
SANDIA REPORT
SAND2022-4632
Printed April 2022

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Instantiation of HCML Demonstrating
Bayesian Predictive Modeling for
Attentional Control
Julie Bugg, Joshua Clifford, Nicole Murchison*, Christina Ting

SAND2022-4632



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



ABSTRACT

The research team developed models of Attentional Control (AC) that are unique to existing
modeling approaches in the literature. The goal was to enable the research team to (1) make
predictions about AC and human performance in real-world scenarios and (2) to make predictions
about individual characteristics based on human data. First, the team developed a
proof-of-concept approach for representing an experimental design and human subjects data in a
Bayesian model, then demonstrated an ability to draw inferences about conditions of interest
relevant to real-world scenarios. Ultimately, this effort was successful, and we were able to make
reasonable (meaning supported by behavioral data) inferences about conditions of interest to
develop a risk model for AC (where risk is defined as a mismatch between AC and attentional
demand). The team additionally defined a path forward for a human-constrained machine
learning (HCML) approach to make predictions about an individual’s state based on performance
data. The effort represents a successful first step in both modeling efforts and serves as a basis for
future work activities. Numerous opportunities for future work have been defined.

Key Words: Bayesian Inferential Modeling, Human Constrained Machine Learning, Attentional
Control

3





CONTENTS

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1. A Use Case for Attentional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2. Instantiation of HCML with Bayesian Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Attentional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1. Theoretical Background on Attentional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Background on Pre-Cueing Attentional Control Demands from [10] Experiments

1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Relevant Models of Attentional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1. Conflict-Monitoring Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2. Applying Conflict-Monitoring Model to Bugg et al. (2015) . . . . . . . . . . . . . . 15

3. Relevant Models of Attentional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1. Conflict-Monitoring Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Applying Conflict-Monitoring Model to Bugg et al. (2015) . . . . . . . . . . . . . . . . . . . . 17

4. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1. Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Bayesian Modeling Approach and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1. Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2. Analysis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3. Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4. Reference Prior Model (Experiment One) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4.1. Informative Prior Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2. Informative Prior Model (Experiment Two) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.3. Inferential Power of Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.1. Data preprocessing and feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2. Model selection and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1. Future Direction 1: Modifying Botvinick et al. model to account for intentional,

goal-directed AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5



8.2. Future Direction 2: Uncovering individual and contextual determinants of inten-
tional goal-driven AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8.3. Future Direction 3: Modeling stimulus-driven AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4. Future Direction 4: Weighting goal-directed and stimulus-driven AC . . . . . . . . . . . . 35
8.5. Future Direction 5: Human Constrained ML Approach to Differentiate Individual

Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.6. Future Direction 6: Building upon Bayesian Inferential Modeling Approach . . . . . . 36

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix A. Appendix: Bugg (2015) Codebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.1. Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2. Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

LIST OF FIGURES

Figure 1-1. Risk Model for AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2-1. Pre-cued lists paradigm [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5-1. Posterior distributions for reference prior model beta parameters. . . . . . . . . . . . . . 20
Figure 5-2. Posterior distributions for reference prior model beta parameters compared to

corresponding informative priors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5-3. Posterior distributions for reference prior model beta parameters. . . . . . . . . . . . . . 22
Figure 5-4. Posterior parameter distribution comparisons for experiment two data models. . 23
Figure 5-5. Posterior distributions for β1 +β3, showing expected change in mostly incon-

gruent list Stroop effect when adding a cue. Both models are shown with the
posterior mean in red and the 95% probability interval in blue. . . . . . . . . . . . . . . . 24

Figure A-1. Trial names for cued and uncued conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

LIST OF TABLES

Table 5-1. Parameter estimates for reference prior model (experiment one). . . . . . . . . . . . . . . . 20
Table 5-2. Parameter estimates for informative prior model (experiment two). . . . . . . . . . . . . 22
Table 5-3. Parameter estimates for informative prior model (experiment two). . . . . . . . . . . . . 23
Table 6-1. Accuracy (mean and standard deviation in parentheses), together with feature

importance obtained from the weights of the SVM, using the different feature
representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 6-2. Confusion matrices for predicting cue condition using response time (with color,
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 6-3. Confusion matrices for predicting cue condition using Stroop effect (with color,
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6



NOMENCLATURE

AC Attentional Control

CSPC Context-Specific Proportion Congruence

HCML Human Constrained Machine Learning

ISPC Item-Specific Proportion Congruence

LWPC List-Wide Proportion Congruence

MC Mostly Congruent

MI Mostly Incongruent

ML Machine Learning

RT Reaction Time

SVM Support Vector Machine

7





1. INTRODUCTION

1.1. A Use Case for Attentional Control

Attentional control (AC) refers to a set of processes thought to dynamically adjust attention (e.g.,
direct, correct, and redirect attention) in a goal-oriented and context-sensitive fashion (Braem et
al., 2019). Successful engagement of AC refers to attending to goal-relevant information while
ignoring or minimizing the influence of goal-irrelevant information; conversely, failure to engage
AC means that relevant information was not adequately attended and/or goal-irrelevant
information was not successfully ignored. For purposes of this project, the use case of interest
concerns how a security guard responds to the attentional demands associated with their position,
particularly how they accomplish goals that involve selectively processing some aspects of their
environment (i.e., targets; relevant information) while ignoring other aspects (i.e., distractors;
irrelevant information).

Consider a security guard who is tasked with checking the paperwork provided by incoming
vehicles at a security gate. A high attentional control setting might be one in which the guard is
attending to the paperwork (relevant information) and not the information the occupant of the
vehicle is communicating (a form of distraction/irrelevant information in this example), which
might conflict with the paperwork. As another example, consider a security guard who is
monitoring the external environment for security breaches. A high attentional control setting
might be one in which the guard is attending to and checking for disturbances in the areas of
interest (near the gate or other pre-determined boundaries of importance, i.e., relevant
information) and not attending to activity (e.g., a person running; a vehicle driving by) that may
capture their attention or divert their attention to areas outside the areas of interest (i.e., irrelevant
information). A key goal of this project is to conceptualize a risk model (where risk is represented
in Figure 1-1 as mismatches between attentional demand and attentional control) to determine
factors that would make a security guard vulnerable to AC failure (or conversely, determine
factors that would predict successful engagement of AC by the security guard) and quantify a
model of such risk.

In terms of success with attentional control (i.e., attention is not diverted to irrelevant
information), of greatest interest is the specific match highlighted by the green shape in the lower
right cell (see Figure 1-1). This represents a low-risk scenario in that the AC setting is
appropriately matched to AC demand (i.e., the guard is in an attentionally demanding situation,
and the guard is engaging a high level of AC). In this case, the risk of AC failure is low and thus a
high level of performance should be achieved.

1.2. Instantiation of HCML with Bayesian Modeling

A key goal of this project is to conceptualize a risk model and within this model, identify factors
that would heighten risk of a security guard’s AC failure (or conversely, identify factors that
would predict successful engagement of AC by the security guard). The conceptual risk model is
illustrated below. The model considers two factors that influence risk. One is the AC demand of
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Figure 1-1 Risk Model for AC.

the current situation (e.g., low—–high) and the second is the individual’s AC setting (e.g.,
low—–high), which refers to the degree of processing selectivity engaged by the individual (i.e.,
degree to which goal-relevant information is selectively attended and irrelevant information is
ignored). The red shape in the upper right cell signals a high-risk scenario where there is a critical
mismatch between AC demand and AC setting. Specifically, the AC demand is high, but the AC
setting is low and thus there is a high risk that performance will be slow and error prone. The
opposite mismatch (low AC demand, high AC setting, as in the lower left cell) is also not optimal,
but in real-world situations it is almost certainly less risky with respect to performance outcomes
in that the primary risk (cost) is the unnecessary heightening of AC/expenditure of resources
when not needed.

From an applied perspective, the goal is to minimize the likelihood that the critical mismatch will
occur (resulting in a high risk of AC failure) and maximize the likelihood that the critical match
will occur (resulting in a low risk of AC failure). Figure 1-1 provides a risk model for conditions
where the critical mismatch will occur. The lower left-hand quadrant represents a scenario where
an individual has low attentional demand, but high attentional control. In this case, one may
encounter low-demand stimuli but are at risk of not relaxing control when responding to them. In
contrast, the upper right-hand quadrant represents a scenario where an individual has high
attentional demand, but low attentional control, so may encounter a scenario where they need to
heighten attentional control to respond to high-demand stimuli. This represents the highest risk
for missed or delayed response in real-world settings.

Two modeling techniques will be used to evaluate data from experimental studies of AC [10].
First, we will use Bayesian predictive modeling to model questions related to our risk matrix to
predict the probability of specific scenarios we would be concerned with in real-world settings,
for example: (1) What is the probability that the Stroop effect will increase when in a low-demand
context compared to a high-demand context? (2) What is the probability that the Stroop effect
will increase in a low-demand context if the subject is told to anticipate low-demand stimuli? (3)
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What is the probability that the Stroop effect will decrease in a high-demand context if the subject
is told to anticipate high-demand stimuli? [Note: Questions 2 and 3 addressed in Section 5].

Second, we will use machine learning to determine if we can predict a subjects’ AC state, namely
if they are in a cued or uncued state. Knowing that being in a cued state in a low-demand context
(when expecting low demand trials), results in a greater Stroop effect (i.e., worse performance)
means that the ability to predict a cued vs. uncued state can allow us to anticipate the risk of AC
failure for a given subject at a given point in time. Similarly, if being in a cued state in a
high-demand context were to result in a smaller Stroop effect (i.e., better performance), then we
could anticipate the likelihood of AC success for a given subject at a given point in time based on
their state.

