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Abstract
Prominent models of control assume that conflict and the probability of conflict are signals used by control processes that regulate
attention. For example, when conflict is frequent across preceding trials (i.e., high probability of conflict), control processes bias
attention toward goal-relevant information on subsequent trials. An important but underspecified question regards the meta-
control property of timescale—that is, how far back does the control system “look” to determine the probability of conflict? To
address this question, Aben, Verguts, and Van den Bussche (2017) developed a statistical model quantifying the timescale of
control. In a flanker task, they observed short timescales for lists with a low probability of conflict (which induce reactive control)
and long timescales for lists with a high probability of conflict (which induce proactive control). To investigate the domain
generality of these timescales, we applied their model to two additional conflict tasks that manipulated the list-wide probability of
conflict. Our findings replicated Aben et al. suggesting meta-control may be task general with respect to timescales operating on
the list level. We subsequently modified their model to examine timescale differences for items in the same list that differed in
their probability of conflict but not the type of control engaged. We failed to detect a difference in timescales between items.
Collectively, the findings demonstrate that differences in the timescale of control are task general and suggest that timescale
differences are driven by the type of control engaged and not by the probability of conflict per se.

Keywords Cognitive control . Timescale of control . Learning rate . List-wide proportion congruence . Item-specific proportion
congruence

Cognitive control is the ability to pursue goal-directed behav-
ior in the face of more habitual or immediately compelling
alternative behaviors (Cohen, 2017). Several prominent
models of cognitive control assume that conflict serves as an
important signal for adjustments in control (Blais et al., 2007;
Botvinick et al., 2006; Verguts & Notebaert, 2008). Conflict
occurs when relevant (to-be-attended) and irrelevant (to-be-

ignored) stimulus dimensions activate competing responses,
such as when naming the color on an incongruent trial (e.g.,
RED in blue ink) in the Stroop task or when having to bypass
one’s usual exit that leads home in order to fulfill the goal of
picking up milk at the grocery store.

The term adaptive control implies that the control system
learns about the probability of conflict within a given context
and modulates attention accordingly (Braem et al., 2019; for
recent reviews, see Bugg & Crump, 2012; Bugg, 2017).
Indeed, many extant models view the probability of conflict,
and thus past experiences with conflict, as central to how the
system modulates attention. However, what remains
underspecified is the question of how far back the control
system “looks” to learn about the probability of conflict.
Specifically, what is the timescale under which the control
system operates? The timescale of control can be thought of
as the window size representing how many prior trials are
accumulated to calculate the probability of conflict for an up-
coming trial. We consider timescale to be a key meta-control
property of the cognitive control system, and we aim to further
characterize this property by addressing three questions using
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data from confound-minimized experiments (Braem et al.,
2019): 1) Does the timescale of cognitive control vary across
lists that differ in their probabilities of conflict, as a recent
model proposed and initial data supported (Aben et al.,
2017), and why might it vary? 2) Is the effect of the list-
wide probability of conflict on the timescale of control con-
sistent across different conflict tasks? 3) Are differing time-
scales of control also observed for items within a list that vary
in their probability of conflict? The present study represents
the most comprehensive investigation of this meta-control
property to date and aims to provide new information about
the generality and specificity of meta-control.

Timescale of Control: A Meta-control Property

For the most part, the timescale of control has been assumed to
be a fixed value. For example, the conflict-monitoring model
(Botvinick et al., 2001) and the item-specific adaption of the
conflict-monitoring model (Blais et al., 2007) both use a fixed
λ weighting parameter to represent how much experiences
with previous conflict adjust control for an upcoming trial or
item. This fixed λ parameter essentially captures the timescale
of control such that a small λ value assumes a small window
size or short timescale. Conversely, a large λ value assumes a
large window size or long timescale.

However, assuming a fixed timescale for participants in all
experimental conditions yields sub-optimal estimates of be-
havior (Jiang et al., 2014). Jiang et al. (2014) developed a
Bayesian model of flexible control, which takes inspiration
from reinforcement learning models, and assumed that the
probability of conflict is calculated using a learning rate pa-
rameter (α). Conceptually, this learning rate parameter can be
thought of as the complement of λ (i.e., 1 – λ) in that it weights
how much the presence of conflict on the current trial adjusts
control for an upcoming trial. In other words, a large learning
rate value indexes a short timescale, and a small learning rate
value indexes a long timescale.

Notably, variation (across individuals and trials) in param-
eters representing the timescale of control also has been
shown to correlate with neural activity. For example,
Jiang et al. (2015) applied the Bayesian model of flexible
control to extract a timescale parameter that varied trial-by-
trial for each participant performing a face-word Stroop task.
In their task, participants were asked to respond to the gender
of a face while ignoring the word “male” or “female”
superimposed on the face. Using whole-brain searchlight tech-
niques, they found that variation in timescales correlated with
left anterior insula and inferior frontal gyrus. They concluded
that these regions are integral for determining timescales nec-
essary for predicting conflict which is consequently used to
modulate control. This suggests that the timescale of control is

not merely useful for mathematical models of control but may
also be a meta-control property that is represented neurally.

Assuming the timescale of control is flexible, a question
that has not received much attention is does it vary systemat-
ically between situations that evoke different control states? In
other words, do timescales not only vary between individuals
and within a run of trials (as alluded to earlier), but also be-
tween experimental conditions that induce different types of
control?

Empirically Determining the Timescale
of Control for Different Types of Control

The dual-mechanisms of control account (Braveret al., 2007;
Braver, 2012) states that there are two distinguishable types of
control: reactive control and proactive control. According to
Braver (2012) “reactive control reflects transient stimulus-
driven goal reactivation…based on interference demands or
episodic associations. Proactive control reflects the sustained
and anticipatory maintenance of goal-relevant information…
to enable optimal cognitive performance.” (p. 106). In a reac-
tive state, how much a person is paying attention to the target
dimension can vary dramatically trial-by-trial. By contrast, in
a proactive state, the assumption is that a person maintains a
stable level of attention to the target dimension across trials.

An experimental method bywhich one can induce different
control types is to parametrically change the global probability
of conflict within a list. For example, one can create lists that
are either mostly congruent (low probability of conflict) or
mostly incongruent (high probability of conflict). A robust
finding is that performance differs across lists such that con-
gruency effects (e.g., difference between incongruent and con-
gruent reaction times in tasks, such as Stroop, flanker, and
Simon) are significantly increased in lists with a low (i.e.,
mostly congruent) relative to high (i.e., mostly incongruent)
probability of conflict (Kane & Engle, 2003; Lindsay &
Jacoby, 1994; Logan & Zbrodoff, 1979; Logan et al., 1984;
Lowe & Mitterer, 1982; Toth et al., 1995; for reviews see
Bugg, 2012; Bugg & Crump, 2012; Bugg, 2017). Critically,
this list-wide proportion congruence effect holds for novel,
frequency-matched sets of items that are 50% congruent in
each list (i.e., diagnostic items; Bugg, 2014; Bugg &
Chanani, 2011; Hutchison, 2011; Gonthier, Braver, & Bugg,
2016; cf. Bugg et al., 2011b), which control for a number of
confounds that could otherwise potentially explain the effect
(e.g., item-specific contingency learning; item-specific con-
trol; bottom-up priming of control states; for discussion see
Braem et al., 2019). The prevailing interpretation of this list-
wide proportion congruence effect is that the control system
implicitly learns about the statistical regularities of conflict
within a list and biases attention based on those regularities
(Blais, Harris, Guerrero,& Bunge, 2012). In mostly congruent
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lists, where conflict is not anticipated, control is low, but the
occurrence of incongruent trials produces interference that
transiently (reactively) activates the task goal. In contrast, in
mostly incongruent lists, there is a sustained (proactive)
heightening of control (i.e., decreased attention to the irrele-
vant dimension and/or increased attention to the relevant di-
mension) in anticipation of conflict.

Supporting this characterization, in an fMRI study, De
Pisapia and Braver (2006) found that lists with a low proba-
bility of conflict showed behavioral and neural markers of
reactive control, whereas lists with a high probability of con-
flict showed markers of proactive control. Specifically, they
found increased transient activity in the prefrontal cortex on
incongruent trials when participants performed a color-word
Stroop task with a low probability of conflict at the list-level.
In juxtaposition, they found increased sustained activity in the
prefrontal cortex when participants performed the task with a
high probability of conflict at the list-level. Simulation results
from their computational model, which included two conflict
detection units—one that calculated conflict on a short time-
scale and one that calculated conflict on a longer timescale—
fit the data well. However, their model did not quantify just
how far back the control system “looked” to learn about the
probability of conflict in the different list types.

