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Abstract 

In this article, we assess an alternative account of a key experimental pattern thought to index 

top-down control. The list-wide proportion congruence effect is the well-documented pattern 

whereby the congruency effect (i.e., Stroop effect) is attenuated in lists containing mostly 

incongruent trials relative to lists containing mostly congruent trials. This pattern has typically 

been interpreted as a signature of a top-down control mechanism that modulates attention to the 

word dimension based on the global probability of encountering conflict between the word and 

color. However, Schmidt (2013a; 2013b) has proposed an alternative account that stresses 

relative temporal differences in responding between mostly incongruent and mostly congruent 

lists rather than relative differences in the control of attention. To assess this temporal learning 

account, we evaluate the evidence reported by Schmidt (2013a) and report new analyses of three 

previously published datasets in which a list-wide proportion congruence effect was observed 

after controlling for other potential confounds. These analyses targeted three key topics: effects 

of reaction time transformations, statistical support for temporal learning, and measurement of 

temporal rhythm. The evidence for the temporal learning account was neither strong nor 

consistent, and there was a highly significant list-wide proportion congruence effect that 

survived multiple attempts to control for temporal learning. Accordingly, we conclude that the 

temporal learning account is not currently a robust alternative to the global control account in 

explaining list-wide proportion congruence effects.  

Keywords: cognitive control, attention; temporal learning, Stroop, proportion congruent, list-

wide proportion congruence  



Assessing the Temporal Learning Account of the List-Wide Proportion Congruence Effect 

Goals change on a moment-by-moment basis, with these changes often corresponding to 

shifts in context. To maximize performance, one must shift attention in a context-sensitive 

fashion, an ability ascribed to cognitive control. Our phenomenological experience of 

heightening attention when a task demands it, and adapting attention in response to changes in 

goals or contexts, suggests the existence of a top-down cognitive control mechanism. 

Researchers have gathered empirical evidence for top-down cognitive control using various 

experimental paradigms, and in the current paper we focus on a key piece of evidence from the 

list-wide proportion congruence (list-wide PC) paradigm. 

Since the seventies, the list-wide PC manipulation has been extensively employed to 

index the context-sensitive modulation of attention in tasks such as Stroop color-naming (e.g., 

Cheesman & Merikle, 1986; Glaser & Glaser, 1982; Kane & Engle, 2003; Lindsay & Jacoby, 

1994; Logan, 1980; Logan & Zbrodoff, 1979; Lowe & Mitterer, 1982; Shor, 1975; West & 

Baylis, 1998). The list-wide PC manipulation varies the relative frequency of congruent (e.g., the 

word “blue” displayed in blue ink) to incongruent (e.g., the word “red” displayed in blue ink) 

trials across list contexts (e.g., mostly congruent vs. mostly incongruent lists; for reviews and a 

user’s guide to the manipulation, see Bugg, 2012, 2017; Bugg & Crump, 2012). The congruency 

(Stroop) effect is the highly robust pattern whereby response times are slowed (and error rates are 

sometimes exacerbated) on incongruent relative to congruent trials. When list-wide PC is 

manipulated, the list-wide PC effect is observed— mostly incongruent (MI) lists produce smaller 

congruency effects relative to mostly congruent (MC) lists. That is, the magnitude of the 

congruency effect is negatively related to the probability of encountering conflict (Blais, Harris, 

Guerrero, & Bunge, 2012; for computational models, see Blais, Robidoux, Risko, & Besner, 



2007; Botvinick, Braver, Barch, Carter, & Cohen, 2001). Accordingly, researchers traditionally 

have interpreted the list-wide PC effect as reflecting cognitive control such that attention to the 

word is minimized in MI (high conflict) lists relative to MC (low conflict) lists1 (e.g., Kane & 

Engle, 2003; Lindsay & Jacoby, 1994; Melara & Algom, 2003; Logan & Zbrodoff, 1979; Lowe 

& Mitterer, 1982).  

Over the years alternative interpretations of the list-wide PC effect have been proposed. 

For instance, as will be described below, there was evidence that a contingency learning 

mechanism (Schmidt & Besner, 2008) could explain the list-wide PC effect (Bugg, Jacoby, & 

Toth, 2008; Blais & Bunge, 2010). However, interpretations such as this have since been refuted 

by demonstrations of list-wide PC effects for items equated in presentation frequency and PC 

(and thereby contingency; see Bugg, 2014; Bugg & Chanani, 2011; Bugg, McDaniel, Scullin, & 

Braver, 2011; Gonthier, Braver, & Bugg, 2016; Hutchison, 2011, for evidence within a single 

task; see Funes, Lupiáñez, & Humphreys, 2010; Torres-Quesada, Funes, & Lupiáñez, 2013; 

Wühr, Duthoo, & Notebaert, 2015, for evidence across tasks). But another alternative account 

has emerged—Schmidt (2013a; 2013b) recently proposed the temporal learning account, which 

has the potential to explain list-wide PC effects for such items. The temporal learning account 

posits that the list-wide PC effect results from temporal differences in responding across lists and 

not from modulations of attention. The overarching aim of this research article is to evaluate the 

evidence for this account. 