2. ATTENTIONAL CONTROL

2.1. Theoretical Background on Attentional Control

Researchers have distinguished between goal-directed AC and stimulus-driven AC, and this
distinction is important when considering factors that predict how successful people will be in
engaging AC (e.g., [5, 7]. In this section, we will first define and differentiate the two types of
AC. Then we will briefly detail several factors that predict AC performance for each type.

Goal-directed AC is control that is mediated by top-down biasing of attention based on one’s
goals. While not necessarily intentional (i.e., one could theoretically activate goals implicitly and
these goals may bias attention toward relevant information), for purposes of this project we are
especially interested in goal-directed AC that is intentional. For example, consider again the
security guard in the preceding section. Let’s assume that through intelligence, Sandia has learned
that there is a high risk of a security breach at Gate 10. Assume further that this information is
communicated to the security guard. If the security guard uses this information to intentionally
heighten AC (i.e., to direct attention to goal-relevant information including any activities
occurring near Gate 10 and ignore irrelevant information such as activities occurring outside this
target area), then this example would illustrate an intentional form of goal-directed AC.

In contrast, stimulus-driven AC is control that is governed by external cues that have become
associated with attentional demands. These cues can later trigger adjustments in attention (e.g.,
focusing more on relevant information), with such adjustments often occurring outside of
people’s awareness (e.g., [17]). That is, unlike goal-driven AC, and especially intentional forms
of goal-driven AC, stimulus-driven AC does not involve the individual actively holding in mind
one’s goals or intentionally varying how heightened (or relaxed) their AC is. An example of
stimulus-driven AC as applied to the use case of security is as follows. Assume that through
experience over time, a security guard mostly encounters security threats in the northeast part of
the campus and very infrequently encounters security threats in the northwest part of the campus.
Accordingly, the security guard’s experience in the northeast part of campus mostly entails higher
AC engagement and their experience in the northwest mostly entails lower AC engagement. In
other words, over time a high level of AC becomes associated with the northeast location whereas
a low level of AC becomes associated with the northwest location. Consequently, when the
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security guard encounters a person in the northeast location, their AC is heightened.
Theoretically, this is thought to occur because the location serves as a cue that retrieves the
associated AC level (in this case, high AC; see e.g., [16]). Some evidence suggests
stimulus-driven retrieval of associated levels of AC may become automatized, such that even
under concurrently demanding situations (when attention is devoted to another task while
performing security related tasks), cues can effectively heighten AC [26].

Returning to the question of how successful a person (e.g., a security guard) will be in situations
that demand high AC, different factors are predictive of goal-directed AC and stimulus-driven
AC. On the goal-directed AC side, and perhaps especially for the intentional form of
goal-directed AC, primary predictors would be activation and/or maintenance (persistent
activation) of the requisite goal, concurrent demands (e.g., is the person concurrently performing
other cognitive tasks while attempting to engage AC), cognitive effort, and motivation. High
levels of activation/maintenance, low concurrent demands, high levels of effort/low levels of
effort avoidance, and high levels of motivation predict success in engaging goal-directed AC.
Conversely, low levels of activation/maintenance, high concurrent demands, low levels of
effort/high levels of effort avoidance, and low levels of motivation failure in engaging
goal-directed AC. Put simply, people are more likely to successfully engage goal-directed AC
when needed if they a) have activated the requisite goal (e.g., security guard activates the goal to
direct attention to goal-relevant information including any activities occurring near Gate 10 and
ignore irrelevant information such as activities occurring outside this target area), b) are not
engaging in another high demand cognitive task (e.g., the security guard is only focused on
attending to relevant information and is not also simultaneously responding to work emails), c)
are willing to expend the effort to heighten AC (e.g., the security guard does not find cognitive
effort to be aversive), and d) are motivated to accomplish the goal.

On the stimulus-driven AC side, primary predictors are factors such as learning (e.g., having
sufficient prior experience associating cues with AC demands), paying attention to cues that are
predictive of demand (attention to cues can also be influenced by the quality of the cue
independent of attention; for example, if cues are unintelligible/imperceptible/otherwise poor,
attention to cues is likely to be low), and cue similarity. High levels of learning, high attention to
cues, and high cue similarity predict successful stimulus-driven AC. Low levels of learning, low
attention to cues, and low cue similarity predict failed stimulus-driven AC. Put simply,
environmental cues are more likely to successfully trigger a heightening of attentional control
when needed if a) participants have successfully learned associations between cues and AC
demands (e.g., security guard has had plenty of prior experiences in the northeast and northwest
areas to learn attentional demands tend to be high in the northeast but low in the northwest; again,
note that this learning is likely implicit), b) cues are salient or otherwise readily attended (e.g.,
security guard readily detects occurrence of activity in a specific location), and c) cues are highly
similar to those encountered during the learning process.

From here forward, we will focus mainly on goal-directed AC, including experimental
manipulations designed to examine how well people heighten (or relax) AC based on expected
demands, the ability of extant computational models of AC to account for patterns of AC
heightening and relaxation, and our approach to modeling predictors of goal-directed AC.
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2.2. Background on Pre-Cueing Attentional Control Demands from [10] Experiments
1 and 2

The primary experimental manipulation that has been used to examine the intentional modulation
of goal-directed AC is a pre-cueing manipulation. Pre-cues refer to information that is explicitly
provided in advance of performance. For purposes of this project, we will focus on a pre-cueing
manipulation developed by Bugg, Diede, Cohen-Shikora, and Selmeczy [10]. The general
purpose of the research of [10] was to examine whether people can use advanced knowledge in
the form of valid explicit pre-cues to relax AC (intentionally adopt a low AC setting) and most
importantly heighten AC (intentionally adopt a high attentional control setting) when needed
(when cues signal those AC levels are appropriate). In other words, they aimed to examine the
role of intentions (expectations) in goal-directed AC via a cueing manipulation. As in many
studies of AC, [10] utilized a Stroop task. In the Stroop task, participants are instructed to name
the ink color of a color word while ignoring the word. The color is thus considered goal-relevant
(to-be attended/target dimension of the stimulus) and the word is irrelevant (to-be
ignored/distractor dimension). A low demand trial is one that is congruent (e.g., word RED in red
ink) whereas a high demand trial is one that is incongruent (e.g., word BLUE in red ink). A low
AC level (i.e., relatively relaxed AC) is one with low processing selectivity meaning that the
relevant dimension is attended as is the irrelevant dimension. A high AC level (i.e., relatively
focused AC) is one with high processing selectivity meaning that the relevant dimension is
attended to a greater degree than the irrelevant dimension. The Stroop effect (incongruent RT –
congruent RT) can be taken as an indicator of AC with larger Stroop effects indicating less
successful AC.

The general procedure used by [10] (Experiments 1 and 2) was as follows. After a small number
of practice trials with the Stroop task, participants encountered mini blocks comprised of 10 trials
each in a pre-cued lists paradigm (see Figure 2-1). Half of the mini blocks (mini lists) were
preceded by a valid pre-cue. Participants were told that the upcoming list would be mostly
matching which meant mostly congruent, or mostly conflicting which meant mostly incongruent,
and they were encouraged to use the pre-cues. The other half of the mini blocks were uncued. For
these lists, participants were not told what type of list it would be; instead, question marks
appeared on the cue slide. Half of the uncued lists were mostly congruent, and half were mostly
incongruent. On each trial within a list, participants named aloud the color and ignored the word
as quickly and accurately as possible. The stimulus (color word in a color) appeared on screen
and remained until the participant responded. The experimenter coded the spoken response and
the next stimulus appeared. After the 10th trial within a mini-block was completed, a break
occurred after which the next mini-block was presented. Experiment 2 was the same as
Experiment 1 except two other lists were included: cued 50% congruent list (i.e., half of trials
were congruent, and half were incongruent) and an uncued 50% congruent list. In sum, there
were three key manipulations in the experiments. One was a trial type (congruency) manipulation
such that some trials were congruent (e.g., word RED in red ink) and some were incongruent
(e.g., word BLUE in red ink). Second, there was a list-wide proportion congruence (LWPC)
manipulation—the mini blocks (lists) were either mostly congruent or mostly incongruent (or
50% congruent in Experiment 2). Finally, there was a cueing manipulation with half of the lists
being cued and half being uncued.
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Figure 2-1 Pre-cued lists paradigm [10]

To gauge use of intentional goal-driven AC (i.e., the degree to which participants used the cues to
adjust control), [10] compared Stroop effects between cued and uncued lists that shared the same
LWPC. For mostly congruent lists, which yield relatively large Stroop effects, the prediction was
that the cued lists should yield an even larger Stroop effect than the uncued lists indicating
participants relaxed AC. For mostly incongruent lists, which yield relatively small Stroop effects,
the prediction was that cued lists should yield an even smaller Stroop effect than the uncued lists
indicating participants heightened AC. The key findings were as follows. In both experiments, on
average, participants intentionally relaxed AC when cued to do so as indicated by a larger Stroop
effect in the cued mostly congruent condition compared with the uncued mostly congruent
condition; however, they did not intentionally heighten AC when cued to do so as indicated by a
Stroop effect that was equal in size for the cued mostly incongruent condition and uncued mostly
incongruent condition. These findings were replicated by [6].