In line with the research of De Pisapia and Braver (De
Pisapia & Braver, 2006), Aben et al. (2017) posited that con-
ditions that induce transient (reactive) control (e.g., lists with a
low probability of conflict) should operate on a short timescale
such that conflict in a small window of prior trials affects
control on the current trial; in contrast, conditions that induce
sustained (proactive) control (e.g., lists with a high probability
of conflict) should operate on a long timescale such that a
larger window of prior trials affects control on the current trial
(i.e., “protracted occurrences of conflict [engage] sustained
proactive control”; De Pisapia & Braver, 2006, p. 1326).
Critically, they put these predictions to the test by developing
a statistical model to empirically quantify the timescale of
control in lists that differed in their probability of conflict.
We refer to the model that they developed as the extended
congruency sequence effect (CSE) model.

The extended CSE model takes its name from the CSE—
the observation that the congruency effect (i.e., the difference
in reaction time between congruent and incongruent trials) in
conflict tasks is subject to cross-trial sequence effects. The
conflict status of the previous trial (Ci-1;) influences the degree
to which conflict on the current trial (Ci) affects RT and accu-
racy (Grattonet al., 1992; for reviews, see Duthoo et al., 2014;
Egner, 2007). In short, the CSE is the impact ofCi-1 onCi (i.e.,
the CiCi-1 interaction). Figure 1 depicts the CSE pattern
whereby the congruency effect is reduced when the previous
trial is incongruent compared with when the previous trial is
congruent. One prominent interpretation of the CSE is that it
reflects local adjustments of attention by the control system

based on the detection of conflict (Botvinick et al., 2001; see
also Egner, 2007 for review). That is, based on the conflict
status of the previous trial (trial i-1), the system adjusts atten-
tion to the current trial (trial i). When encountering conflict on
trial i-1, the control system increases attention to the relevant
stimulus dimension, thereby reducing the congruency effect
for the current trial.

The unique contribution of the model of Aben et al. (2017)
was that it considered not just the impact of the congruency
state of the first previous trial on the current trial but also the
independent effect of multiple previous trials on the congru-
ency effect on the current trial (Colvett et al., 2020; Durston,
Davidson, Thomas, Worden, Tottenham, Martinez, Watts,
Ulug, & Casey, 2003; Horga, Maia, Wang, Wang, Marsh, &
Peterson, 2011; Jiménez & Méndez, 2013; Jiménez &
Méndez, 2014). In other words, they looked at the indepen-
dent effect of Ci-1, Ci-2, Ci-3, … Ci-k on Ci. In their model, k
was equal to the maximum trial distance that had a significant
impact on the current trial. The primary parameters of interest
were current trial by previous trial interactions (e.g., CiCi-1,
CiCi-2, … CiCi-k), and the value of an interaction term for a
given trial distance, which was deemed to be that trial dis-
tance’s conflict-adaptation-weight (CAW).

In the extended CSE model, the CAW for a given trial
distance quantifies that trial distance’s independent impact on
the current trial’s congruency effect. Critically, the relative
change in CAWs across trial distances (slopes in Fig. 2) was
interpreted by Aben et al. (2017) as an index of the timescale of
control. A short timescale was indexed by CAWs that changed
dramatically over trial distance, whereas a long timescale was

Fig. 1 Hypothetical data depicting the congruency sequence effect
(CSE). Plotted on the x axis is the trial type of the preceding trial.
Squares depict current congruent trials. Triangles depict current
incongruent trials. The difference between squares and triangles for a
given previous trial type depicts the congruency effect. This plot shows
that the congruency effect is reduced when the previous trial is
incongruent compared to when the previous trial is congruent.

474 Cogn Affect Behav Neurosci  (2021) 21:472–489



indexed by CAWs that did not change much over trial distance.
Conceptually, a short timescale translates to a relative increase
in the weighting of recent trials and a relative decrease in the
weighting of distal trials when compared to a long timescale.
Figure 2 (from Aben et al., 2017) illustrates the difference
between short and long timescales as captured by their model.

The key finding of Aben et al. (2017) was that the proba-
bility of conflict within a list influenced the timescale of con-
trol. Lists with a low probability of conflict (i.e., flanker lists
with a proportion congruence of 0.80 [PC 80]) induced a
shorter timescale of control relative to lists with a high prob-
ability of conflict (i.e., PC 20 flanker lists). This suggests that
adaptation to conflict occurs on different timescales with rel-
atively greater weighting of recent trials when conflict is im-
probable and relatively greater weighting of distal trials when
conflict is probable. As Aben et al. noted, these findings are
compatible with theories that distinguish transient and
sustained control, respectively, such as the dual-mechanisms
of control account.

Present Research

The results of Aben et al. (2017) represented the first piece of
evidence that the timescale of control may vary across lists that
differ in their probability of conflict and consequently, in the
case of the list-wide PC manipulation, the type of control en-
gaged (i.e., reactive vs. proactive). However, to date, these
findings have not yet been replicated. Thus, it remains

uncertain whether their findings are stable or specific to the task
and design they employed. Aben et al. investigated timescales
using a two-choice flanker task that included only biased
(inducer) items (e.g., flanker stimuli with left flanking arrows
were mostly congruent in the mostly congruent lists and mostly
incongruent in mostly incongruent lists). Such designs leave
open the possibility that processes such as contingency learning
(i.e., processes by which participants predict responses [central
arrow identity] based on flanking arrows, for example, pressing
right key whenever left flanking arrows are encountered in
mostly incongruent lists; see Schmidt & Besner, 2008), may
explain the difference in the congruency effect across lists
(Braem et al., 2019; Bugg, 2012) and potentially the differing
timescales. By including diagnostic items that are frequency
and PC matched across lists (e.g., 50% congruent in each list),
one can confirm that performance differences between lists are
indicative of the expected differences in control (e.g., proactive
control in the mostly incongruent list).

Motivated by the findings of Aben et al. (2017), in the pres-
ent research we attempted to replicate the timescale patterns
they observed in experimental conditions that demonstrably
pushed participants to engage in either reactive or proactive
control (as confirmed by performance on the diagnostic items).
In Analyses 1 and 2, we sought to determine whether the list-
level timescale patterns observed by Aben et al. are replicable
and task-general.We did this by applying their statistical model
to data from two conflict tasks that differed from the flanker
task they used: a picture-word Stroop task and a color-word
Stroop task. Based on the findings of Aben et al., in Analyses 1
and 2, it was predicted that the timescale of control would be
shorter in conditions that induce transient/reactive control
(mostly congruent lists) and longer in conditions that induce
sustained/proactive control (mostly incongruent lists).

Finally, in Analysis 3, we examined the novel question of
whether differences in the probability of conflict between items
(rather than between lists) lead to differences in timescales of
control. We accomplished this by examining timescales of con-
trol within a 50% congruent list of picture-word Stroop trials in
which item-specific proportion congruence was manipulated.
Briefly, certain pictures were mostly congruent within that list
and other pictures were mostly incongruent, and they were
randomly intermixed. The item-specific proportion congruence
effect is the reduction in the congruency effect for mostly in-
congruent compared to mostly congruent items (Jacoby et al.,
2003). Critically, this effect reflects reactive control based on
retrieval of learned control settings (i.e., episodic associations)
that are specific to each item (e.g., mostly incongruent items
retrieve a setting entailing less processing of irrelevant dimen-
sion and/or more processing of target). Investigating this ques-
tion allowed us to assess the generalizability of timescales,
particularly whether different timescales of control would be
observed for mostly congruent and mostly incongruent items

Fig. 2 Hypothetical influence of previous trials’ congruency state on the
current trial’s congruency effect. Conflict adaptation on the current trial,
otherwise known as the conflict-adaptation weight (CAW) is plotted on
the y-axis. Trial distance is plotted on the x-axis. The relative changes in
CAW across trial distance (i.e., the slopes of the trajectories) index the
timescale of control. Long timescales are indexed by relatively smaller
changes across trial distance. Short timescales are indexed by relatively
steeper changes across trial distance. Source: Aben et al., 2017.
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like the differences found for mostly congruent and mostly
incongruent lists.

Analysis 1: Examining the List-Wide Timescale
of Control in a Picture-Word Stroop Task
from Gonthier et al. (2016)

For Analysis 1, we used data from a picture-word Stroop task
in which list-wide proportion congruence was manipulated and
participants named an animal in a picture while ignoring a
superimposed animal word (Gonthier et al., 2016).1 The
Gonthier et al. study included a large sample (N = 93),
within-subjects manipulations of the factors of interest, and
diagnostic items, which as detailed earlier are important for
confirming that differences between lists are attributable to dif-
ferences in control (Braem et al., 2019). Specifically, the data
showed that the diagnostic items within the mostly incongruent
list had smaller Stroop effects than the diagnostic items within
the mostly congruent list, consistent with the view that partic-
ipants adopted proactive control in the mostly incongruent list
(De Pisapia & Braver, 2006; Gonthier et al., 2016). We applied
the extended CSE model and investigated whether the time-
scale of control varied systematically between mostly incon-
gruent and mostly congruent lists in the picture-word Stroop
task. A secondary goal was to compare a list-wide PC 50 list to
the mostly incongruent and mostly congruent lists.

