fingerprinting” studies

(Finn et al., 2015), in which pattern similarity techniques demonstrate that individuals show high

test-retest reliability, such that their activation profile from a test scan can be easily discriminated

from other individuals in a retest session (i.e., significantly higher test-retest similarity within-

individuals than between). Moreover, our group has extended this approach into the domain of 

task fMRI and cognitive control, using twin-based study designs to demonstrate a remarkable 

degree of similarity among identical twin-pairs relative to unrelated pairs (or even fraternal pairs)
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in the fronto-parietal regions most strongly associated with cognitive control functions (Tang, 

Etzel, et al., 2021). Most strikingly, these effects were only observed when utilizing multivariate 

activation pattern similarity, rather than univariate measures (Etzel et al., 2020), and 

demonstrated clear domain-generality (i.e., cross-task effects; Tang, Etzel, et al., 2021). 

Together, this work suggests the possibility that utilizing multivariate rather than univariate 

descriptions of the individual might be a promising direction even for behavioral 

characterizations. Indeed, initial work in this direction, utilizing behavioral fingerprinting 

approaches, has begun (Han & Adolphs, 2020), though much more investigation is needed. 

Conclusion

We examined whether well-established experimental tasks, but modified with 

theoretically-aligned variants and task manipulations, are viable tools for measuring individual 

differences in cognitive control. As previously reported (Tang, Bugg, et al., 2021), the 

experimental manipulations included in this task battery were validated to be highly robust at the

group level, in inducing consistent shifts towards proactive and reactive control. Yet, with the 

use of traditional psychometric approaches, the experimental manipulations did not produce clear

effects on either internal consistency (split-half) or temporal stability (test-retest) measures of 

reliability, which were observed to be moderate at best. In contrast, when the test-retest data 

were re-examined using hierarchical Bayesian modeling, the findings were quite different, with 

good to excellent reliability observed in most measures. Moreover, these reliability effects 

translated into improved strength of within-task correlations. Nevertheless, even with the 

Bayesian estimates, cross-task correlations were unaffected and remained uniformly poor. 

Together, these findings add to the growing literature suggesting the importance of Bayesian 

generative models when estimating individual differences, but also point to the need for further 
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investigation into the source of low cross-task correlations among experimental tasks that 

attempt to measure putatively domain-general cognitive control constructs. Most generally, we 

encourage other researchers interested in cognitive individual differences to attend more closely 

to psychometric issues when conducting this important research. 
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Appendix A

Table A1

Stroop (Biased) Reliability across Sessions

Measure Split-half (95% CI) Test-Retest (95% CI) M Range

Baseline

Reaction Time
Congruent 1.00 (1.00–1.00) .91 (.88–.94) 781 ms 431 – 2706 ms

Incongruent .99 (.98–1.00) .93 (.90–.96) 918 ms 477 – 2851 ms
Stroop Effect .73 (.57–.83) .32 (.16–.47) 137 ms -267 – 385 ms
Error
Congruent .93 (.89–.96) .16 (-.01–.32) 2.2 % 0 – 24 %
Incongruent .80 (.72–.86) .23 (.06–.38) 5.2 % 0 – 40 %
Stroop Effect .45 (.22–.62) .26 (.10–.42) 3.0 % -5 – 26 %
Proactive
Reaction Time
Congruent .99 (.99–1.00) .85 (.80–.89) 798 ms 415 – 3387 ms
Incongruent 1.00 (1.00–1.00) .87 (.82–.91) 880 ms 450 – 3596 ms
Stroop Effect .59 (.31–.77) .34 (.18–.49) 83 ms -200 – 300 ms
Error
Congruent .81 (.68–.90) .69 (.58–.77) 1.2 % 0 – 27 %
Incongruent .91 (.87–.94) .79 (.71–.82) 2.9 % 0 – 29 %
Stroop Effect .46 (.10–.68) .39 (.23–.53) 1.7 % -4 – 18 %
Reactive
Reaction Time
Congruent 1.00 (1.00–1.00) .91 (.87–.93) 790 ms 428 – 3787 ms
Incongruent 1.00 (1.00–1.00) .88 (.83–.91) 882 ms 451 – 3763 ms
Stroop Effect .87 (.78–.92) .33 (.17–.48) 93 ms -480 – 479 ms
Error
Congruent .98 (.98–1.00) .82 (.76–.84) 1.6 % 0 – 40 %
Incongruent .94 (.92–.96) .53 (.39–.64) 3.9 % 0 – 42 %
Stroop Effect .88 (.84–.92) .78 (.70–.84) 2.3 % -28 – 21 %

Note. N = 126. CI = confidence interval. Split-half is an average of the test and retest phase split-half 
reliabilities.