Considering again the use case of security, this experiment informs the question of whether
people will heighten AC when they have advance information that advises them to do so, and
conversely though less important from an applied perspective, whether they will relax AC when
they have advance information that advises them to do so. To the extent one can generalize from
the lab to the use case, the findings suggest that supervisors could expect a guard to relax AC if
they were told that intelligence suggests a low risk of a security breach at Gate 10, but of concern,
it is questionable whether they could rely on the guard to heighten AC if intelligence suggested a
high risk of a security breach at Gate 10. This is a key takeaway because it demonstrates that
there are limitations to goal-directed AC.
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2.3. Relevant Models of Attentional Control

2.3.1. Conflict-Monitoring Model

In addition to studying AC via experiments such as the experiments described in Chapter 1 [10],
cognitive psychologists have also studied AC via computational modeling. Computational models
enable researchers to study complex systems such as the AC system of the human brain. One
model that has been highly successful in simulating key behavioral patterns from the AC
literature is Botvinick and colleagues’ conflict-monitoring model [3]. The essence of this model
is that a conflict monitor (conflict detection module situated in anterior cingulate cortex) tracks
information processing conflict (e.g., occurrence of incongruent trials in a Stroop task) and
signals to control regions such as lateral prefrontal cortex to increase top-down biasing
(goal-directed AC), with adjustments in AC corresponding to the degree of conflict that is
detected. This creates a conflict-control loop whereby evaluation of conflict trial-to-trial
(technically, an exponentially weighted average of conflict across several preceding trials is
calculated) leads to increases (when conflict is relatively high) or decreases (when conflict is
relatively low) in AC. The model thus addresses the question of how control processes know
when to intervene without the need to refer to a homunculus.

An important aspect of this model is that top-down biasing (the control adjustment) refers to
general (pathway-level) adjustments in task representation weights, that is, how much
color-naming (attention to the target/relevant color) is weighted relative to word reading (attention
to the distracting/irrelevant word). If conflict is detected on trial n – 1 (i.e., an incongruent trial is
presented), the idea is that this conflict will lead to a generally greater weighting of the color
naming task compared to the word reading task on the next trial such that the response that
corresponds to color-naming dominates response activation. By “generally” greater weighting,
emphasis is placed on the pathway-level nature of the control adjustment. That is, the adjustment
does not occur at the item-level (level of the specific color presented on n – 1) as in other
computational models [1].

Botvinick [3] tested the assumptions of their model by simulating behavioral data from several
prior studies that demonstrated key AC phenomena. Most relevant for present purposes is their
simulation of a LWPC-like effect from [27]. They exposed the model to Stroop trials (inputs of
color/word combinations) in three list conditions that varied in their trial type proportions using
parameter settings specified in Botvinick et al. Then they determined if the reaction times
produced by the model varied in the same way that Tzelgov et al. observed (e.g., faster
incongruent trial reaction times in conditions with more incongruent trials overall). The reaction
times produced by the model did mirror those of Tzelgov et al., consistent with the notion that the
occurrence of incongruent trials elicits a strong conflict signal and leads to a heightening of
control (increased color-naming weight in task representation unit).

2.3.2. Applying Conflict-Monitoring Model to Bugg et al. (2015)

Given the results of this simulation, one can infer that the model could successfully simulate
patterns of LWPC effects more generally, including performance in the uncued condition of [10].
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In other words, in Bugg et al., a LWPC effect was observed whereby the Stroop effect was larger
in the uncued mostly congruent condition compared with the uncued mostly incongruent
condition, a highly replicable pattern observed widely throughout the literature (see e.g., [6], for
review). Consistent with the conflict-monitoring model, the more frequently incongruent trials
were experienced (cumulative effects of conflict), the greater AC was heightened based on the
cumulative effects of conflict. Conversely, when incongruent trials were rare (as in the mostly
congruent condition), control was gradually decreased such that word reading had a larger
influence on performance (e.g., slower incongruent RTs). Note that when comparing the cued
mostly congruent condition to the cued mostly incongruent condition, a LWPC effect also
emerged, and the conflict-monitoring model can accommodate this result via the same
mechanism.

A key limitation, however, concerns the most critical behavioral pattern from [10]. Recall that
they found an effect of the pre-cue for the mostly congruent condition but not for the mostly
incongruent condition. In other words, when comparing the uncued and cued mostly congruent
conditions, there was a difference in the magnitude of the Stroop effect with a larger effect
observed for the cued condition, consistent with the idea that participants intentionally relaxed
goal-directed AC in response to the pre-cue. However, when comparing the uncued and cued
mostly incongruent conditions, there was not a difference in the magnitude of the Stroop effect.
This suggests participants did not intentionally heighten goal-directed AC in response to the
pre-cue. This asymmetry cannot be explained by the conflict-monitoring model (other related
models are similarly limited, e.g., [18, 22, 21]. Rather, the conflict-monitoring model predicts
equivalent Stroop effects for the cued and uncued mostly congruent conditions, in addition to the
cued and uncued mostly incongruent conditions since conflict experience (accumulation of
conflict) within cued and uncued lists is equivalent for each of these comparisons.

Indeed, no extant model has attempted to model goal-driven AC in a cueing paradigm where the
participant (model) knows in advance the likelihood of conflict in the upcoming list and can thus
intentionally adjust AC without having to experience the degree of conflict (monitor for conflict).
In the next section, we detail potential approaches to modeling intentional goal-driven AC with
the goal of developing an approach that enables us to account for the asymmetry observed by
[10].

3. RELEVANT MODELS OF ATTENTIONAL CONTROL

3.1. Conflict-Monitoring Model

In addition to studying AC via experiments such as the experiments described in Chapter 1 [10],
cognitive psychologists have also studied AC via computational modeling. Computational models
enable researchers to study complex systems such as the AC system of the human brain. One
model that has been highly successful in simulating key behavioral patterns from the AC
literature is Botvinick and colleagues’ conflict-monitoring model [3]. The essence of this model
is that a conflict monitor (conflict detection module situated in anterior cingulate cortex) tracks
information processing conflict (e.g., occurrence of incongruent trials in a Stroop task) and
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signals to control regions such as lateral prefrontal cortex to increase top-down biasing
(goal-directed AC), with adjustments in AC corresponding to the degree of conflict that is
detected. This creates a conflict-control loop whereby evaluation of conflict trial-to-trial
(technically, an exponentially weighted average of conflict across several preceding trials is
calculated) leads to increases (when conflict is relatively high) or decreases (when conflict is
relatively low) in AC. The model thus addresses the question of how control processes know
when to intervene without the need to refer to a homunculus.

An important aspect of this model is that top-down biasing (the control adjustment) refers to
general (pathway-level) adjustments in task representation weights, that is, how much
color-naming (attention to the target/relevant color) is weighted relative to word reading (attention
to the distracting/irrelevant word). If conflict is detected on trial n – 1 (i.e., an incongruent trial is
presented), the idea is that this conflict will lead to a generally greater weighting of the color
naming task compared to the word reading task on the next trial such that the response that
corresponds to color-naming dominates response activation. By “generally” greater weighting,
emphasis is placed on the pathway-level nature of the control adjustment. That is, the adjustment
does not occur at the item-level (level of the specific color presented on n – 1) as in other
computational models [1].

[3] tested the assumptions of their model by simulating behavioral data from several prior studies
that demonstrated key AC phenomena. Most relevant for present purposes is their simulation of a
LWPC-like effect from [27]. They exposed the model to Stroop trials (inputs of color/word
combinations) in three conditions that varied in their trial type proportions using parameter
settings specified in Botvinick et al. Then they determined if the reaction times produced by the
model varied in the same way that Tzelgov et al. observed (e.g., faster incongruent trial reaction
times in conditions with more incongruent trials overall). The reaction times produced by the
model did mirror those of Tzelgov et al., consistent with the notion that the occurrence of
incongruent trials elicits a strong conflict signal and leads to a heightening of control (increased
color-naming weight in task representation unit).

3.2. Applying Conflict-Monitoring Model to Bugg et al. (2015)

Given the results of this simulation, one can infer that the model could successfully simulate
patterns of LWPC effects more generally, including performance in the uncued condition of [10].
In other words, in Bugg et al., a LWPC effect was observed whereby the Stroop effect was larger
in the uncued mostly congruent condition compared with the uncued mostly incongruent
condition, a highly replicable pattern observed widely throughout the literature (see [6] for
review). Consistent with the conflict-monitoring model, the more frequently incongruent trials
were experienced (cumulative effects of conflict), the greater AC was heightened based on the
cumulative effects of conflict. Conversely, when incongruent trials were rare (as in the mostly
congruent condition), control was gradually decreased such that word reading had a larger
influence on performance (e.g., slower incongruent RTs). Note that when comparing the cued
mostly congruent condition to the cued mostly incongruent condition, a LWPC effect also
emerged, and the conflict-monitoring model can also accommodate this result. A key limitation,
however, concerns the most critical behavioral pattern from [10].
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Recall that they found an effect of the pre-cue for the mostly congruent condition but not for the
mostly incongruent condition. In other words, when comparing the uncued and cued mostly
congruent conditions, there was a difference in the magnitude of the Stroop effect with a larger
effect observed for the cued condition, consistent with the idea that participants intentionally
relaxed goal-directed AC in response to the pre-cue. However, when comparing the uncued and
cued mostly incongruent conditions, there was not a difference in the magnitude of the Stroop
effect. This suggests participants did not intentionally heighten goal-directed AC in response to
the pre-cue. This asymmetry cannot be explained by the conflict-monitoring model (other related
models are similarly limited, e.g., [18, 22, 21]. Rather, the conflict-monitoring model predicts
equivalent Stroop effects for the cued and uncued mostly congruent conditions, in addition to the
cued and uncued mostly incongruent conditions since conflict experience (accumulation of
conflict) within cued and uncued lists is equivalent for each of these comparisons.