Method

Each participant was exposed to three conditions (for a more
detailed description of the methods, see Gonthier et al., 2016).
The conditions comprised a list-wide mostly congruent con-
dition, a list-wide mostly incongruent condition, and a list-
wide PC 50 condition. All three conditions included diagnos-
tic items (four animal pictures that were PC 50; e.g., cow, frog,
pig, seal) .2 What differed across conditions was the PC of the
other four animal pictures (i.e., the inducer items; e.g., bird,

cat, dog, fish) included in each list. In the list-wide mostly
congruent condition, the other four were PC 75. When com-
bined with the diagnostic items, this led to an overall PC 67
list. In the list-wide mostly incongruent condition, the other
four were PC 25. This created an overall PC 33 list. The list-
wide mostly congruent and mostly incongruent conditions
were comprised of 384 trials. For the third condition, the
list-wide PC 50 condition, the other four pictures were two
PC 75 items and two PC 25 items. The latter two sets of items
were used to manipulate item-specific proportion congruence
within this list. For the purposes of Analysis 1, which focused
on timescales associated with the list-wide probability of con-
flict, this third condition was treated as a PC 50 list for com-
parison to the PC-67 and PC-33 lists. The list-wide PC 50
condition was comprised of 432 trials.

Of the original 93 participants included in this dataset 83
were retained for analysis. 10 participants were excluded, be-
cause they did not complete all the conditions within the ex-
perimental paradigm.

Analytical approach

Unless otherwise mentioned, the analytical approach mirrored
the approach detailed in Aben et al. (2017). The analysis in-
cluded all items (inducer and diagnostic).3 The following trials
were excluded: the first trial of each condition (0.41%), error
trials (3.77%), and trials following errors (3.77%). Like Aben
et al., we also box-trimmed the RT data; however, we used the
cutoffs that we have used previously in our research on the
Stroop task (Bugg, 2014; Bugg & Dey, 2018; Gonthier et al.,
2016). Trials <200 ms and >3,000 ms were excluded (0.34%).

Hierarchical linear models (HLMs) were used to ana-
lyze RTs. These models require an assumption that the
residuals of the dependent variable are normally distribut-
ed, but RT residuals are not typically normally distributed.
Thus, we inverse transformed RTs (1/RT) and multiplied
them by −10,000 to restrict the number of decimal places
(Kinoshita, Mozer, & Forster, 2011). Smaller inverse RTs
reflect faster responses, so the direction of the transformed
scale is consistent with raw RTs.4

1 For this and all subsequent analyses, we selected data sets based on three
major criteria. 1) They had to be highly powered with Ns > 60. 2) They were
collected using fully within-subject manipulations of the factors of interest so
that we could appropriately model timescales using the approach specified in
Aben et al. (2017). 3) They were collected using designs that minimized
known confounds and included diagnostic items that enabled inferences about
control (see Braem et al., 2019 for review). Although there are three other
published datasets that met the latter criterion (Bugg, 2014; Bugg &
Chanani, 2011; Hutchison, 2011), none additionally met the remaining two
criteria.
2 Note that behavioral patterns in Gonthier et al. (2016) indicated list-level
control. Specifically, the same PC 50 items in a list-wide mostly congruent
block had a larger Stroop effect (115 ms) than when in a list-wide mostly
incongruent block (86 ms). This pattern for diagnostic items has been taken
to indicate the operation of a list-level control mechanism as opposed to other
mechanisms (Bugg, 2014; Braem et al., 2019; e.g., contingency learning; see
also Cohen-Shikora, Suh, & Bugg, 2019, for evidence countering a temporal
learning mechanism).

3 There were too few trials to restrict the analysis to diagnostic items only in
the current and subsequent analyses.
4 Because it has been shown that using nonlinear transformations, such as
inverse transformations, can systematically alter interaction effects compared
with using untransformed data (Balota et al., 2013), Lo and Andrews (2015)
suggested using generalized linear mixed-effect models (GLMMs) with a
Gamma distribution link function as an alternative to nonlinear transforma-
tions. For the primary analyses in the present research (i.e., those reporting the
timescale of control), analyses of transformed data are reported for purposes of
examining whether our results replicated Aben et al. (2017). However, we also
modified the model using untransformed data with a Gamma link GLMM. For
the interested reader, following recommendations in the literature (Balota
et al., 2013), the results from the modified model are reported in our supple-
mentary materials.
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We first sought to determine how many previous trials
back ought to be included to model the timescale of control.
We ran an HLM across all conditions which included congru-
ency of the current trial (Ci), congruency of the kth previous
trials (Ci-k), and the interactions of the current trial and kth

previous trials (Ci Ci-k). To be conservative, we chose to look
at up to 24 previous trials back as an initial starting point.
Because of model convergence issues, the HLM was imple-
mented with only the intercept being allowed to vary on a
subject level. This resulted in the level one equation:

RT ¼ β0 þ β1Ci þ β2C i−1ð Þ þ β3C i−2ð Þ…þ β25C i−24ð Þ

þ β26CiC i−1ð Þ þ β27CiC i−2ð Þ…þ β49CiC i−24ð Þ ð1Þ

The results of this analysis are shown in Fig. 3. Based on
this analysis we chose to include up to 16 trials back given the
t-values were around 1.96 until trial 16 (with a trial distance of
10 and 20 being somewhat substantial exceptions). Following
this preliminary analysis, RTs were modeled at two hierarchi-
cally related levels. The level one equation of the model was
identical to that of Equation 1 with the caveat that k was reset
from 24 to 16. This yielded the level one equation:

RT ¼ β0 þ β1Ci þ β2C i−1ð Þ þ β3C i−2ð Þ…þ β17C i−16ð Þ

þ β18CiC i−1ð Þ þ β19CiC i−2ð Þ…þ β33CiC i−16ð Þ ð2Þ

Equation 2 was applied iteratively to each subject within
each condition (list-wide mostly congruent condition, list-
wide PC 50 condition, list-wide mostly incongruent condi-
tion). In doing so, the coefficients of the interaction terms
for each subject within each condition were extracted. These
coefficients are the conflict adaptation weights (CAWs)
discussed earlier. Each CAW at a given trial distance reflects
the magnitude of shift in the congruency effect on the present
trial if an incongruent trial was presented at that trial distance.
At the second level, the 16 CAWs estimated by Eq. 2 were
entered in as dependent variables in an HLM with trial dis-
tance and condition as predictors. Trial distance was log trans-
formed and then subsequently mean centered to allow for
better interpretation of the intercept in the model.5

The effect of interest is the interaction between trial dis-
tance and condition. To assess the significance of this effect,
predictors in the second level were entered in a stepwise fash-
ion and each model was tested against its previous simpler
nested model. Given the nested nature of the models, a test

of the log likelihood ratio determined if the models were sig-
nificantly different from one another with larger log likeli-
hoods indicating more variance explained. Nonetheless, the
Akaike information criterion (Akaike, 1974) also is reported
as a measure of model fit to mimic Aben et al. (2017). A
smaller Akaike information criterion (AIC) indicates a better
fit.

Results

The summary of the model comparisons is shown in Table 1.
By testing Model 1 versus Model 0, we found that CAWs
significantly differed as a function of log trial distance, Χ2(1)
= 99.19, p < 0.001. The test of Model 2 versus Model 0
indicated that CAWs also significantly differed as a function
of list condition, Χ2(2) = 22.46, p < 0.001. The model with
both log trial distance and list condition explained the data
better than the model with just log trial distance, Χ2(2) =
23.04, p < 0.001 (Model 3 vs. Model 1), and the model with
just list condition, Χ2(1) = 99.77, p < 0.001 (Model 3 vs.
Model 2). Critically, there was a trending effect when com-
paring the full model, which included the interaction of log
trial distance and list condition (Model 4), and the main effects
only model (Model 3), Χ2(2) = 5.40, p = 0.067. This warranted
further analysis as to how the interaction terms (or slopes of
the list conditions over trial distance) differed.

The regression coefficients of the full model are displayed
in Table 2. Figure 4 displays the estimates of the full model
corrected for the intercept of each condition (following Aben
et al., 2017). We ran a no-intercept model and used the coef-
ficients (mean slope for each condition) in a linear combina-
tion to determine if the slopes were different from one another.