Table A2

Cued Task Switching (Non-Incentivized) Reliability across Sessions

Measure Split-half (95% CI) Test-Retest (95% CI) M Range

Baseline
Reaction Time
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Congruent .98 (.98–.99) .60 (.31–.76) 906 ms 448 – 2370 ms
Incongruent .89 (.84–.93) .52 (.35–.65) 983 ms 458 – 2657 ms

TRCE .39 (.10–.61) .30 (.13–.45) 77 ms -319 – 921 ms
Error
Congruent .88 (.84–.92) .51 (.34–.64) 3.9 % 0 – 38 %
Incongruent .66 (.54–.74) .46 (.31–.58) 11 % 0 – 60 %
TRCE .52 (.38–.64) .33 (.17–.47) 7.1 % -12 – 56 %
Proactive
Reaction Time
Congruent .99 (.98–.99) .79 (.67–.86) 718 ms 421 – 2203 ms
Incongruent .90 (.86–.94) .66 (.55–.75) 780 ms 425 – 2343 ms
TRCE .52 (.28–.68) .38 (.22–.52) 62 ms -236 – 683 ms
Error
Congruent .84 (.77–.88) .66 (.55–.75) 4.3 % 0 – 34 %
Incongruent .57 (.45–.68) .52 (.38–.64) 14.9 % 0 – 56 %
TRCE .52 (.38–.64) .51 (.37–.63) 10.7 % -14 – 56 %
Reactive
Reaction Time
Congruent .99 (.98–.99) .66 (.42–.79) 1003 ms 501 – 2802 ms
Incongruent .90 (.86–.94) .60 (.39–.74) 1098 ms 510 – 3311 ms 
TRCE .55 (.38–.69) .46 (.31–.59) 94 ms -642 – 967 ms
Error
Congruent .84 (.76–.90) .35 (.19–.49) 1.5 % 0 – 31 %
Incongruent .59 (.44–.70) .41 (.26–.55) 6.7 % 0 – 56 %
TRCE .52 (.36–.66) .35 (.19–.49) 5.1 % -11 – 54 %

Note. N = 128. CI = confidence interval; TRCE = task rule congruency effect. Split-half is an average of the 
test and retest phase split-half reliabilities.

Table A3

AX-Continuous Performance Task Baseline Session Reliability 

Measure Split-half (95% CI) Test-Retest (95% CI) M Range

Reaction Time
AX trials .98 (.96–.98) .63 (.43–.76) 449 ms 295 – 827 ms
AY trials .87 (.83–.90) .69 (.58–.78) 540 ms 376 – 835 ms
BX trials .88 (.84–.92) .51 (.25–.68) 516 ms 267 – 1468 ms
BY trials .98 (.97–.98) .63 (.19–.81) 441 ms 273 – 788 ms
PBI .66 (.55–.75) .31 (.10–.48) .03 -.40 - .24
BX Interference .68 (.56–.77) .36 (.20–.51) 75 ms -109 – 872 ms

Error
AX trials .89 (.86–.92) .27 (.10–.43) 6.6 % 0 – 80 %
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AY trials .44 (.27–.60) .18 (.01–.34) 7 % 0 – 44 %
BX trials .68 (.57–.76) .20 (.02–.37) 13.8 % 0 – 80 %
BY trials .64 (.48–.78) .05 (-.12–.22) 1.1 % 0 – 19 %
A no-go trials .65 (.54–.74) .25 (.08–.40) 11.1 % 0 – 72 %
B no-go trials .73 (.66–.80) .43 (.28–.56) 22.3 % 0 – 80 %
PBI .69 (.59–.77) .16 (-.01–.32) -.18 -.94 - .89
d′ context .78 (.70–.84) .36 (.16–.52) 2.85 -.23 – 4.4
A-cue bias .56 (.42–.67) .18 (.01–.34) .09 -1.14 - .87
BX Interference .62 (.50–.72) .15 (-.01–.31) 1.08 -.52 – 2.83

Note. N = 121. CI = confidence interval; PBI = proactive behavioral index. Split-half is an average of the test 
and retest phase split-half reliabilities.