Indeed, no extant model has attempted to model goal-driven AC in a cueing paradigm where the
participant (model) knows in advance the likelihood of conflict in the upcoming list and can thus
intentionally adjust AC without having to experience the degree of conflict (monitor for conflict).
In the next section, we detail potential approaches to modeling intentional goal-driven AC with
the goal of developing an approach that enables us to account for the asymmetry observed by
[10].

4. DATA

4.1. Data Preparation

The models use the data collected in the Bugg et al. (2015) experiments. Trials were filtered as in
[10], with practice trials, error trials, and trials with response times faster than 200 ms or slower
than 3,000 ms all dropped. In addition, to obtain consistency between the models for the two
experiments, 50% congruent list blocks were dropped from the second experiment data. Finally,
the data for each experiment was summarized at the list level for each subject, with variables for
cue condition (cued/uncued block), list congruence (mostly incongruent/congruent), and Stroop
effect for the list (calculated by subtracting the mean RT for congruent trials from the mean RT
for incongruent trials).

5. BAYESIAN MODELING APPROACH AND RESULTS

5.1. Model Specification

For this proof of concept, the model is a basic representation of the effects of relevant factors
(attention demand level and cue condition) on AC, not necessarily the highest fidelity model of
AC (such as the Botvinick model). The intent is to provide a straightforward demonstration of
how using psychological research in conjunction with Bayesian methods can inform a predictive
model. Linear regression will be used to provide a connection to machine learning methods.
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The model predicts the Stroop effect in a block for participants in the experiments using the
cueing condition and list congruence. It is worth noting that, since the predictors are categorical
variables, the regression model is an alternative framing of an ANOVA model and will provide
conclusions similar to those in the original paper, except for block-level Stroop effects rather than
individual trial reaction times. An interaction term is included in the model to account for
asymmetry in AC change in response to cueing, where participants show evidence of cue use for
mostly congruent lists but not mostly incongruent lists. The model takes the form:

Yi = β0 +β1Xi1 +β2Xi2 +β3Xi1Xi2 + εi, (1)

where:

• Yi is the response (Stroop effect on a list)

• Xi1 is the cue condition (dummy variable, 1 if participant was cued)

• Xi2 is the list congruence (dummy variable, 1 if the list was mostly incongruent)

• β0 is the intercept term (predicted response for reference group, uncued mostly congruent).

• β1 is the parameter for the cue condition (predicted change in response from reference
when cue is introduced)

• β2 is the parameter for the trial type (predicted change in response from reference when list
is incongruent)

• β3 is the interaction term for cue condition and trial type (predicted additional change in
response from reference when a cue is present and the list is incongruent)

• εi is the error term (assumed independently normally distributed around 0 with unknown
variance σ2)

5.2. Analysis Approach

The general analysis approach will be to use information from the first experiment to inform a
model for the second experiment, which is expected to provide increased precision in model
parameter estimates (and, as a result, increased predictive power of the model). First, a Bayesian
regression model will be estimated using the first experiment data and reference priors that
provide no additional information for model parameter estimation. These results will be compared
with results from the original ANOVA model to confirm they are consistent. Next, the posterior
parameter distributions will be utilized as informative priors for estimating a model on the second
experiment data. A sensitivity analysis will be done, checking slight variations of the informative
priors to ensure the results are not dramatically changed and, thus, overly dependent on the
specific formulation of the informative prior. The informative prior model will be compared to a
model using reference priors will be done to understand how using the previous knowledge from
experiment one impacted the model for the second experiment. Finally, a demonstration of the
additional inferential capabilities allowed by the Bayesian approach will be provided. All models
will be estimated using JAGS [24], a Gibbs sampler to estimate Bayesian models using Markov
chain Monte Carlo simulation that provides a great deal of flexibility in model specification.
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5.3. Model Results

5.4. Reference Prior Model (Experiment One)

The experiment one data reference prior model parameters were estimated with 10,000 sample
values from the posterior parameter distributions. Two chains were used, and convergence was
assessed through trace plots, Gelman-Rubin diagnostics, and autocorrelation plots (which led to
use of a thinning interval of five for the final posterior samples). Additionally, the regression
model assumptions were assessed using visual inspection of residual plots (residuals by predicted
values for the constant variance and linearity assumptions, residual Q-Q plot for the normality
assumption, and residuals by trial number for the independence assumption), with residuals
calculated using posterior mean point estimates for model parameters. The Q-Q plot suggested
heavy tails, but otherwise the results adequately satisfied model assumptions.

Table 5-1 presents point estimates, standard deviations, and 95% credible or probability intervals
for the model parameters, and Figure 5-1 shows the posterior distributions for the β parameters.

Parameter Estimate SD 95% PI
β0 181.6 10.1 (161.8, 200.9)
β1 41.9 14.3 (14.9, 69.2)
β2 -100.8 14.2 (-128.7, -73.3)
β3 -43.1 20.0 (-81.3, -4.1)
σ2 131.0 3.5 (124.3, 138.0)

Table 5-1 Parameter estimates for reference prior model (experiment one).

Figure 5-1 Posterior distributions for reference prior model beta parameters.

The Stroop effect estimates for various conditions (cued/uncued, mostly congruent/incongruent)
are consistent with expectations from the ANOVA model in the initial paper, so the model is
properly specified and these posterior distributions can be used as informative priors.
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5.4.1. Informative Prior Construction

The mean and standard deviation for each β model parameter were used to construct informative
priors using normal distributions. The specific prior distributions used were:

• β0 ∼ N(181.6,102)

• β1 ∼ N(42.1,204.5)

• β2 ∼ N(−100.9,201.6)

• β3 ∼ N(−43.3,400)

This approach technically uses the marginal posteriors to construct informative priors, so it does
not take into account potential correlations between parameters. Including the full multivariate
posterior distributions from the first model could improve the informative priors and should be
explored in future work.

Since the residual variance is treated as unknown in the model, the posterior distributions are
technically t-distributed. However, the normal distributions are good approximations, as can be
seen in Figure 5-2, where the 10,000 posterior distribution samples for the parameters from the
first model are compared to 10,000 samples from the corresponding informative priors noted
above.

Figure 5-2 Posterior distributions for reference prior model beta parameters compared to corresponding infor-
mative priors.

5.4.2. Informative Prior Model (Experiment Two)

The informative prior model using experiment two data was estimated using the same process as
the reference prior model for the experiment one data. Additionally, a sensitivity analysis was
done with slight variations on the informative priors (changing the mean by ±10 and the variance
by ±30). Final estimates for β1, β2, and β3 were unaffected, but the β0 did show slight sensitivity
to the prior, with the mean of the posterior distribution changing by 10-20 ms depending on the
prior.

Table 5-2 presents point estimates and 95% probability intervals for the model parameters, and
Figure 5-3 shows the posterior distributions for the β parameters.
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Parameter Estimate SD 95% PI
β0 156.6 6.3 (144.1, 169.0)
β1 37.5 8.9 (20.1, 55.0)
β2 -100.7 9.2 (-118.1, -82.4)
β3 -41.8 12.5 (-66.1, -16.9)
σ2 134.9 3.9 (127.5, 142.8)

Table 5-2 Parameter estimates for informative prior model (experiment two).

Figure 5-3 Posterior distributions for reference prior model beta parameters.

Again, the Stroop effect estimates for various conditions match expectations from the paper. Also
consistent with expectations, the parameter estimates for this informative prior model are more
precise (have a smaller probability interval range) than those observed for the experiment one
reference prior model.

To more directly observe how informative the priors were for this model, a model using reference
priors was also estimated on the experiment two data. Note that the estimates for the reference
prior model are similar to what would be obtained by fitting a traditional model using least
squares or maximum likelihood estimation. The differences between the final posterior parameter
distributions for the two models are shown in Figure 5-4. The posterior sample statistics for the
reference prior model can be found in Table 5-3 (for comparison with Table 5-2). It is apparent
that the informative priors are driving more precise parameter estimates and differences in the
center of the posterior distributions.

It is important to emphasize that more precise estimates do not necessarily mean better estimates.
The data from experiment one could be biased in some way (for example, having a random
sample of people who happen to be good at focusing their attention in demanding scenarios) and,
as a result, not a good representation of overall trends in the AC task. If there is some sort of bias
present in the data being used to inform the model on experiment two data, then the parameter
estimates, while more precise, will also be biased. How informative an "informative" prior truly is
depends on the quality of information used to construct the prior. A better understanding of how
useful the informative prior model is in a predictive modeling or machine learning context could
be obtained by assessing the quality of predictions from the informative prior model versus those
from the reference prior model.

22



Figure 5-4 Posterior parameter distribution comparisons for experiment two data models.

Parameter Estimate SD 95% PI
β0 130.7 11.0 (109.7, 152.6)
β1 60.2 15.5 (29.5, 89.9)
β2 -74.9 15.3 (-105.0, -45.2)
β3 -63.8 21.7 (-106.5, -21.6)
σ2 134.4 3.8 (127.3, 142.3)

Table 5-3 Parameter estimates for informative prior model (experiment two).

5.4.3. Inferential Power of Bayesian Approach

The Bayesian approach to modeling does not only provide the benefit of allowing prior
knowledge to be incorporated. It also provides a flexible framework for making intuitive
inferences about relevant research questions.