Fig. 3 Ci Ci-k interaction t values from Eq. 1 plotted as a function of trial
distance (ranges from 1-24). The dotted line represents the critical two-
tailed t-value of 1.96 given infinite degrees of freedom. Data are from list-
wide manipulations of a picture-word Stroop task from Gonthier et al.
(2016).

5 A fully random HLM structure could not be implemented without encoun-
tering convergence issues. That is, trial distance, condition, and the trial dis-
tance by condition interaction could not be entered in as random effects. This
was also the case in Aben et al. (2017). The effect of condition could be
allowed to be random, but we chose only to allow the intercept to be random
to more closely follow the procedure in Aben et al. Allowing condition to be
random or not did not significantly change the results of this analysis.
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This was accomplished using the glht() function from the
multcomp package in R (Hothorn, Bretz, & Westfall, 2008).
Because degrees of freedom are difficult to estimate, the anal-
ysis uses z score estimates to determine significant differences.
The p values were adjusted using the Holm’s procedure.

The list-wide mostly congruent slope was significantly steep-
er than the list-wide mostly incongruent slope, z = 2.98, p =
0.009. Thus, we observed a shorter timescale of control in the
list-wide mostly congruent condition relative to the list-wide
mostly incongruent condition. The list-wide mostly congruent
slope and the list-wide PC 50 slope were not significantly dif-
ferent, z = 0.97, p = 0.332, indicating no differences in the
timescale. The list-wide PC 50 slope differed marginally from
the list-wide mostly incongruent slope, z = 2.01, p = 0.090.

Discussion

The results from Analysis 1 are generally consistent with the
findings from Aben et al. (2017). A shorter timescale of con-
trol (steeper slope) was observed for the list-wide mostly con-
gruent condition and a longer timescale of control was ob-
served for the list-wide mostly incongruent condition. These
results indicate that the meta-control system places more im-
portance or weight on recent events during low-probability
conflict situations when modulating control (i.e., in lists that
induce reactive control); in contrast, the relative weighting

scheme is shifted allowing more distal events to modulate
control in high-probability conflict situations (i.e., in lists that
induce proactive control).

Analysis 1 also indicated that the slope corresponding to
the list-wide PC 50 condition was similar to the list-wide
mostly congruent condition, reflecting a relatively short time-
scale of control unlike the list-wide mostly incongruent con-
dition. Interestingly, this pattern mirrors a pattern Aben et al.
(2017) found using a PC-50 volatile list condition.We reserve
further discussion of this finding for the General Discussion.

Most importantly, the findings of Analysis 1 demonstrated
that the timescale patterns observed by Aben et al. (2017) in
list-wide mostly congruent and mostly incongruent conditions
using a flanker task generalize to a different control-
demanding task (picture-word Stroop) that utilized a design
with diagnostic items that confirmed that differences between
lists were attributable to differences in control. A caveat to
note, however, is that the tasks used in Aben et al. (2017)

Table 1 Gonthier et al. (2016) List-Wide Proportion Congruence Model Comparisons with Inverse Transformed RT

Model df AIC Log lik. Test Χ2 p

0. Intercept 3 8077 -4036

1. Log trial distance 4 7980 -3986 1 vs. 0 99.19 <0.001

2. Condition 5 8058 -4024 2 vs. 0 22.46 <0.001

3. Log trial distance + Condition 6 7961 -3975 3 vs. 1 23.04 <0.001

3 vs. 2 99.77 <0.001

4. Log trial distance + Condition + Log trial distance x Condition 8 7960 -3971 4 vs. 3 5.40 0.067

AIC = Akaike Information criterion; log lik. = log likelihood.

Table 2 Gonthier et al. (2016) List-Wide Proportion Congruence Full
Model Coefficients

Variable B (SE) t

(Intercept) -0.09 (0.02) -4.74

Log trial distance 0.16 (0.02) 6.62

LWMC condition -0.10 (0.03) -3.67

LWMI condition 0.01 (0.03) 0.26

Log trial distance x LWMC condition 0.01 (0.03) 0.19

Log trial distance x LWMI condition -0.06 (0.03) -1.91

LWMC = list-wide mostly congruent; LWMI = list-wide mostly incon-
gruent. The list-wide PC 50 condition was used as the reference condition
(intercept).

Fig. 4 Estimates of the CAWs using inverse transformed RT (i.e., -
10000/RT) from Model 4 (full model) in Analysis 1. Data are from a
picture-word Stroop task (Gonthier et al., 2016). Each condition is plotted
after subtracting its intercept. The original scale of trial distance is
displayed on the x-axis, not log trial distance (which was included in
the model for statistical testing). Error bars are +1/−1 standard deviation
of the model predicted values. See Figure S1 in Supplementary Materials
for estimates of CAWs as a function of log trial distance.
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(flanker) and Analysis 1 (Gonthier et al., 2016) (picture-word
Stroop) share a common feature in that they both entail stimuli
for which the relevant and irrelevant dimensions are spatially
separated. Thus, the timescale properties may be exclusive to
tasks for which interference is at least partially controlled via
spatial attention as opposed to more general attention mecha-
nisms. An open question is whether the extended-CSE model
would yield similar timescale patterns for an even more qual-
itatively different conflict task, such as a task for which the
dimensions are fully spatially integrated (e.g., color word
Stroop; Spieler, Balota, & Faust, 2000; see also
Aschenbrenner & Balota, 2017). If the timescale of control
is a task-general meta-control property, and the extended-
CSE model is appropriately indexing timescales, then the
model ought to result in similar timescale patterns across qual-
itatively different control tasks. If the timescale patterns are
not replicable across tasks, then the only way to salvage the
interpretation that the extended-CSE model captures time-
scales of control is by adopting a less parsimonious model
of control that assumes different meta-control properties for
different tasks. Thus, in Analysis 2, we investigated whether
we would observe similar patterns when the model was ap-
plied to the color-word Stroop task.

Analysis 2: Examining the List-Wide Timescale
of Control in a Color-Word Stroop Task
from Gourley, Braver, and Bugg (2016)

For Analysis 2, we applied the extended-CSE model to an un-
published dataset (Gourley et al., 2016) from a color-word
Stroop task in which list-wide proportion congruence was ma-
nipulated and participants named the ink color of a word while
ignoring theword. Following the criteria specified in Footnote 1,
we elected to use this dataset because it included a large number
of participants (N = 96), the key factors were manipulated with-
in-subjects, and diagnostic (PC 50) items were included in the
task and the behavioral results from these items provided evi-
dence that the list-wide proportion congruence manipulation
induced differences in control.6 That is, the same diagnostic
items embedded in the mostly incongruent list yielded a smaller
Stroop effect (93ms) compared with when they were embedded
in the mostly congruent list (107 ms). The color-word Stroop
task is qualitatively different from both the flanker task and the
picture-word Stroop task, because the relevant and irrelevant
dimensions are spatially integrated (as opposed to fully separat-
ed in the flanker task and partially separated in the picture-word
Stroop task; MacLeod, 1998; Spieler, et al. 2000). If the pattern
of results is similar in a color-word Stroop task, this would

reinforce the conclusion that the timescale of control, as assessed
by the extended-CSE model, is a task-general meta-control
property of the control system.

Method

As was the case in the study from Analysis 1, in Gourley et al.
(2016) each participant also was exposed to three conditions.
They comprised a list-wide mostly congruent condition, a list-
wide mostly incongruent condition, and a list-wide PC 60 con-
dition. All three conditions included four diagnostic PC 50
items. What differed across conditions was the PC of the four
other (inducer) items included in each list. In the list-wide
mostly congruent condition, the other four items were PC 75.
This led to an overall PC 67 list. In the list-wide mostly incon-
gruent condition, the other four items were PC 25. This created
an overall PC 33 list. The list-wide mostly congruent and in-
congruent conditions were comprised of 288 trials. For the third
condition, the list-wide PC 60 condition,7 the other four items
were comprised of two PC 100 items and two PC 25 items. The
latter two sets of items were used to manipulate item-specific
probabilities of conflict (item-specific proportion congruence)
within this list while more closely matching the global PC to
the list-wide mostly congruent condition. The list-wide PC 60
condition contained 480 trials.

Analytical approach

There were 96 participants included in this dataset, and all
were retained for the present analysis. As in Analysis 1, the
analysis included all items (inducer and diagnostic). The fol-
lowing trials were excluded: the first trial of each condition
(0.28%), error trials (3.67%), and trials following errors
(3.67%). In addition, we box-trimmed the data such that trials
<200 ms and >3,000 ms were excluded (0.82%). The RTs
were transformed in the same fashion as in Analysis 1.

We used the same initial procedure as we did in Analysis 1
to determine how many trials back to include in the model.
The results of this analysis are shown in Fig. 5. Based on these
results, for the timescale of control analysis, we included up to
eight trials back given that the t-values were above 1.96
through trial eight.