Table A4

AX-Continuous Performance Task Proactive Session Reliability 

Measure Split-half (95% CI) Test-Retest (95% CI) M Range

Reaction Time
AX trials .98 (.97–.99) .70 (.60–.78) 415 ms 257 – 832 ms
AY trials .86 (.80–.90) .68 (.57–.77) 541 ms 378 – 871 ms
BX trials .92 (.89–.94) .73 (.63–.80) 460 ms 259 – 1010 ms
BY trials .98 (.98–.99) .80 (.73–.86) 410 ms 253 – 710 ms
PBI .78 (.70–.84) .61 (.49–.71) .09 -.26 - .32
BX Interference .74 (.65–.82) .57 (.44–.69) 51 ms -91 – 493 ms
Error
AX trials .92 (.88–.94) .59 (.46–.69) 5.7 % 0 – 80 %
AY trials .81 (.76–.86) .60 (.47–.70) 18.6 % 0 – 80 %
BX trials .67 (.56–.76) .43 (.27–.57) 10.7 % 0 – 56 %
BY trials .59 (.40–.73) .35 (.18–.49) 1.1 % 0 – 15 %
A no-go trials .83 (.78–.88) .66 (.55–.75) 17 % 0 – 80 %
B no-go trials .82 (.78–.87) .70 (.59–.78) 32 % 0 – 80 %
PBI .80 (.73–.86) .54 (.40–.65) .16 -.89 - .94
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d′ context .81 (.73–.86) .55 (.41–.66) 3.09 -.92 – 4.40
A-cue bias .79 (.71–.85) .59 (.47–.70) .37 -1.99 – 1.47
BX Interference .62 (.50–.72) .28 (.11–.44) .93 -.5 – 2.47

Note. N = 121. CI = confidence interval; PBI = proactive behavioral index. Split-half is an average of the test 
and retest phase split-half reliabilities.

Table A5

AX-Continuous Performance Task Reactive Session Reliability 

Measure Split-half (95% CI) Test-Retest (95% CI) M Range

Reaction Time
AX trials .98 (.98–.99) .75 (.61–.84) 435 ms 259 – 923 ms
AY trials .91 (.88–.93) .69 (.53–.79) 558 ms 373 – 905 ms
BX trials .88 (.84–.91) .67 (.49–.78) 546 ms 336 – 993 ms
BY trials .98 (.98–.99) .76 (.55–.86) 420 ms 258 – 783 ms
PBI .52 (.37–.64) .44 (.29–.58) .02 -.3 - .21
BX Interference .67 (.56–.76) .52 (.39–.64) 125 ms -52 – 510 ms
Error
AX trials .84 (.78–.88) .55 (.41–.66) 7.2 % 0 – 47 %
AY trials .44 (.26–.58) .28 (.11–.44) 7.0 % 0 – 33 %
BX trials .75 (.66–.82) .56 (.39–.68) 11.2 % 0 – 78 %
BY trials .73 (.60–.82) .19 (.01–.35) 1.2 % 0 – 29 %
A no-go trials .45 (.29–.59) .41 (.25–.55) 8.4 % 0 – 50 %
B no-go trials .59 (.46–.70) .46 (.30–.59) 12.8 % 0 – 56 %
PBI .65 (.53–.74) .23 (.06–.39) -.09 -.93. - .86
d′ context .79 (.72–.85) .66 (.54–.75) 2.93 .58 – 4.4
A-cue bias .52 (.38–.64) .45 (.29–.58) .06 -.8 - .82
BX Interference .72 (.62–.80) .39 (.20–.55) .93 -.27 – 3.18

Note. N = 121. CI = confidence interval; PBI = proactive behavioral index. Split-half is an average of the test 
and retest phase split-half reliabilities.
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Table A6