For example, using this approach in the context of this data, we can get a direct estimate of the
probability that telling a subject to expect incongruent trials will decrease the Stroop effect,
getting at the question of how likely a cue is to improve performance in a high AC setting. This
question can be operationalized in the model by calculating the posterior distribution of β1 +β3.
In this case, the estimated probability that a cue leads to a decrease in the Stroop effect for a
mostly incongruent list is 64.34%. The reference prior model provides a similar conclusion The
expected magnitude of the difference in Stroop effect for both the informative prior and reference
prior models can be seen in Figure 5-5. While decreases in Stroop effect are more frequent than
not, we do not have strong evidence to suggest the improvement is significantly different from
zero. Additionally, improvements most often only represent up to 30 ms improvements (there is
only a 1.72% estimated probability of a larger improvement from the informative prior model).

We can also estimate the probability that a cue will increase the Stroop effect in a mostly
congruent list, getting at the question of how likely a cue is to reduce performance in a low AC
setting. The β1 posterior distribution (seen in Figure 5-3) can be used directly and suggests that
the Stroop effect has a 100% likelihood of increasing (for both the reference prior and informative
prior models).
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Figure 5-5 Posterior distributions for β1+β3, showing expected change in mostly incongruent list Stroop effect
when adding a cue. Both models are shown with the posterior mean in red and the 95% probability interval in
blue.

5.5. Discussion

This is interesting regarding how participants use the cues, in comparison to the behavioral data
from prior human subjects experiments. Namely, individuals are more likely to relax AC rather
than heighten it. There is a behavioral consequence to this finding; overall there is a larger Stroop
effect when most of the trials are congruent and participants are cued to that fact. The probability
of the Stroop effect change is an interesting way of framing the question that can inform future
work regarding an individual’s decision to use the cue. Further, the fact that there is a smaller
likelihood in the MI for using the cue does not mean that all individuals use cues in the MI case
the same. Specifically, there may be a range of cue use across different individuals in that case,
that can be explored in future work regarding conditions, or individual characteristics that drive
someone to use cues in MI conditions.

6. MACHINE LEARNING MODEL

In this Section we describe the model and results of a machine learning (ML) model. In the
Bayesian model, the goal was to model the Stroop effects under different cue (and list) conditions.
Here, we turn the paradigm around and predict cue condition (state) of an individual based on the
Stroop effect.

6.1. Data

The data used for the ML models is also pre-processed, as described in the Bugg et al. 2015
paper [10] and in Section 4.1.
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6.2. Method

6.2.1. Data preprocessing and feature engineering

For a general supervised machine learning prediction task, we need a labeled dataset of N training
samples {(x1,y1), . . . ,(xN ,yN)}, where yi ∈ {cued,uncued} is the participant cue state and
xi = [t1, . . . , tM] is a feature vector of normalized1 response time information for each of the M
trials. In ML terminology, this would allow us to train a model that predicts the label yi using all
the information from the feature vector xi. That is, the model discovers patterns most useful in xi
for predicting yi.

The 2015 Bugg et al. experiment used a 2 (cued/uncued) × 2 (MC/MI) within-subjects design. In
total, each participant was shown 32 lists, where the lists were randomly intermixed among the
four list types. Because each participant is not shown the same ordered list of M trials, it is not
possible to obtain the same xi across all participants.

Instead, we must perform the following additional steps. For each participant:

1. We aggregate the trials into two groups: cued and uncued. Note that this process actually
produces two data points, one for cued and one for uncued, for each participant.

2. We compute the mean of the response time τ by condition: Congruent trial, MC list (CMC),
Incongruent trial, MC list (IMC), Congruent trial, MI list (CMI), and Incongruent trial, MI
list (IMI). We note that we have explored other summary representations of the observed
response times, including: median, min, max, and standard deviation but did not observe
improved performance.

3. We subtract the mean response times of the congruent trial from the incongruent trial in (2)
above to get the mean Stroop effect σ by list condition: MC list (MC) and MI list (MI).

4. We additionally consider further dividing the conditions in (2) and (3) above by the color.

So, for example, (2) above gives us a new feature vector xi = [τCMC,τIMC,τCMI,τIMI], (3) gives
xi = [σMC,σMI], and (4) expands the feature set by further separating τ and σ by color
condition.

6.2.2. Model selection and validation

Given labeled data {yi,xi}, i = 1, . . . ,2N (2N for two data points for each of N participants) it
remains to select a ML algorithm for the underlying prediction model. We use the Linear Support
Vector Machine (LinearSVM) available in Python’s Scikit-learn 0.23.1 with default
parameters [23] for its ease of interpretability, particularly with respect to feature
importance[2, 15].

Briefly, in its simplest form, the objective of an SVM is to find a hyperplane that separates the
labeled data into the two distinct classes (extensions for multiclass problems exist), while also

1We normalize the times so that t j ∈ [0,1] for each particpant
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maximizing the distance between the hyperplane and the nearest point from either group
(hard-margin). The coordinates of the vector orthogonal to the hyperplane form the weights
(coefficients) of the model. From the weights, it is possible to do two things. First, we can
determine feature importance according to the relative magnitude of the weights. Second, new
data items can be labeled depending on which side of the hyperplane they fall (computed by
taking the dot product with the orthogonal vector).

In a deployed setting, we would apply our SVM model that has been trained on all the labeled
data to make predictions on new, unlabled data. However, without validating the model first, it is
not possible to know how good the new predictions are. Therefore, a cross-validation test is
performed first, in which part of the labeled data is withheld during training and used to test
(validate) the performance of the model during prediction. We use the k-fold cross validator,
which splits the data into k consecutive folds. Each fold is then used once as the test (validation)
set, while the remaining k−1 folds form the training set. We use k = 5 and perform 10 runs of
each of the cross-validation experiments. We report back on the mean and standard deviation of
the accuracies and confusion matrices.

6.3. Results

Table 6-1 shows the prediction accuracy using the different feature sets. The accuracies using
mean response times and mean Stroop effects were the poorest performing, with 0.54 (0.12 SD)
and 0.59 (0.13) accuracies, respectively. However, the results of this experiment are revealing in
that the SVM weights indicate that the trials in the MC list are most useful for predicting cue
condition, whereas the trials in the MI list are less useful. In fact, if we remove the MC list from
the response times and Stroop effects, we obtain 0.47 (0.09) and 0.48 (0.06), respectively, which
is worse than random guessing. As discussed in Section 6.2.2, we also separate out the response
times and Stroop effects by color condition. It can be seen that this improves the performance of
the model, where we obtain 0.69 (0.11) and 0.64 (0.12) accuracies using the response times and
Stroop effects, respectively.

In addition to the accuracies, we also present the confusion matrices using the response times
(Table 6-2) and the Stroop effects (Table 6-3), which show the prediction results at the class
level.

6.4. Discussion

In this Section, we primarily discuss the limitations of the current model and provide brief
suggestions for future work. Section 8 discusses future work in much more detail.

The primary limitation of this effort was a mismatch between data and computational model.
Specifically, the experimental data was collected a priori to evaluate the role of expectation (via
cued and uncued lists) at the group, not individual level. As such, the experiments were
randomized so that (1) list conditions randomly alternated between MC and MI lists, (2) cue
conditions randomly alternated between cued and uncued, and (3) trials within lists were
presented randomly. After randomizing the experiments, mean response times under different
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Feature representation Accuracy Feature importance

Response time 0.54 (0.11) *: wCMC,wIMC,wCMI,wIMI = 0.92, 1.12, 0.20, 0.45

Response time (color) 0.69 (0.11) B: wCMC,wIMC,wCMI,wIMI = 0.69, 0.75, 0.53, 0.56
G: wCMC,wIMC,wCMI,wIMI = 0.94, 1.06, 0.28, 0.18
R: wCMC,wIMC,wCMI,wIMI = 0.16, 1.65, 0.90, 0.63
Y: wCMC,wIMC,wCMI,wIMI = 0.33, 0.76, 0.22, 0.36

Stroop 0.59 (0.13) *: wMC,wMI = 1.43, 0.49

Stroop (color) 0.64 (0.12) B: wMC,wMI = 0.55, 1.18
G: wMC,wMI = 1.18, 0.66
R: wMC,wMI = 1.22, 0.25
Y: wMC,wMI = 0.59, 0.29

Table 6-1 Accuracy (mean and standard deviation in parentheses), together with feature importance obtained
from the weights of the SVM, using the different feature representations.

Predicted Class
Response time Response time (color)

cued uncued cued uncued
Actual Class cued 0.54 (0.28) 0.46 (0.28) 0.67 (0.16) 0.33 (0.16)

uncued 0.45 (0.28) 0.55 (0.28) 0.30 (0.21) 0.70 (0.21)

Table 6-2 Confusion matrices for predicting cue condition using response time (with color, right).

Predicted Class
Stroop Stroop (color)

cued uncued cued uncued
Actual Class cued 0.58 (0.19) 0.42 (0.19) 0.60 (0.16) 0.40 (0.16)

uncued 0.39 (0.20) 0.61 (0.20) 0.32 (0.20) 0.68 (0.20)

Table 6-3 Confusion matrices for predicting cue condition using Stroop effect (with color, right).

conditions were obtained and the significance in differences of Stroop effects were evaluated in
the context of expectation.