For the timescale of control analysis, RTs were modelled at
two hierarchically related levels. The level one equation of the
model was:

RT ¼ β0 þ β1Ci þ β2C i−1ð Þ þ β3C i−2ð Þ…þ β9C i−8ð Þ

þ β10CiC i−1ð Þ þ β11CiC i−2ð Þ…þ β17CiC i−8ð Þ ð3Þ

6 Analysis of behavioral data are reported in more detail in the supplementary
materials.

7 The four diagnostic items in the PC 60 list condition yielded a Stroop effect
of 110 ms.
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Equation 3 was applied iteratively to each subject within
each condition (list-wide mostly congruent condition, list-
wide PC 60 condition, list-wide mostly incongruent condi-
tion). In doing so, a CAW for each of the previous eight trials
was extracted for each subject within each condition. The
subsequent procedure at the second level was identical to that
of Analysis 1.

Results

The summary of the model comparisons is shown in Table 3.
The test of Model 1 versus Model 0 indicated that CAWs
significantly differed as a function of log trial distance, Χ2(1)
= 127.48, p < 0.001. The test of Model 2 versus Model 0
indicated that CAWs also significantly differed as a function
of list condition, Χ2(2) = 12.44, p = 0.002. The model with
both log trial distance and list condition explained the data
better than the model with just log trial distance, Χ2(2) =
13.18, p = 0.001 (Model 3 vs. Model 1), and the model with
just list condition, Χ2(1) = 128.22, p < 0.001 (Model 3 vs.
Model 2). Importantly, there was a significant difference when
comparing the full model, which included the interaction of
log trial distance and list condition (Model 4), and the main
effects only model (Model 3), Χ2(2) = 19.74, p < 0.001. As in
Analysis 1, this warranted further analysis as to how the in-
teraction terms (or slopes of the list conditions over trial dis-
tance) differed.

The regression coefficients of the full model are displayed
in Table 4. Figure 6 displays the estimates of the full model
corrected for the intercept of each condition. Similar to
Analysis 1, we subsequently ran a no-intercept model to

compare timescales between conditions. The list-wide mostly
congruent condition had a significantly shorter timescale rel-
ative to the list-wide mostly incongruent condition, z = 2.66, p
= 0.016.We also observed a shorter timescale for the list-wide
PC 60 condition relative to the list-wide mostly incongruent
condition, z = 4.73, p < 0.001. Interestingly, the list-wide PC
60 condition also exhibited a shorter timescale relative to the
list-wide mostly congruent condition, z = 2.08, p = 0.038.

Discussion

The results of Analysis 2 using data from a color-word Stroop
task mostly align with the results from Aben et al. (2017) and
Analysis 1. Most importantly, a shorter timescale of control
was observed for the list-wide mostly congruent condition and
a longer timescale of control was observed for the list-wide
mostly incongruent condition. Interestingly, and differing
from the PC 50 list in Analysis 1, the PC 60 list had a shorter
timescale than the list-wide mostly congruent condition (see
General Discussion for further consideration of the PC 60
timescale).

Given the general concordance of the results for list-wide
mostly congruent and mostly incongruent conditions from
Analyses 1 and 2 and Aben et al. (2017), the extended-CSE
model appears to be robust in its ability to capture timescale
patterns. In addition, the similarity of timescale patterns across
tasks supports the possibility that timescales are a meta-
control property of a task-general control mechanism.

Analysis 3: Examining the Item-Specific
Timescale of Control in a Picture-Word Stroop
Task from Bugg and Dey (2018).

Analyses 1 (picture-word Stroop) and 2 (color-word Stroop)
demonstrated the generality of the timescale patterns that
Aben et al. (2017) first observed in the context of a flanker
task, patterns that Aben et al. attributed to the type of control
(transient vs. sustained) engaged in mostly congruent com-
pared with mostly incongruent lists, respectively (i.e., lists
previously associated with reactive and proactive control; De
Pisapia & Braver, De Pisapia & Braver, 2006). In short, with
respect to the question of how far back the control system
“looks” to learn about the probability of conflict within a list,
the general answer was that it looks farther back in a mostly
incongruent list than a mostly congruent list. In Analysis 3 we
aimed to further test the generality of the timescale patterns by
examining whether similar differences are observed for most-
ly congruent and mostly incongruent items.

This comparison, like the comparison of timescales of con-
trol for mostly congruent and mostly incongruent lists, similar-
ly entails a contrast between conditions that differ in their prob-
ability of conflict and their corresponding behavioral effects.

Fig 5 Ci Ci-k interaction t values from Eq. 3 plotted as a function of trial
distance (ranges from 1-24). The dotted line represents the critical two-
tailed t-value of 1.96 given infinite degrees of freedom. Data are from list-
wide manipulations of a color-word Stroop task from Gourley et al.
(2016).

480 Cogn Affect Behav Neurosci  (2021) 21:472–489



As noted earlier, the item-specific proportion congruence effect
is the pattern whereby the Stroop effect is smaller for mostly
incongruent items than mostly congruent items that are
intermixed within a 50% congruent list. However, the compar-
ison of timescales for mostly congruent andmostly incongruent
items does not represent a comparison of conditions that differ
in the type of control engaged. Rather, in both cases, reactive
control is transiently recruited post-stimulus onset based on
episodic associations with each item (Bugg, 2015; Bugg &
Dey, 2018; Bugg & Hutchison, 2013; Bugg et al., 2011a;
Chiu et al., 2017; cf. episodic retrieval account of Crump &
Milliken, 2009). Presentation of a mostly congruent item reac-
tively retrieves prior episodes that include an associated control
setting that more fully processes the irrelevant dimension,
whereas presentation of a mostly incongruent item reactively
retrieves prior episodes that include an associated control set-
ting that minimizes processing of the irrelevant dimension.
Consequently, on the view that differences in timescales reflect
differences in the type of control engaged (Aben et al., 2017),
there should not be timescale differences between mostly con-
gruent and mostly incongruent items. However, to date no
study has examined whether the difference in performance be-
tween mostly congruent and mostly incongruent items may in
part reflect differences in window size, that is, how far back the

control system looks to learn about the probability of conflict
for each item. It may be that a smaller window size, corre-
sponding to a shorter timescale, is characteristic of mostly con-
gruent items whereas a larger window size, corresponding to a
longer timescale is characteristic of mostly incongruent items.
In other words, participants may weight recent experiences
with mostly congruent items relatively more when adjusting
control in response to the presentation of a mostly congruent
item. Conversely, they may weight distal experiences with
mostly incongruent items relatively more when adjusting con-
trol in response to the presentation of a mostly incongruent
item. On this view, there should be timescale differences be-
tween mostly congruent and mostly incongruent items.

In Analysis 3, the extended-CSEmodel was applied to data
from Bugg and Dey (2018). Akin to Gonthier et al. (2016),
this study used an animal picture-word Stroop task to

Table 3 Gourley et al. (2016) List-Wide Proportion Congruence Model Comparisons

Model df AIC log lik. Test Χ2 p

0. Intercept 3 6104 -3049

1. Log trial distance 4 5978 -2985 1 vs. 0 127.48 <0.001

2. Condition 5 6095 -3042 2 vs. 0 12.44 0.002

3. Log trial distance + Condition 6 5969 -2979 3 vs. 1 13.18 0.001

3 vs. 2 128.22 <0.001

4. Log trial distance + Condition + Log trial distance x Condition 8 5953 -2969 4 vs. 3 19.74 <0.001

AIC = Akaike Information criterion; log lik. = log likelihood.

Table 4 Gourley et al. (2016) List-Wide Proportion Congruence Full
Model Coefficients

Variable B (SE) t

(Intercept) -0.33 (0.03) -9.89

Log trial distance 0.47 (0.05) 9.72

LWMC condition 0.02 (0.04) .382

LWMI condition 0.13 (0.04) 2.99

Log trial distance x LWMC condition -0.14 (0.07) -2.04

Log trial distance x LWMI condition -0.30 (0.07) -4.45

LWMC = list-wide mostly congruent; LWMI = list-wide mostly incon-
gruent. The list-wide PC 60 condition was used as the reference condition
(intercept).

Fig. 6 Estimates of the CAWs using inverse transformed RT (i.e.,
−10,000/RT) from Model 4 (full model) in Analysis 2. Data are from a
color-word Stroop task (Gourley et al., 2016). Each condition is plotted
after subtracting its intercept. The original scale of trial distance is
displayed on the x-axis. Error bars are +1/−1 standard deviation of the
model predicted values. See Figure S2 in Supplementary Materials for
estimates of CAWs as a function of log trial distance.
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investigate cognitive control, namely item-level control.
However, departing from Gonthier et al. (2016), all partici-
pants received a single list condition, which was PC 50.
Importantly, this PC 50 list was comprised of mostly congru-
ent and mostly incongruent items. As was the case in all other
datasets discussed, data were available from a large sample8,
manipulations were within-subjects, and a confound-
minimized design was employed (Braem et al., 2019).