Sternberg Reliability across Sessions

Measure Split-half (95% CI) Test-Retest (95% CI) M Range

Baseline
Reaction Time
NN .94 (.91–.96) .57 (.44–.68) 834 ms 466 – 1704 ms

NP .92 (.90–.94) .58 (.45–.68) 878 ms 444 – 1615 ms
RN .76 (.69–.82) .46 (.32–.59) 951 ms 492 – 1750 ms
Recency Effect -.02 (-.26–.24) .20 (.02–.36) 117 ms -201 – 480 ms
Error
NN .73 (.62–.81) .28 (.11–.43) 3.6 % 0 – 56 %

NP .84 (.78–.88) .58 (.45–.68) 13.2 % 0 – 58 %
RN -.04 (-.26–.22) .45 (.29–.58) 17.3 % 0 – 60 %
Recency Effect .20 (-.02–.40) .33 (.16–.47) 13.8 % -12 – 60 %
Proactive
Reaction Time
NN .92 (.88–.94) .63 (.51–.73) 834 ms 445 – 1477 ms

NP .92 (.88–.94) .62 (.50–.72) 845 ms 420 – 1505 ms
RN .76 (.70–.83) .52 (.36–.64) 1003 ms 448 – 1958 ms
Recency Effect .18 (-.05–.42) .19 (.02–.34) 169 ms -180 – 560 ms
Error
NN .68 (.55–.78) .42 (.27–.55) 5 % 0 – 50 %

NP .80 (.73–.86) .47 (.32–.60) 12.4 % 0 – 60 %
RN .16 (-.09–.38) .52 (.38–.64) 25.6 % 0 – 60 %
Recency Effect .32 (.11–.49) .39 (.23–.53) 20.6 % -25 – 60 %
Reactive
Reaction Time
NN .84 (.77–.88) .51 (.37–.63) 851 ms 460 – 1661 ms

NP .92 (.88–.94) .58 (.45–.69) 856 ms 482 – 1400 ms
RN .88 (.84–.91) .66 (.54–.75) 963 ms 491 – 1582 ms
Recency Effect .12 (-.15–.38) .21 (.05–.37) 85 ms  -176 – 350 ms
Error
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NN .54 (.32–.70) .34 (.18–.49) 4.3 % 0 – 50 %
NP .78 (.72–.84) .49 (.35–.61) 10.3 % 0 – 54 %

RN .50 (.32–.65) .62 (.50–.71) 12.7 % 0 – 56 %
Recency Effect .78 (.72–.84) .42 (.27–.55) 8.3 % -25 – 50 %

Note. N = 126. CI = confidence interval; NN = novel negatives; NP = novel positives; RN = recent negatives. 
Split-half is an average of the test and retest phase split-half reliabilities.



Appendix B

Table B1 

Between-Task Spearman Rho Correlations of Selected Measures, Baseline Session.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

1. A-Cue 3.16 0.68            

2. BXI Error -0.13 0.12 .19*           

3. BXI RT 67.47 71.71 .22* -.00          

4. d′ 2.84 0.76 .57** .79** .00         

5. PBI Error 0.05 0.09 .16 -.86** .14 -.63**        

6. PBI RT 0.04 0.07 -.25** .18* -.83** .14 -.34**       

7. Recency Error 0.13 0.10 -.01 -.25** -.06 -.12 .21* .05      

8. Recency RT 116.60 81.08 .13 -.04 -.00 .03 .08 -.10 .01     

9. Stroop Error 0.03 0.04 -.27** -.17 .01 -.27** .07 -.03 -.01 .04    

10. Stroop RT 138.21 65.84 .09 -.18* .10 -.12 .20* -.09 -.02 .08 .10   

11. TRCE Error -0.08 0.08 .24** .18 .03 .24** -.06 -.01 -.08 -.02 -.08 -.14  

12. TRCE RT 78.16 120.22 .15 .05 .12 .11 -.04 -.03 .01 .09 -.23* .03 -.26**

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI =
Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined. 
** p < .01; * p < .05
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Table B2

Between-Task Spearman Rho Correlations of Selected Measures, Proactive Session.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