In future work, we would design an experiment such that every participant receives the same order
of trials in each of the four quadrants of the AC settings versus demand risk matrix. This would
allow us to develop a ML model that compares trial-by-trial response times across participants,
rather than collapsing all the data into summaries of the response time observations (here, we
only looked at mean, median, min, max, and standard deviation). Finally, the order of the
presented lists and trials could be designed with HCML in mind to capture trait versus state level
cue use and effects of learning and fatigue, among others; see Section 8 for further discussion.
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7. CONCLUDING REMARKS

Attempts to model AC were pursued to enable the research team to (1) draw inferences about AC
and human performance in real-world scenarios (i.e., our guard example) and (2) to make
predictions about individual characteristics based on human data. Both approaches are unique as
compared to what has been done in the literature to date measuring and modeling AC.

The first approach was to develop a Bayesian model that represents the experimental conditions.
The goal was to be able to query the model regarding scenarios of interest that represent a risk
model for AC mismatches. Recall, there are two experimental conditions that represent an AC
mismatch - one in which an individual is in a state of low AC but encounters a high attentional
demand scenario. This can lead to missed, inaccurate, or delayed responses. The second
mismatch occurs when an individual is in a state of high AC but encounters a low attentional
demand scenario. In this case, unnecessary attentional resources may be dedicated to providing
an accurate or timely response. Possible consequences of this include a limited capacity to
respond to subsequent additional information (such as a guard dividing attention between
competing tasks) or fatigue.

The research team posed questions, and leveraged the Bayesian model to draw inferences about
those questions, which included:

• What is the probability that telling a subject to expect incongruent trials will decrease the
Stroop effect? This question provides insight into whether, and how likely it is that a cue
will improve performance in a high AC demand context. It was found that a cue lead to a
decrease in the Stroop effect 64% of the time. This can be interpreted as participants
intentionally using the cue to heighten attentional control (some of the time, or some of the
participants heighten attentional control).

• What is the probability that a cue will increase the Stroop effect in a mostly congruent list?
This question provides insight regarding how likely a cue is to reduce performance
(increase the Stroop effect) in a low AC demand context. In this case, it is likely that 100%
of the time, the Stroop effect will increase, which suggests that participants are relaxing AC
in an intentional fashion to cues that signal low AC demand.

Framing questions regarding AC in this way is unique as compared to literature on modeling AC,
and represents a fruitful approach for examining real-world-related questions that are informed by
carefully controlled laboratory data. This enables us to study conditions or individual
characteristics in real-world settings.

In the ML modeling approach, the goal was to predict the state an individual was in - either cued
or uncued. Results in this case demonstrated that with 69% accuracy, we could differentiate a
cued from uncued state, which does not represent significantly-greater-than-chance performance.
This is likely a symptom of the experimental design, which was carefully controlled to allow for
causal interpretations of the data but limited the ability to develop a model, as the experiments
were not designed for use in ML modeling to differentiate cued from uncued conditions.
However, this represents a promising avenue for future work. Human subjects studies can be
designed to allow for better predictions in ML models, either by (1) developing an experimental
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design that more closely resembles real-world scenarios, or (2) by designing an experiment using
matched lists in a fixed order for all subjects, thus allowing for a direct mapping of trial types and
conditions across participants.

Based on our success implementing a Bayesian model and arriving at reasonable (supported by
human behavioral data) inferences to questions that represent real-world scenarios of interest, this
effort shows great potential for future work. This work should include developing higher-fidelity
models, as well as hierarchical models. Further, while the ML models did not achieve
significantly-greater-than-chance performance differentiating cued from uncued states, predicting
an individual’s AC state is a worthwhile endeavor, for which the research team has developed
avenues to pursue that are well-suited to an HCML approach. Six avenues to pursue for future
research follow.

8. FUTURE WORK

8.1. Future Direction 1: Modifying Botvinick et al. model to account for intentional,
goal-directed AC

The data from [10] showing an asymmetric influence of the pre-cues cast doubt on individuals’
ability to heighten AC when advance information signals it is valuable to do so (a high-risk
situation), but show individuals readily relax AC when they are informed that attentional demands
will be low (a low-risk situation). The Botvinick [3] model, as noted, is unable to account for this
pattern. To our knowledge, there is no other extant model that can account for this pattern since
extant models have ignored the role of intention (expectations) in adjustments to AC. Yet, there is
both basic and applied value in accounting for this pattern, and more generally anticipating via a
model a) the conditions under which an individual will intentionally heighten AC in response to
advance information signaling they should do so, and/or b) which individuals will be most likely
to do so. Therefore, implementing a higher-fidelity model of AC (such as Botvincik’s model) in
the Bayesian framework would provide a better overall representation of all relevant factors that
affect AC and could be used for accounting and making predictions on individuals’ intentions.

Another approach is to adapt the Botvinick [3] model to account for intention, captured via
modifications to Equation 2 in [3], which specifies the degree of control adjustment in response to
the degree of conflict detected over multiple preceding trials. Equation 2 might consider not only
conflict detected on “multiple preceding trials” but also the conflict anticipated by the pre-cue,
with weights being assigned to each. Assuming cues are valid, these two pieces of information
converge but they might be weighted differently for the mostly incongruent and mostly congruent
condition. For example, the weight assigned to the cue might be low in the mostly incongruent
condition but high in the mostly congruent condition while the conflict experienced (on multiple
preceding trials) might be weighted equally for the two conditions. A high cue weight in the
mostly congruent condition might lead to some multiplicative effect on the degree of adjustment
(e.g., without cues the adjustment might be X units of control but with the cue it may be X times
1.5 units of control). These weights could be model-learned based on the group-level behavioral
data from [10] by estimating how much the Stroop effect increases (or decreases) on average in
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the cued compared to uncued conditions. More sophisticated modeling could attempt to get at
how long individuals like a security guard can sustain an intentional heightening of AC (an
increased control adjustment based on the cue) by incorporating trial level data within each list.
For example, Suh and Bugg (in press) showed that pre-cues are used initially but cue use
decreases rapidly across a 10-trial list in the mostly incongruent condition, whereas in the mostly
congruent condition, cue use is high initially and remains high throughout the list. This suggests
that the intentional heightening of control may be more difficult to sustain than the relaxation of
control.

Another potential way to adapt the [3] model is to incorporate a decision module (module that
captures individuals’ decisions to use or to not use external information such as pre-cues).
Incorporating a decision module seems potentially valuable because the primary pattern
(asymmetrical influence of the pre-cues) in [10] might most parsimoniously be explained by a
decision module whose outcome is “no” (not to use the pre-cue) in mostly incongruent lists but is
“yes” (use the pre-cue) in mostly congruent lists. A Bayesian analysis on existing datasets could
inform the prior probabilities of heightening or relaxing AC when pre-cues are provided in each
condition (mostly incongruent and mostly congruent).

For example, one could get Bayesian estimates of choice to use the cue based on the numbers of
lists where participants show a smaller Stroop effect in the cued mostly incongruent condition
compared to the group average of the uncued mostly incongruent condition (and similarly in the
cued mostly congruent condition compared to the group average of the uncued mostly congruent
condition. Based on the group level behavioral data of [10], the probability should be low for
heightening of control (cue use in mostly incongruent condition) and high for relaxation of
control (cue use in mostly congruent condition). The standard Botvinick et al. model would again
apply to the uncued lists (since there is no decision to use or not use cues) but whether the
cue-based control adjustment occurs in the cued lists would be informed by the Bayesian analysis.
One could then determine if this model can account for behavior in a new dataset that was not
used for the Bayesian analysis.

Additional strengths of the Bayesian approach not covered in this paper could be brought to bear
for this future direction and are worth demonstrating. First, Bayesian methods readily extend to
hierarchical or multilevel models, which could be used to understand differences in performance
related to individual research subjects. Second, while normal distributions were used as
informative priors in this paper, the MCMC sampling approach allows great flexibility in types of
distributions one can use. Finally, though only one step was demonstrated in this paper, Bayesian
methods allow easy updating of a model sequentially (using the outcome of one model to inform
an updated model on new data), lending itself well to a sequential learning framework that could
be useful as part of a HCML capability.

Thus, to represent an individual-level model using our Bayesian modeling approach, we would
develop a hierarchical model, where the first level would represent the individual with factors and
a random effects term; the next level would represent effects associated with lists; an additional
block-level could be included as well. In this case, we could make queries regarding if particular
individuals tend to show more shifts toward negative when they are in a cued versus an uncued
situation. This would also permit us to look at individualized parameters to compare distributions
of expected increases in intention between participants, based on individual-level factors.
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8.2. Future Direction 2: Uncovering individual and contextual determinants of
intentional goal-driven AC

A related but distinct future direction will aim to uncover the individual and contextual
determinants of intentional goal-driven AC, that is to determine the attributes of individuals or
contexts that are associated with cue use and potentially therefore decreased risk of AC failures.
This has future applied value because it informs the question of who is most likely to intentionally
heighten control when instructed to do so (which persons would be most effective as a security
guard in situations that demand such heightening of control?) and under what conditions is cue
use most probable.

For the question of who is most likely to intentionally heighten control, for each participant
(rather than for the group-level data) one could compare the mean Stroop effect in each cued list
(e.g., each mostly incongruent cued list) to the average Stroop effect across all uncued lists of the
same type (e.g., average of all mostly incongruent uncued lists). For each participant, two values
should be derived—(1) the number of lists that AC was intentionally heightened for the mostly
incongruent cued condition as indicated by a smaller Stroop effect relative to the uncued
condition, and (2) the number of lists that AC was intentionally relaxed for the mostly congruent
cued condition as indicated by a larger Stroop effect relative to the uncued condition. Presumably,
across participants one will observe a range for each value with some participants having high
numbers (indicating high frequency of intentional adjustments in AC) and some having low
numbers. Ultimately, one could conduct a new study in which they administer the pre-cued lists
paradigm in conjunction with individual differences measures that are of value to Sandia’s
mission (e.g., measures that might typically be used for purposes of assessment, interviewing, as
well as other psychological indicators anticipated to be associated with the willingness/ability to
intentionally adjust AC). Since there is greatest interest in the high attentional demand mostly
incongruent condition, one could focus on trying to identify predictors of cue use in this condition
(i.e., what measures correlate with the number of cued lists on which AC was heightened in the
mostly incongruent condition?