A modification to the extended-CSE model was made to
assess timescale differences between mostly congruent and
mostly incongruent items within the PC 50 list. For item-
level control, conflict learning reflects an accumulation of
conflict experiences across mostly congruent and mostly in-
congruent instances of items as opposed to experiences across
each successive trial. In other words, the random presentation
of mostly congruent and mostly incongruent items within a
list means that the previous trial’s conflict status is not neces-
sarily informative for investigating item-specific timescales of
control (Fig. 7). Only the conflict statuses of previous in-
stances of that item would be informative. Consequently, if
there are differences in the timescale of control for items with
different proportion congruences, then differences in the
CAW slopes would be seen in previous instances of an item.
Thus, the extended-CSE model was modified to use log
instance distance (as opposed to log trial distance) as a
predictor.9

Method

In Bugg and Dey (2018), there were four picture items (bird,
cat, dog, and fish). These items were split into two
overlapping sets (birds and cats; dogs and fish). One item set
was mostly congruent and the other set was mostly incongru-
ent (counterbalanced). The mostly congruent items were PC
67 and the mostly incongruent items were PC 33 such that the
overall list was PC 50. Diagnostic items were also included,

and the pattern of results was consistent with confound-
minimized item-level control.10 Participants were presented
with 432 trials. Additional details on the design and stimuli
can be found in Bugg and Dey (2018).

Analytic approach Aggregating across the five experiments,
there were 216 participants whowere included in this analysis.
The analysis included all items including diagnostic items.
The following trials were excluded: the first trial of each con-
dition (0.19%), error trials (4.79%), and trials following errors
(4.79%). In addition, the data were box-trimmed such that
trials <200 ms and >3,000 ms were excluded (0.39%). The
RTs were transformed in the same fashion as in Analyses 1
and 2. We elected to include to up to six instances back in
order to model timescales for mostly congruent and mostly
incongruent items.11 The resulting level one linear model for
the timescale analysis was: 12

RT ¼ β0 þ β1Ci þ β2Ci−1 þ β3Ci−2…þ β7Ci−6

þ β8CiCi−1 þ β9CiCi−2…þ β13CiCi−6 ð4Þ

Ci-1 refers to the first prior instance of a given item (e.g., the
last time a picture of a bird was presented). Equation 4 was
applied iteratively to each subject for each item type (mostly
congruent and mostly incongruent). In doing so, CAWs for
each of the previous six instances of an itemwere extracted for
each subject and for each item type (mostly congruent or
mostly incongruent).

At the second level, the six CAWs estimated by Equation 5
were entered in as dependent variables in an HLM with log
instance distance and item type as predictors. The predictors in
the second level were entered in a stepwise fashion and each
model was tested against its previous simpler nested model.

8 We merged data from five experiments in Bugg and Dey (2018, Exp 1, Exp
2, Exp 3b, Exp 3c, and Exp 4b) resulting in a large sample of 216 participants.
We included these experiments in the analysis because the Stroop phase of
these experiments was identical and the behavioral results in RTs for all ex-
periments yielded a reliable and typical item-specific proportion congruence
effect such that the mostly congruent items had a larger Stroop effect than the
mostly incongruent items, which transferred to diagnostic items.
9 Note that we are not suggesting that log trial distance could not affect CAWs
in the PC 50 list in Analysis 3. Indeed, Analysis 1 showed such an effect in a
PC 50 list that, like the present PC 50 list, also had an item-specific proportion
congruence manipulation embedded. As shown in Table S8 in Supplementary
Materials, log trial distance also affected CAWs in the lists in Analysis 3.
However, in contrast to Analysis 1, there are no other list types to compare
this effect to in Analysis 3.
10 In Bugg and Dey (2018) picture stimuli could either have been encoded as
members of a category of pictures (e.g., bird, cat, dog, or fish) or individual
exemplars (i.e., based on stimulus-specific perceptual features). PC 50 exem-
plars were presented as diagnostic items and results for these items revealed
that items were encoded as members of categories. As such, in this analysis we
treat the category as the item.

11 Paralleling Aben et al. (2017) and Analyses 1 and 2, we used the signifi-
cance level of previous instances as an inclusion criterion for the subsequent
steps of the model. In Analysis 3, this yielded the inclusion of only three
instances back in the subsequent steps of the model. We extended the number
to six to more closely approximate Analyses 1 and 2. Subsequently, we con-
firmed that if we limited the analysis to three instances back as opposed to six,
it did not change the results reported herein or our interpretations.
Additionally, we confirmed that extending the number of prior instances (up
to 12 to more closely approximate Analyses 1 and 2) also did not change the
pattern of results or interpretations reported herein.
12 As per the suggestion of a reviewer, we also assessed the effects of includ-
ing the congruency state of previous trials and their interaction with the current
trial in the model (i.e., the predictors used in Analyses 1 and 2). Thus, we
modified Eq. 4 to include additional regressors that coded for congruency of
previous trials and their interaction with the congruency state of the current
trial. The resultingmodification did not dramatically change our results nor our
interpretations. The only change was that when we included previous trials and
their interactions, the main effect of instance distance was marginally signifi-
cant (p = 0.099), whereas previously (as reported in the main text) this main
effect was significant (p < 0.001). Importantly, the interaction of instance
distance and item type remained nonsignificant with (p = 0.289) or without
(p = 0.522) these additional regressors. Details of this analysis can be found in
Supplementary Materials.
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Results

The summary of the model comparisons is shown in Table 5.
The test of Model 1 versus Model 0 indicated that CAWs
significantly differed as a function of log instance distance,
Χ2(1) = 35.94, p < 0.001. The test of Model 2 versus Model 0
indicated that CAWs did not differ as a function of item type,
Χ2(2) = 0.25, p = 0.618. Adding in item type with log instance
distance did not explain the data better than the model with
just log instance distance, Χ2(2) = 0.25, p = 0.615 (Model 3 vs.
Model 1). However, adding in log instance distance with item-
type did explain the data better than the model with just item
type, Χ2(1) = 35.94, p < 0.001 (Model 3 vs. Model 2).
Importantly, there was no significant difference when

comparing the full model, which included the interaction of
log instance distance and list condition (Model 4), and the
main effects only model (Model 3), Χ2(2) = 0.41, p = 0.522.

The regression coefficients of the full model are displayed
in Table 6. Figure 8 displays the estimates of the full model
corrected for the intercept of each condition. The t-value for
the interaction shows no significant difference between the
slopes of the item types.

Discussion

Analysis 3 indicated no difference in the timescale of control
for mostly congruent andmostly incongruent itemswithin a PC
50 list. Thus, for items within a list that reactively trigger

Fig. 7 Schematic representation of list-level conflict learning and item-
level conflict learning. Items are presented sequentially from top to bot-
tom. For list-level conflict learning, control is modulated by aggregating
the conflict statuses of previous trials to arrive at a probability of conflict

for the current circled trial. For item-level conflict learning, to modulate
control for the current circled item (i.e., the color blue), the conflict sta-
tuses only of previous instances of that item must be aggregated.

Table 5 Bugg and Dey (2018) Item-specific Proportion Congruence Model Comparisons with Inverse Transformed RT

Model df AIC log lik. Test Χ2 p

0. Intercept 3 7320 -3657

1. Log instance distance 4 7287 -3639 1 vs. 0 35.94 <0.001

2. Item type 4 7322 -3657 2 vs. 0 .25 0.618

3. Log instance distance + Item type 5 7288 -3639 3 vs. 1 .25 0.615

3 vs. 2 35.94 <0.001

4. Log instance distance + Item type + Log instance distance x Item type 6 7290 -3639 4 vs. 3 .41 0.522

AIC = Akaike Information criterion; log lik. = log likelihood.
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control, the timescale of control does not differ as a function of
an item’s probability of conflict. This is consistent with the
notion that differences in the timescales of control for mostly
congruent and mostly incongruent conditions are attributable to
differences in the type of control (reactive vs. proactive) recruit-
ed in these conditions, as Aben et al. (2017) suggested.
Furthermore, this finding indicates that participants are not dif-
ferentially weighting past experiences with mostly congruent
and mostly incongruent items (prior instances), for example by
weighting recent or distal experiences with a given item type
relatively more or less when adjusting control in response to the
presentation of that item type. Rather, the finding suggests that
the system looks equally far back (weights prior instances
equally) when adjusting control for mostly congruent and
mostly incongruent items.