1. A-Cue 2.84 0.69            

2. BXI Error -0.09 0.10 .21*           

3. BXI RT 48.35 64.98 .36** -.22*          

4. d′ 3.13 0.90 .53** .82** -.15         

5. PBI Error -0.06 0.14 .34** -.66** .50** -.54**        

6. PBI RT 0.09 0.09 -.34** .37** -.78** .35** -.72**       

7. Recency Error 0.18 0.11 -.06 -.08 -.04 -.10 .06 -.07      

8. Recency RT 165.66 100.36 .02 .17 .11 .19* -.20* .02 -.00     

9. Stroop Error 0.02 0.02 -.33** -.15 -.02 -.33** .02 -.02 .05 -.05    

10. Stroop RT 82.81 53.41 -.10 -.31** .08 -.27** .19* -.17 -.11 .00 .29**   

11. TRCE Error -0.13 0.10 .06 .11 -.04 .09 -.03 .03 -.11 .03 -.01 -.16  

12. TRCE RT 32.96 64.87 .05 -.15 .08 -.13 .18* -.08 .08 -.03 -.12 .20* -.37**

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI =
Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined. 
** p < .01; * p < .05
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Table B3

Between-Task Spearman Rho Correlations of Selected Measures, Reactive Session.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

1. A-Cue 3.08 0.66            

2. BXI Error -0.10 0.12 .29**           

3. BXI RT 125.76 63.30 .22* .07          

4. d′ 2.94 0.85 .57** .87** .13         

5. PBI Error 0.03 0.08 .02 -.85** .01 -.76**        

6. PBI RT 0.02 0.05 -.15 .30** -.64** .25** -.40**       

7. Recency Error 0.08 0.09 -.05 -.24** -.02 -.26** .21* -.11      

8. Recency RT 87.80 75.81 .10 .12 .15 .19* -.10 -.04 -.10     

9. Stroop Error 0.02 0.05 -.24** -.32** -.09 -.37** .34** -.06 -.07 .08    

10. Stroop RT 91.29 64.23 -.07 -.26** .10 -.27** .24** -.19* .13 .00 .44**   

11. TRCE Error -0.05 0.05 .23* .23* .21* .31** -.19* -.10 -.08 .03 -.16 -.17  

12. TRCE RT 59.67 132.11 -.02 -.03 -.02 -.03 .06 -.01 .03 -.06 -.06 .06 -.16

Note. N = 120. M and SD are used to represent mean and standard deviation, respectively. BXI = BX Interference; d′ = d prime; PBI =
Proactive Behavioral Index; Recency = recency effect; TRCE = Task Rule Congruency Effect. Test and retest phase combined. 
** p < .01; * p < .05



Appendix C

Overview of DMC Task Battery Paradigms

Task Paradigms

Here we present the most pertinent information regarding the tasks and their 

manipulations. For a complete description of the tasks (e.g., manipulation rationales, stimulus 

parameters (e.g., ISI, etc.)), see Tang et al. (2021). 

Stroop 

Baseline Sessions. In a baseline session the trials were manipulated in a list-wide, mostly

congruent (LW-MC) manner. Subjects completed a total of 288 trials during a baseline session, 

in which there were 96 PC-50 trials (48 congruent, 48 incongruent), and 192 biased trials. The 

biased set had 75% congruent (144 trials) and 25% incongruent (48 trials) trials. Consequently, 

the list-wide proportion congruency for the baseline sessions were 66%. The sessions were 

divided into two blocks of 144 trials each, between which subjects were instructed to rest for one

minute.   

Reactive Sessions. In the reactive sessions the proportion congruency manipulation was 

at the item-level, item-specific proportion congruency (IS-PC). Specifically, blue and red color-

font items were manipulated to be PC-100 (i.e., these font-color words were only presented on 

congruent trials; 192 trials). Purple and white color-font items were manipulated to be PC-25 

(i.e., 25% congruent, 48 trials; 75% incongruent, 144 trials).  Finally, as in the baseline and 

proactive sessions, the remaining 96 trials were PC-50 (i.e., equal amount of congruent and 

incongruent trials). Thus, subjects completed a total of 480 trials during the reactive sessions. 