For the question regarding the conditions under which cue use is most probable, one could return
to the group-level analytic approach and compare the same groups’ cue use across two different
contexts. For example, in Bugg et al. (2015) Experiment 4, there were two contextual
conditions—a low incentive condition in which participants earned a small incentive for good
performance and a high incentive condition in which they instead earned a large incentive. In this
experiment, it was found that the high incentive condition promoted pre-cue use in the critical
high AC demand, mostly incongruent condition. This fits with the notion that motivational factors
are important in goal-driven AC. Future experiments could explore other contextual factors that
have applied value such as: various training approaches (how is information communicated to the
guard about the need for intentional heightening of AC at certain high risk times), commitment
strategies (whether the guards are asked to engage in commitment strategies like implementation
intentions that can promote intention fulfillment), or factors like time-on-task (how long after the
start of one’s guard shift [or after the imperative information is communicated] does the need for
AC arise) and time-of-day.

Combining these two levels of analysis may afford even greater predictive power. That is, one
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could simultaneously consider individual and contextual differences. As a starting point, one
could use the data from Bugg et al. (2015) Experiment 4 and derive 4 values: number of lists each
participant intentionally engages AC in the a) low incentive, mostly incongruent, b) high
incentive, mostly incongruent, c) low incentive, mostly congruent, and d) high incentive, mostly
congruent cued lists (relative to the average for that participant in each of those four conditions).
Possibly, some individuals may be more likely to heighten control when needed compared to
others and they may do so regardless of the incentive structure. In contrast, other individuals may
only be more likely to heighten control when needed compared to others when they are in a high
incentive context (rewarded for their performance). Like the concept of
individually-tailored-medicine or therapy, one could use results like these to determine how to
maximize the likelihood of AC success (and therefore decrease AC risk) for different employees.
Some guards may need contextual boosts to achieve high levels of AC (to encourage them to use
advance information to intentionally heighten AC when there is a threat) while others may not,
some may be motivated by some contextual boosters but not others, and still others may be
neither individually inclined to heighten AC nor driven by contextual changes.

8.3. Future Direction 3: Modeling stimulus-driven AC

As described earlier, stimulus-driven AC is control that is governed by external cues that have
become associated with attentional demands. These associations are learned via experience and
enable subsequent retrieval of the associated AC setting when encountering the critical cues. A
key paradigm for studying stimulus-driven AC in the lab is the item-specific proportion
congruence (ISPC) paradigm (Braem et al., 2019). In this paradigm, participants encounter 50%
high demand (incongruent, e.g., the word GREEN in red the word DOG paired with a bird
picture) and 50% low demand (congruent, e.g., the word GREEN the word BIRD paired with a
bird picture) trials, which are randomly intermixed during the experiment. In the picture-word
version that is commonly used ([8, 12, 25]), participants name the animal in a picture and ignore
the word (e.g., incongruent trials such as the word DOG paired with a bird picture, congruent
trials such as the word BIRD paired with a bird picture). Most importantly, unbeknownst to
participants, the proportion of incongruent and congruent trials varies across items. This
manipulation is called the ISPC manipulation.

For example, for some participants, birds and cats are mostly low demand (referred to as the
mostly congruent condition) whereas dogs and fish are mostly high demand (referred to as the
mostly incongruent condition). The key findings from these experiments is the ISPC effect–the
pattern whereby the Stroop effect is smaller for the mostly incongruent (i.e., mostly high demand
trials) condition compared with the mostly congruent (i.e., mostly low demand trials) condition,
indicating that a higher AC setting was engaged post-stimulus onset for the mostly incongruent
condition compared with the mostly congruent condition.

This is important because the post-stimulus nature of the attentional adjustments helps rule out a
goal-directed AC account of the ISPC effect. (Additionally ruling out this account is the fact that
all items [birds, cats, dogs, fish] are presented equally often and overall, half of the trials are
congruent, and half of the trials are incongruent such that participants can neither predict which
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animal is going to appear on the next trial or whether the trial will be congruent or incongruent,
information that would be critical for goal-directed AC to operate.).

A related effect is the context-specific proportion congruence (CSPC) effect—the pattern whereby
the Stroop effect is smaller for a context in which AC demands are mostly high compared to a
context in which AC demands are mostly low. In the lab, the typical manipulation used to produce
CSPC effects is a location manipulation (the location on screen where stimuli appear is either
mostly incongruent or mostly congruent). From an applied perspective, CSPC effects may better
capture stimulus-driven AC in real-world situations considered in our use case example in
Chapters 1 and 2 (e.g., when security guard’s experience in the northeast part of campus mostly
entails higher AC demand/engagement and their experience in the northwest mostly entails lower
AC demand/engagement such that over time a high level of AC becomes associated with the
northeast location whereas a low level of AC becomes associated with the northwest location).

In the context of our conceptual risk model, the ISPC and CSPC effects imply that a higher risk of
AC failure accompanies stimulus-driven AC that is triggered in response to cues that have
historically been associated with low demand in the past, but which in the moment co-occur with
a high demand situation (a security threat presents itself in the northwest location). Conversely, a
low risk of AC failure accompanies stimulus-driven AC that is triggered in response to cues that
have historically been associated with high demand in the past, and which in the moment co-occur
with a high demand situation (a security threat presents itself in the northeast location).

With respect to modeling, there are some models that have been developed to account for
ISPC/CSPC effects [1, 28]. Blais [1] presented an adaptation of the Botvinick [3] model and the
primary change is that in this model, the task representation weights are adjusted in an
item-specific fashion. In other words, control takes an item-specific form whereby conflict on a
given trial changes the connection weight between the task demand unit and the color on that
specific trial with the weight being increased to reflect increased attention to color (color naming)
when conflict is high (on incongruent trials). On congruent trials, the color-naming weight for the
presented color is selectively lowered. To test the model, the authors generated 1000 random lists
of 192 trials wherein an ISPC manipulation was implemented, and they submitted these trials to
the model resulting in 1000 simulations. They found an ISPC effect whereby the average size of
the Stroop effect (here measured in cycles) was larger for the mostly congruent items compared to
the mostly incongruent items.

Two limitations of this model (see also Verguts & Notebaert [28]) are that it is unclear if these
models can simulate a) ISPC effects in ISPC paradigms that have isolated AC from other
mechanisms that can produce ISPC effects (see [8, 12, 25]) such as learning of simple
stimulus-response associations, and b) CSPC effects. No study to date has attempted to simulate
ISPC effects from such paradigms or CSPC effects using these models. Modeling the conditions
under which CSPC effects are observed may be particularly valuable since, compared to ISPC
effects, CSPC effects are (as noted above) potentially more applicable to Sandia’s mission but
additionally are less stable (see [13], for discussion). A model might be especially useful for
predicting when stimulus-driven AC will succeed versus fail in situations where a contextual cue
like location is responsible for cueing AC.
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Such a model might benefit from considering the two “sides” to stimulus-driven AC, which are
the learning side (the accumulation of experiences in for example, the northeast and northwest
locations that allow the guards to learn the associations between an area of space and AC demand)
and the retrieval side (after learning, the retrieval of those associations when encountering stimuli
in either of those locations in the future). From a measurement perspective, however, these two
are difficult to tease apart using most current experimental designs because the CSPC effect (or
ISPC effect) that is measured in such designs reflects the contributions of learning and retrieval.
One way to get estimates of both that are perhaps more independent than current designs afford,
is to have a training (learning) phase be followed by a subsequent transfer phase that is separated
in time from learning and involves stimuli that differ from those that were encountered in training
(i.e., transfer stimuli). The CSPC effect in the training phase could then be used as the indicator
of learning whereas the CSPC effect in the transfer phase could be used as the indicator of
retrieval. Models that include a learning and retrieval component could then be evaluated by
determining whether they can successfully simulate data from such an experiment.

We noted in Chapter 1 that, in addition to learning, stimulus-driven AC is affected by attention to
predictive cues and the similarity of cues to those encountered during learning. More specifically,
we suggested that stimulus-driven AC will be more effective to the extent that cues are salient or
otherwise readily attended (e.g., security guard readily detects occurrence of activity in a specific
location), and cues are similar to those encountered during the learning process. There is evidence
from experimental studies showing that stimulus-driven AC transfers to similar but novel cues that
were not encountered during training (e.g., new pictures of dogs, birds, etc. in the ISPC studies;
[8, 12], new locations on screen that are nearby trained locations in the CSPC studies [29, 30].
Yet, it remains unknown if such patterns would be observed in a more realistic environment
where there is greater competition for an individual’s attention (i.e., more cues available that
could be attended) and cue similarity is more variable/less controlled than in the lab.