General Discussion

The set of analyses presented in this paper aimed to accomplish
two goals. One goal was to determine whether timescale pat-
terns for list-wide proportion congruence manipulations ob-
served in Aben et al. (2017) could be replicated in other conflict
tasks using their extended-CSE model with the overarching
aim of determining whether the model indexes a meta-control
property of a task-general control mechanism. A second goal
was to extend themodel of Aben et al. to attempt to describe the
timescale of control for items that varied in proportion congru-
ence within a list (i.e., to document timescales for item-specific
proportion congruence manipulations).

Collectively, the three analyses revealed several novel find-
ings which converge on two major conclusions. One major
conclusion is that timescale patterns of list-level control are
replicable across qualitatively different conflict tasks, thereby
supporting the view that the extended-CSE model indexes a
task-general meta-control property. Supporting this conclusion
are the results of Analyses 1 and 2 that evidenced differences in
the slopes of the CAW trajectories for list-wide mostly congru-
ent and list-wide mostly incongruent conditions in picture-
word Stroop and color-word Stroop tasks, respectively. In both

cases, the list-wide mostly congruent condition was character-
ized by steeper slopes, indicating a short timescale of control,
and the list-wide mostly incongruent condition was character-
ized by less steep slopes, indicating a long timescale of control.
While these patterns are consistent with Aben et al. (2017) who
used a flanker task, two unique strengths of the present study
bear mention. First, the present findings significantly extend
those of Aben et al. because they were observed in tasks that
implemented confound-minimized designs that warrant con-
clusions about control mechanisms as opposed to other mech-
anisms that can masquerade as control when such confounds
are not controlled (e.g., contingency learning; Bugg et al.,
2008; Blais & Bunge, 2010).13 Second, our conclusions about
timescales of list-level control are based on two qualitatively
different conflict tasks, which allows us to infer that the time-
scales reflect a task-general characteristic of conflict tasks and
not a task-specific one. This is further reinforced by the simi-
larity of our findings to Aben et al. who used a different task
than we used.

The second major conclusion of the present study informs
the question of why these timescale patterns are observed.
Collectively, our results suggest that the key factor underlying

13 A reviewer appropriately pointed out that while the designs were confound-
minimized due to the inclusion of diagnostic items, the timescale analyses used
both inducer and diagnostic items tomap out CAW trajectories. As such, while
we can confidently assert that the list-wide proportion congruence effects
observed for diagnostic items in these data sets indicate differences in control
between lists, the conclusions we draw about the timescales of control are not
confound minimized. That is, one could argue that participants did engage
reactive and proactive control in mostly congruent and mostly incongruent
lists, respectively, but the timescale patterns could be influenced by item-
control processes or item-specific contingencies.

Figure 8 Estimates of the CAWs using inverse transformed RT (i.e.,
−10,000/RT) from Model 4 (full model) in Analysis 3. Data are from
mostly congruent and mostly incongruent items within PC 50 lists from
Bugg and Dey (2018). Each condition is plotted after subtracting its
intercept. The original scale of instance distance is displayed on the x-
axis. Error bars are +1/−1 standard deviation of the model predicted
values. See Figure S3 in Supplementary Materials for estimates of
CAWs as a function of log instance distance.

Table 6 Bugg and Dey (2018) Item-Specific Full Model Coefficients
with Inverse Transformed RT

Variable B (SE) t

(Intercept) -0.17 (0.03) -5.50

Log instance distance 0.17 (0.04) 3.80

MI item 0.02 (0.04) 0.51

Log instance distance x MI item 0.04 (0.06) 0.64

MI = mostly incongruent. Mostly congruent items were used as the ref-
erence condition (intercept).

484 Cogn Affect Behav Neurosci  (2021) 21:472–489



differences in timescales between different conditions (e.g.,
lists) is differences in the type of control engaged, as Aben
et al. suggested. The results of Analyses 1 and 2 are consistent
with this interpretation in that they indicated that the meta-
control system placed more weight on relatively recent events
in mostly congruent lists, which induce transient/reactive con-
trol, but weighted distal events to a greater degree in mostly
incongruent lists, which induce sustained/proactive control.
However, one could have alternatively suggested that it was
differences in the probability of conflict per se that explained
the differing timescale patterns given that in the case of the
list-wide proportion congruence manipulation, type of control
and probability of conflict are conflated. The results of
Analyses 3 further support an interpretation based on differ-
ences in the type of control. In Analysis 3, we compared
timescales between items that vastly differed in their probabil-
ity of conflict (resulting in behavioral differences between
items indicative of item-level control), yet no differences in
timescales were observed. Mostly congruent items expressed
the same timescale as mostly incongruent items. Because
mostly congruent and mostly incongruent items both reactive-
ly trigger adjustments to attention, this finding is consistent
with the view that the timescale of control is contingent on the
type of control engaged (reactive vs. proactive; Aben et al.,
2017).

Yet another finding that lends credence to this view is the
timescale results for the list-wide PC 50 condition in Analysis
1. Recall that this list produced a timescale that was similar to
the timescale produced by the list-wide mostly congruent con-
dition even though the lists differed in their list-wide proba-
bility of conflict. We suspect that this reflects that reactive
control was used both in the mostly congruent list, as previ-
ously discussed, and in the PC50 condition, which had an
item-specific proportion congruence manipulation embedded
within it such that PC 75 (mostly congruent), PC 50, and PC
25 (mostly incongruent) items were randomly intermixed.14

Behavioral results indicated that participants modulated atten-
tion to these items differently (i.e., smaller Stroop effect for
mostly incongruent items), indicative of reactive control.
Interestingly, the shorter timescale observed in the list-wide
PC 50 condition is reminiscent of the results observed in a
volatile PC 50 list condition in Aben et al. (2017). In that
condition the overall list was PC 50, but the list shifted be-
tween PC 80 and PC 20 every 20 trials (lists were 160 trials
long). Aben et al. posited that the volatile condition likely
induced greater reliance on reactive control because of its

unstable nature. Consistent with this view, they found shorter
timescales for the volatile condition compared with a neutral
PC 50 list condition in which PC did not change dramatically
within the list (cf. Beherens et al., 2007; Jiang et al., 2014).
Again, these patterns support the view that timescale differ-
ences reflect differences in the type of control and not differ-
ences in the probability of conflict between lists.

On this view, one result fromAnalysis 2 may at first appear
surprising. In Analysis 2, we found that the list-wide PC 60
condition had a shorter timescale than the list-wide mostly
congruent condition which was PC 67. Considering that the
list-wide PC 60 condition (similar to the PC 50 condition in
Analysis 1) biased use of reactive control (given the inclusion
of items with different proportion congruencies within the
list), as did the list wide mostly congruent condition, this
may seem surprising. It also may seem surprising in light of
the general pattern of results from Analysis 1 and Aben et al.
(2017), indicating that a decrease in the list-level probability
of conflict is associated with shorter timescales of control
(which predicts a shorter timescale in the PC 67 list than the
PC 60 list). One interpretation is that because the PC 60 con-
dition used an item-specific manipulation, it encouraged even
greater use of reactive control than the PC 67 list, which used a
list-wide manipulation. In other words, there may be an addi-
tive effect of list-level conflict and item-specific manipula-
tions for shifts to reactive control—the item-specific manipu-
lation of the PC 60 list may have shortened the timescale of
control enough to compensate for and “overcome” the 7%
global conflict probability difference between the list-wide
PC 67 list and the list-wide PC 60 list.

Taking stock, the present findings suggest that more en-
gagement of reactive control processes leads to a relatively
short timescale and more engagement of proactive control
processes leads to a relatively long timescale. Regarding reac-
tive control, this was true both in mostly congruent lists, where
reactive control is triggered by interference demand and in
lists in which an item-specific proportion congruence manip-
ulation is embedded, where reactive control is triggered by
episodic associations (Analyses 1 and 2). Mostly congruent
items and mostly incongruent items within such lists, which
both trigger reactive control adjustments, did not differ in their
timescales (Analysis 3). This also supports the view that it is
the type of control and not the probability of conflict per se
that determines timescales, as do other patterns from the
present study and Aben et al. (2017) as reviewed above. A
novel prediction that falls out of this view is that individuals
that heavily engage proactive control in a list-wide mostly
congruent condition may express a long timescale of control,
which would contradict the group-level patterns for list-wide
mostly congruent conditions found in the present research but
would be consistent with the view that the type of control and
not probability of conflict per se is the key determinant of
timescales. In the “Limitations and Future Directions” section

14 Considering the definition of reactive control offered by Braver (2012),
“reactive control reflects transient stimulus-driven goal reactivation…based
on interference demands or episodic associations” (p. 106), in the case of the
mostly congruent list reactive control was based on (unexpected) interference
demands whereas in the case of the PC 50 list, where mostly congruent and
mostly incongruent items were embedded, reactive control was based on ep-
isodic associations.
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later below, we include discussion of models that include
individual-level timescale-related parameters. Such models
could plausibly test the above prediction.