Each reactive session was divided into three blocks of 160 trials each, between which subjects 

were instructed to rest for one minute.
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Proactive Sessions. In the proactive sessions, the trials were manipulated in a list-wide, 

mostly incongruent (LW-MI) manner. Subjects completed a total of 288 trials during the 

proactive sessions, in which there were 96 trials PC-50 (48 congruent, 48 incongruent), and 192 

biased trials. The biased set had 25% congruent (48 trials) and 75% incongruent (144 trials) 

trials.  Consequently, the list-wide proportion congruency for the proactive sessions were 33%. A

proactive session was divided into two blocks of 144 trials each, between which subjects were 

instructed to rest for one minute.  

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error 

rates were calculated for both congruent and incongruent trials for the biased set, for each subject

in each session. The Stroop interference effect (incongruent – congruent) in both RT and also 

error rate was calculated separately for biased items. For brevity, the results of the PC-50 item 

set are not reported.

AX-CPT 

Baseline Sessions. For all AX-CPT sessions, the task comprised 216 trials total, and 

included 72 AX trials, 72 BY trials, 18 AY trials, 18 BX trials and 36 no-go trials (18 following 

an A-cue, 18 following a B-cue). All trial types and no-go trials were presented in random order. 

The task was performed in three 72 trial blocks, between which subjects were instructed to take a

minimum of 1-minute rest break. After receiving task instructions, subjects performed a 12-trial 

practice block before beginning the actual task.  

Reactive Sessions. The occurrence of high conflict trials (AY, BX, no-go) was implicitly

signaled by presenting the probe in a distinct spatial location and preceded by a distinct border 

color. Specifically, while cues were always presented centrally (as in the baseline and proactive 

variants) the probe stimuli were either presented in the upper half (AX, BY) or lower half (AY, 
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BX, no-go) of the visual display. Furthermore, probe stimuli were immediately preceded (250 

msec before probe onset) by either a white border (AX, BY) or red border (AY, BX, no-go). 

Otherwise, the task structure and trial proportions were identical to baseline and proactive 

variants.  

Proactive Sessions. In the proactive sessions, subjects received strategy training before 

completing the AX-CPT. The strategy training occurred during a practice block of 6 trials, 

during which an audio clip was played, which instructed subjects which button to prepare 

following the cue. After this first series of practice trials, subjects performed a second practice 

set (6 trials), during which they were asked to type which button they were preparing to press in 

response to the second item. Subjects typed out “left” or “right” and the program told subjects if 

they were correct or not. If they were not correct, they were reminded what letter the first item 

was and asked to try again. This procedure was implemented to accommodate the online testing 

format, and deviated slightly from in-person versions, in which subjects responded verbally 

regarding the button they were preparing to press. 

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error 

rates were calculated for each of the 4 primary trial types (AX, AY, BX, BY) for each subject in 

each session. Average error rates for no-go trials were calculated as well. Additional derived 

indices were also computed: A-cue bias, d’-context, the Proactive Behavioral Index (PBI), and 

BX probe Interference (Gonthier et al., 2016). The first two indices, A-cue bias, and d’-context 

are based on signal detection theory, (Stanislaw & Todorov, 1999) and reflect the use of 

proactive control. The A-cue bias measure was calculated by computing a c criterion from hits 

on AX trials and false alarms on AY trials as 1/2*(Z[H] + Z[F]), with H representing hits on AX 

trials and F representing false alarms on AY trials (Richmond et al., 2015). The d’-context index 



PSYCHOMETRIC EVALUATION OF COGNITIVE CONTROL 73

was calculated by computing a d’ index from hits on AX trials and false alarms on BX trials as 

Z(H) – Z(F), with H representing hits on AX trials, F representing false alarms on BX trials, and 

Z representing the z-transform of a value. The third index was the PBI, calculated as (AY – BX)/

(AY + BX) (Braver et al., 2009). This index reflects the relative balance of interference between 

AY and BX trials; a positive PBI reflects higher interference on AY trials, indicating proactive 

control, whereas a negative PBI reflects higher interference on BX trials, indicating reactive 

control. The PBI was computed separately for error rates (based on average error rates on AY 

and BX trials) and for RTs (based on average RTs on AY and BX trials). The fourth index was 