To examine CSPC effects in such an environment, one could design a virtual world that mimics
the environment and security challenges at Sandia and embed predictive cues for AC into the
virtual environment. Using the location example again, one could make one gate predictive of
high AC demands and a different nearby gate predictive of low AC demands. Participants would
be asked to respond to stimuli in the different locations. Critically, the environments would be
designed to include competing stimuli such as those that a guard might encounter in everyday life
like a plane flying nearby, a jogger running past, or a honking horn. An experiment like this
would offer important insights into the question of whether participants still learn the
relationships between cues and attentional control demands in this type of environment, and if
they do, whether stimulus-driven AC continues to operate in the face of competing attentional
demands and shows transfer to novel cues (e.g., presentation of a stimulus in a location nearby
one of the gates that is not precisely the location encountered during training). Such data would
be highly important for informing future environmental modifications that may be made with the
goal in mind of promoting use of stimulus-driven AC.
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8.4. Future Direction 4: Weighting goal-directed and stimulus-driven AC

Throughout this paper, we have considered goal-directed AC and stimulus-driven AC rather
independently. In so doing, one might be left with the impression that one or the other operates at
any given time. That may be true under some conditions. For example, [19] found that pre-cues
that were presented on each trial (rather than before an entire list of trials as in the pre-cueing
paradigm described earlier) reduced or eliminated ISPC effects. This suggests that when attention
was intentionally heightened in response to pre-cues signaling that conflict (high AC demand)
was likely on the next trial, adjustments in attention based on stimulus-driven AC did not occur.
However, in most real-world contexts, advance information about an upcoming high AC demand
is likely not repeated over and over prior to each possible occurrence of a stimulus (e.g., threat)
but rather is conveyed to individuals before a work shift for example, or at the start of a week (if a
threat is expected sometime during that week).

Thus, it remains an open question whether use of intentional goal-directed AC would interfere
with stimulus-driven AC in such circumstances given that goal-directed AC is difficult to sustain
over time. Future studies might therefore examine this more directly using experimental designs
that better mimic the real-world scenario just described. Additionally, the flip question can be
asked—when stimulus-driven AC is being used, can goal-directed AC intervene if the outcome of
stimulus-driven AC is suboptimal. This question relates back to the conceptual risk model and
particularly the upper right cell. In a case where stimulus-driven AC is used, the upper right cell
refers to an individual retrieving a low AC setting but encountering a high AC demand resulting
in sub-optimal performance. Here, it may be especially important to understand if the individual
could intentionally override that retrieval or counteract that retrieval by heightening AC in that
moment.

8.5. Future Direction 5: Human Constrained ML Approach to Differentiate Individual
Characteristics

Under Future Direction 2, we considered the potential to examine individual differences in
intentional goal-driven AC as indicated by cue use. From the analysis proposed in that section,
one could identify “high cue users” and “low cue users”. Machine learning could then be applied
to determine if there are patterns in the data that accurately differentiate these two groups of
individuals. This might provide an individual differences signature of cue use, and more
specifically how inclined or able an individual is to take external information about expected AC
demands and use it to adjust attention in line with those demands. Theoretically, such individual
differences might represent a trait or state level variable. This could be assessed by examining cue
use in a different task (or experimental paradigm) and determining if the same individuals who
were high cue users in one task are also high cue users in a second task (and those who were low
were again low).

For example, this could be evaluated by determining if the signature of cue use identified by
machine learning again categorizes the same individuals as high cue users and the other
individuals as low cue users. If consistency is observed across tasks, that would provide evidence
for a trait level variable. If, by contrast, cue use is a state level variable, then one might instead
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observe that cue use is more strongly determined by one’s concurrent state—e.g., Is the individual
motivated? Fatigued? Interested in the task? etc. From an applied perspective, this approach
might begin to identify what individuals may be most well-suited for an AC-demanding job (e.g.,
a job that requires one to reliably use advance information [like a pre-cue] to intentionally adjust
control across situations/contexts).

Another way in which ML could be applied to addressing a question from Future Direction 2
relates to the question of contextual influences on AC. However, rather than consider
goal-directed and AC, here the application would be to stimulus-driven AC. As described in
Chapter 1, some evidence suggests stimulus-driven retrieval of associated levels of AC may
become automatized, such that even under concurrently demanding situations (when attention is
devoted to another task while performing security related tasks), cues can effectively heighten AC
[25]. In [25], participants completed a Stroop task with an ISPC manipulation embedded while
under no load, low load, or high load. Load referred to a concurrent working memory task they
performed while doing the Stroop task. The key finding was that the ISPC effect was robust
regardless of load. These data provide an opportunity to determine whether machine learning can
accurately differentiate load conditions. That is, are there characteristic patterns of responding in
these conditions that can inform whether individuals are devoting effort to a secondary task while
performing a primary task.

Finally, under Future Direction 3, we considered ways in which stimulus-driven AC might be
modeled and noted the importance of being able to differentiate the learning of stimulus-driven
AC from the retrieval of stimulus-driven AC settings. ML might also offer a means to distinguish
these stages by determining whether there are patterns of data that change across time during an
experiment in ways that may theoretically map onto stages of learning and retrieval
(post-learning). For example, it may be that RT variability decreases and asymptotes as learning
reaches its maximum (ceiling) and one can infer that performance (e.g., CSPC effects) post that
point in time, correspond to the retrieval side of stimulus-driven AC. This would hypothetically
provide a way to delineate those stages for purposes of modeling the processes involved in each
stage.

8.6. Future Direction 6: Building upon Bayesian Inferential Modeling Approach

An essential next step for the Bayesian Inferential Modeling approach appove would be validating
whether the increased predictive precision afforded by the informative prior model provides better
predictions. This would be done by comparing the predictions made on a new dataset by the
reference prior model built on experiment two data in [10] to the predictions made by the
informative prior model built on the same data.

Another method worth exploring would be the use of power priors [14, 20], which allows for
weighting how much informative priors based on historical data affect the final model. Especially
relevant research questions for power priors in this context include (1) how weighting affects
predictive accuracy of the model and (2) how appropriate weighting changes based on the amount
of historical data available to inform a model of AC.
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APPENDIX A. APPENDIX: BUGG (2015) CODEBOOK

In Figure A-1, presents a mapping between the specific trials across cued and uncued
conditions.

A.1. Experiment 1

Block = block # with numbers 1 – 8 representing practice (should be excluded from analysis) and
blocks 9 and higher representing test trials. Note that each number (beginning with 9) appears in
10 consecutive rows because the experiment was comprised of mini-blocks (lists of 10 trials) and
each list has a unique block number in this column

Trial = trial position within the block (1 – 10 with 1 representing the first trial, 2 the second trial,
and so on in each block)

Color[Trial] = color of the stimulus presented on that trial

Experimenter.ACC = 0 or 1 (codes whether the Stroop response was incorrect or correct,
respectively); ** note that this is the accuracy for congruent trials only

Experimenter1.ACC = 0 or 1 (codes whether the Stroop response was incorrect or correct,
respectively); ** note that this is the accuracy for incongruent trials only

Procedure[Trial] = CongProc or IncongProc (codes whether the trial was congruent or
incongruent in the Stroop task, respectively)

Running[Trial] = NMCList, NMIList, MCList, or MIList (codes whether the mini-block [list] is
an uncued mostly congruent list, uncued mostly incongruent list, cued mostly congruent list, or
cued mostly incongruent list, respectively); like the Block variable, the same code will appear in
10 consecutive rows because a mini-block was comprised of 10 consecutive trials of the same list
condition

Stim.RT = vocal response time on Stroop task in ms; ** note that this is the RT for congruent
trials only

Stim1.RT = vocal response time on Stroop task in ms; ** note that this is the RT for incongruent
trials only

Word = color word that was presented on the trial
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A.2. Experiment 2

Block = block # with numbers 1 – 8 representing practice (should be excluded from analysis) and
blocks 9 and higher representing test trials. Note that each number (beginning with 9) appears in
10 consecutive rows because the experiment was comprised of mini-blocks (lists of 10 trials) and
each list has a unique block number in this column

Trial = trial position within the block (1 – 10 with 1 representing the first trial, 2 the second trial,
and so on in each block)

Color[Trial] = color of the stimulus presented on that trial

Experimenter.ACC = 0 or 1 (codes whether the Stroop response was incorrect or correct,
respectively); ** note that this is the accuracy for congruent trials only

Experimenter1.ACC = 0 or 1 (codes whether the Stroop response was incorrect or correct,
respectively); ** note that this is the accuracy for incongruent trials only

Procedure[Trial] = CongProc or IncongProc (codes whether the trial was congruent or
incongruent in the Stroop task, respectively)

Running[Trial] = NMCList, NMIList, NFiftyList, MCList, MIList, or FiftyList (codes whether
the mini-block [list] is an uncued mostly congruent list, uncued mostly incongruent list, uncued
50% congruent list, cued mostly congruent list, cued mostly incongruent list, or cued 50%
congruent list, respectively); like the Block variable, the same code will appear in 10 consecutive
rows because a mini-block was comprised of 10 consecutive trials of the same list condition

Stim.RT = vocal response time on Stroop task in ms; ** note that this is the RT for congruent
trials only

Stim1.RT = vocal response time on Stroop task in ms; ** note that this is the RT for incongruent
trials only

Word = color word that was presented on the trial
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Figure A-1 Trial names for cued and uncued conditions.

42



DISTRIBUTION

Hardcopy—Internal

Number of
Copies

Name Org. Mailstop

1 Courtney Dornburg 5954 1027

1 Susan Adams 6672 0152

Email—Internal (encrypt for OUO)

Name Org. Sandia Email Address

Melissa Finley 6824 mfinley@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Technical Library 01177 libref@sandia.gov

43





45



Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.