Implications for Extant Models of Cognitive
Control

The present findings mostly concur with the results fromAben
et al. (2017) in demonstrating the ability to quantify timescales
of control and by showing that meta-control timescale param-
eters systematically vary based on the type of control engaged.
These findings provide a basis for updating extant conflict-
modulated models of cognitive control (Blais et al., 2007;
Botvinick et al., 2001; Verguts & Notebaert, 2008) that as-
sume a fixed number of trials (or instances) back that a conflict
monitoring unit utilizes to calculate the probability of conflict.
In particular, the findings indicate that using a single learning
rate parameter for a list-level conflict monitoring unit is not
optimal, because low-probability conflict lists that induce re-
active control produce short timescales, whereas high-
probability conflict lists that induce proactive control produce
long timescales. In other words, reactive control conditions
seem to produce a large learning rate, such that the level of
conflict is determined by relatively recent trials, and proactive
conditions seem to produce a small learning rate such that the
level of conflict is determined by both recent and distal trials.
Notably, this is theoretically consistent with the dual mecha-
nisms of control account (De Pisapia & Braver, 2006).

In addition, according to the item-level timescale results
(Analysis 3), the timescale pattern for items does not follow
the pattern for list-level control. That is, there are no differ-
ences in timescales based on items with differing probabilities
of conflict. However, the findings of Analysis 1 and Analysis
3 together indicate that, within a PC 50 list, the congruency
effect of the current trial is impacted both by previous trials
(Analysis 1) and previous instances (Analysis 3 [see also
Footnote 9]). Thus, it is possible that there are two conflict
accumulators, one at the list-level (or at the global pathway
level) and one at the item-level (Gonthier et al., 2016) and a
hybrid model that includes both conflict accumulators may
yield a more accurate representation of the control mecha-
nism(s) at play (Blais et al., 2007; De Pisapia & Braver,
2006; Verguts & Notebaert, 2008).

Potential Neural Correlates of the Timescale
of Control

Jiang et al. (2015) observed that variations in learning rates
(timescales) at the participant level correspondedwith variations
in activity in the left anterior insula and inferior frontal gyrus. If
these regions indeed represent timescales during control tasks,

then the present findings suggest that if we induced changes in
control (e.g., proactive to reactive) we ought to observe corre-
sponding online changes in these regions. For example, within a
run, if we were to start with a list with a high probability of
conflict and suddenly reduce the probability of conflict to a low
level, we ought to observe corresponding changes in activity in
the left anterior insula and inferior frontal gyrus.

In addition, it is widely assumed that being able to maintain
a dynamic balance between different control types is an indi-
cation of a healthy control system (for review see Goschke &
Bolte, 2014; Hommel, 2015). Assuming that a healthy meta-
control system is sufficiently flexible and able to maintain a
dynamic balance between short and long timescales, it is pos-
sible that indexing a measure of variability in the left anterior
insula and inferior frontal gyrus may predict cognitive control
ability. That is, if a person is able to dynamically shift between
control types and consequently perform well in control tasks,
this may be indexed by a measure of variability in these re-
gions (see also, Burzynska et al., 2015; Garrett et al., 2011;
Hu et al., 2014 for correlations between performance on
attention tasks and fMRI BOLD variability).

Limitations and Future Directions

One limitation pertains to our conclusion that timescales of con-
trol may be a task-general meta-control property of the control
system. Although the current findings in conjunction with those
of Aben et al. (2017) support this conclusion, it is possible that
the conclusion is specific to tasks for which conflict originates
from stimulus processing (including Stroop and flanker) rather
than response conflict (Simon; Egner, 2008; but see Hübner &
Töbel, 2019 for an alternative view related to the similarity
between flanker and Simon). A direct test of this possibility
would be to examine timescales of control using manipula-
tions that induce proactive and reactive control in a Simon
task (see Hübner & Mishra, 2016; Toth et al., 1995).
Relatedly, we must be clear that the current findings do
not enable us to make any claims about whether the time-
scales reflect precisely the same underlying process(es) or
region(s) of the brain (e.g., left anterior insula and inferior
frontal gyrus as in Jiang et al., 2015) across tasks.

There are three additional limitations, which all relate to
our analytic approach. First, Aben et al. (2017) inverse trans-
formed RT to meet required assumptions for their modeling
procedure, and we used the same transformation in our anal-
yses because our goal was to determine whether their findings
were replicable in other conflict tasks. However, the use of
nonlinear transformations of RT data has been called into
question, especially when investigating interactions
(Balota et al., 2013; Lo &Andrews, 2015). Therefore, we also
modeled the timescale of control with untransformed RT
using generalized linear models with a Gamma link function
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(see Supplementary Materials for more detail). The major
resulting difference between the Aben et al. approach with
transformed RT and the approach using untransformed RT
was observed in Analysis 1. Specifically, when using untrans-
formed RTs, the difference in the timescale of control between
list conditions was not significant, although nominally the
pattern of results was consistent. The results of Analyses 2
and 3 did not differ between the two approaches.

Second, the extended CSE model is more comprehensive
than conventional CSE analyses because it includes more than
a single previous trial when predicting behavior of a current
trial. However, the number of parameters that are estimated by
the level one equation is quite large. As a result, the CAWs for
each person and each condition must be generated by individ-
ual ordinary least-squares regressions. At the second level of
the HLM, these coefficients are not adjusted for the reliability
of observations and are more susceptible to outliers (Snijders
& Bosker, 2012). In comparison, in a more typical hierarchi-
cal linear modeling framework, the CAWs for each person in
each condition would be adjusted to account for unreliable
observations or outliers through shrinkage. A more typical
hierarchical linear modeling procedure could not be applied
to the extended-CSE model in the present set of analyses,
because it would require many more trials per subject than
what would be practically feasible to converge on a solution.
In addition, each CAW parameter is assumed to have an
independent effect on conflict modulation for the current trial.
While the findings of Aben et al. (2017) and the current set of
analyses provide evidence that distal trials do in fact indepen-
dently contribute to control on current trials, it may be more
appropriate to assume that conflict status is aggregated in
some fashion across some window of trials and the joint con-
tribution of previous trials impacts control. Alternativemodels
have been specified that work around these issues by using
learning rate parameters as a means of indexing the timescale
of control (Chiu et al., 2017; Jiang et al., 2014; Jiang et al.,
2015). The advantage of such models is that they greatly re-
duce the number of parameters to be estimated at the lowest
level of a hierarchical linear model. Future efforts to model the
timescale of control could draw inspiration from these models.
Appropriately adjusted and potentially more accurate esti-
mates may then be extracted from the same number of obser-
vations, and individual differences in timescales could be ex-
amined with a large enough sample size.

Third, there has been theoretical interest in whether
CSEs are driven by effects of preceding incongruent trials
or effects of preceding congruent trials (Berger et al.,
2019; see Schlaghecken & Martini, 2012, for evidence
that the absence of conflict is also a signal for control
adjustments). However, the present study was not de-
signed to address this question and we did not have suf-
ficient trials to subdivide the interaction terms based on
the preceding trial types.

Conclusions

In the present research, we applied an extended-CSE model
developed by Aben et al. (2017) to two qualitatively different
cognitive control tasks and demonstrated the model’s ability
to consistently capture the timescale for list-level control. The
results replicated Aben and colleagues as we observed 1) a
relatively short timescale for low conflict list-wide conditions
(i.e., mostly congruent lists) and volatile list-wide conditions
(PC 50 or PC 60 lists with item-specific proportion congru-
ence manipulations), and 2) a relatively long timescale for
high conflict list-wide conditions (i.e., mostly incongruent
lists). These findings indicate that the extended-CSE model
provides a fruitful means of quantifying timescales of control
across conflict tasks and suggest that control processes that
operate at the list-level share task general meta-control prop-
erties. Additionally, the present research found that a modified
version of the extended-CSE model did not yield differences
in the timescale of control at the item-level. Unlike mostly
congruent and mostly incongruent lists, mostly congruent
and mostly incongruent items were characterized by similar
timescales of control despite their vastly differing probability
of conflict and accompanying behavioral differences. The col-
lective pattern of results in the present study, along with those
of Aben et al., support the conclusion that the timescale of
control depends on the type of control that is recruited (tran-
sient/reactive or sustained/proactive) and not on the probabil-
ity of conflict per se that is associated with a given condition.
These findings have implications for the refinement of mech-
anistic and theoretical models of cognitive control and meta-
control.
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