BX probe interference, calculated as (BX – BY) on both error rates and RTs, including a 

standardized RT computation. This index allows for examination of the interference that occurs 

when an “X” probe follows a non-target cue “A” and a target trial response must be inhibited. In 

order to correct for error rates that were equal to 0, a log-linear correction was applied to all error

rate data prior to computing the d’-context, the A-cue bias, PBI, and BX interference (Braver et 

al., 2009; Hautus, 1995). This correction was applied as 

error + 0.5/N.obs. + 1

Cued Task Switching 

The target stimuli were constructed in terms of two distinct stimulus sets. One set of 

stimuli (A1, A2, B1, B2, 1A, 2A, 1B, 2B) were kept mostly congruent (80% congruent; 20% 

incongruent), also referred to as the biased set. The second set of stimuli (D4, E3, H5, I6, 4D, 3E,

5H, I6) were unbiased (50% congruent, 50% incongruent). Each session consisted of 192 total 

trials, 96 mostly congruent (80 congruent, 16 incongruent) and 96 unbiased (48 congruent, 48 

incongruent) and also equally split between the two tasks (i.e., 96 letter, 96 digit). Trials were 

separated into three 64 trial blocks, between which subjects were required to take a minimum of 
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1-minute rest break. Prior to starting each session subjects learned (or refreshed their memory) of

the task rules through a set of 16 practice trials.

Baseline Sessions. For the baseline session, no manipulations were made to the unbiased 

stimuli. However, to maintain consistency with the proactive and reactive sessions described 

below, for these stimuli task cues and target stimuli could appear in either red or green font. 

However, this distinction was irrelevant with regard to the instructions given to the subjects. 

Reactive Sessions. The reactive sessions of Cued-TS were identical to the baseline 

variant except for the addition of a punishment-based motivational incentive. This motivational 

incentive provides subjects with a punishment cue indicated during presentation of the target. 

When subjects made errors on incentive trials, which were indicated by a green cue and target, 

they received a monetary penalty for that trial that was subtracted from their compensation 

amount. 

Proactive Sessions. The proactive sessions of Cued-TS were identical to the baseline 

sessions except for the addition of a reward-based motivational incentive. This motivational 

incentive provides subjects with a reward cue, indicated by a cue in green font-color during 

presentation of the task cue. Non-incentive trials indicated by the task cue appearing in red font. 

When subjects responded to incentive trials faster than the baseline session’s median RT while 

maintaining accuracy (this information was stored in a look-up table database, and accessed at 

the beginning of each session), they received a monetary bonus for that trial added to their 

compensation amount. 

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error 

rates were calculated separately for congruent/incongruent biased items, for each subject in each 

session. Additionally, the TRCE (Task Rule Congruency Effect) was calculated as a difference 
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score between incongruent and congruent trials and was computed for biased items. For brevity, 

the results of the unbiased set are not reported.

Sternberg 

Baseline Sessions. The baseline sessions involved high-load variable-items and a low 

proportion of RN trials (20% of negative probes, 10% of total trials). Specifically, the variable-

load set consisted of a mixture of high-load memory sets (12 6-item, 24 7-item, 36 8-item) and 

very few RN trials (4 RN, 32 NN, 36 NP).  For the critical 5-item set, the proportion was slightly

adjusted, to increase the number of RN trials for analysis (8 RN, 16 NN, 24 NP).

Reactive Sessions. In the reactive sessions, the variable-load set used the identical 

mixture of high-load memory set items as the baseline session (12 6-item, 24 7-item, 36 8-item). 

However, the relative proportion of RN to NN trials was increased in both the variable-load (32 

RN, 4 NN, 36 NP) and critical items (16 RN, 8 NN, 24 NP). 

Proactive Sessions. In the proactive sessions, the variable-load items were instead a 

mixture of low-load memory sets (36 2-item, 24 3-item, 12 4-item). The proportion of RN, NN, 

and NP trials was identical to the baseline session for both variable-load (4 RN, 32 NN, 36 NP) 

and critical item sets (8 RN, 16 NN, 24 NP). 

Cognitive Control Measures. Average reaction times (RTs) on correct trials and error 

rates were calculated per trial type (i.e., NN, NP, RN trials) for critical items (list-length 5). One 

additional index, the recency effect, was also calculated for both RTs and error rates as a 

difference score on negative trials as RN trials – NN trials. For brevity, the results of the 

variable-load item set are not reported here.
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