We begin by briefly reviewing the evidence in favor of the global control account of the 

list-wide PC effect, including prior research that has documented conditions under which extant, 

                                                      
1 The interpretation that cognitive control acts to minimize attention to the word dimension in an MI context relative 

to an MC context is supported by findings from the process-dissociation procedure (Lindsay & Jacoby, 1994); 

however, heightening of color information in the MI context may also occur (see Egner & Hirsch, 2005). 



alternative explanations were not viable. Doing so serves to situate the present question in a 

broader theoretical and historical context and introduces the reader to the three previously 

published datasets that we re-analyzed for present purposes of evaluating the temporal learning 

account (Bugg, 2014; Gonthier et al., 2016; Hutchison, 2011). Then we turn to assessing the 

temporal learning account using a two-pronged approach. The first goal was to replicate the 

analyses from Schmidt (2013a), based on the Hutchison (2011) dataset, and apply those same 

analyses to two other datasets from a different lab (Bugg, 2014; Gonthier et al., 2016). The 

second goal was to evaluate and expand the analyses conducted by Schmidt (2013a) to provide a 

comprehensive and rigorous test of the temporal learning account. 

The Control-Based Account  

The list-wide PC effect has played a central role in theories and models because it 

demonstrates the context sensitivity of cognitive control (e.g., Botvinick et al., 2001; Blais et al., 

2007; for reviews, see Bugg, 2012; 2017; Bugg & Crump, 2012). Although the instruction is to 

name the color of the stimulus regardless of list, the list-wide PC effect demonstrates that 

attention to the word dimension is attenuated (MI list) or exaggerated (MC list) depending on the 

context (i.e., Dishon-Berkovits & Algom, 2000; Melara & Algom, 2003). Initial evidence for a 

control account was provided by early studies (Logan, 1980; Logan & Zbrodoff, 1979; Logan, 

Zbrodoff, & Williamson, 1984; Lowe & Mitterer, 1982), which tended to stress the strategic 

nature of the attentional adjustments. For instance, Lowe and Mitterer (1982) stated that the 

differential deployment of attention across lists demonstrated that “attentional strategies may be 

actively chosen to suit prevailing conditions” (p. 684). However, a recent study that gauged 

awareness of the PC manipulation at the end of each list found that the magnitude of the list-

wide PC effect was largely unrelated to participants’ awareness of the number of congruent trials 



(Blais et al., 2012). These data suggest it is unlikely that a strategic mechanism like that 

described by Lowe and Mitterer underlies the list-wide PC effect. Rather, the mechanism may be 

non-strategic and based on implicit knowledge of the global probability of conflict (Blais et al., 

2012; see also Bugg & Diede, 2017).  

In recent years, theoretical debate has centered on whether the mechanism underlying the 

list-wide PC effect operates globally (i.e., the global control account) or locally. According to the 

global control account, attention is modulated at the list level based on the global probability of 

encountering conflict (e.g., proactively; Braver, Gray, & Burgess, 2007; DePisapia & Braver, 

2006; see Botvinick et al., 2001, for a pathway-based computational model; see Melara & 

Algom, 2003, for the global-correlation based Tectonic Theory). This means that after 

participants (implicitly) learn the PC of the list, an attentional setting is applied uniformly 

throughout the list with different settings corresponding to each list (e.g., a setting that attenuates 

or exaggerates processing of the word in the MI versus MC list, respectively). Local accounts, in 

contrast, do not attribute the effect to adjustments that are based on the global probability of 

conflict. One such account, the item-specific control account (Bugg et al., 2008; Blais & Bunge, 

2010; see Blais, et al., 2007, for an item-specific computational model of the list-wide PC effect), 

posits that participants instead learn the probability of encountering conflict for each item (e.g., 

word; Jacoby, Lindsay, & Hessels, 2003), and modulate attention post-stimulus onset 

(reactively) based on the PC of the item. Another such account, the contingency account 

(Schmidt & Besner, 2008; see also Schmidt, Crump, Cheesman, & Besner, 2007), posits that 

participants learn stimulus-response contingencies for each word and produce the high 

contingency response post-stimulus onset (i.e., say “red” when RED is encountered in a MC list 

because the word RED is most frequently paired with the color red in this context). The 



traditional list-wide PC manipulation cannot adjudicate among the three accounts because it 

employs only biased items (i.e., items to which the PC manipulation is applied).  

To disentangle the mechanisms, recent studies implemented novel variants of the 

traditional list-wide PC design. The key feature of these variants was inclusion of a distinct set of 

words (and their associated colors; referred to hereafter as critical items2) in the MC and MI list 

that were intermixed with biased items but were matched in frequency and PC (e.g., 50% 

congruent in both lists) and therefore contingency. These critical items enabled evaluation of the 

contribution of global control independent of item-specific control and contingency learning 

(Bugg et al., 2008). The item-specific control and contingency accounts predict equivalent 

congruency effects for these critical items across the MC and MI lists (i.e., no list-wide PC 

effect); in contrast, the global control account predicts that a list-wide PC effect should be 

observed for critical items. That is, if attention is modulated based on the global probability of 

conflict, then the modulation should affect all items within a list not just those that are biased. 

Accordingly, the congruency effect should be smaller for critical items in the MI list than the 

MC list. 

Initial studies found no list-wide PC effect for critical items in line with local accounts 

(Bugg et al., 2008; Blais & Bunge, 2010). Importantly, however, subsequent research identified a 

crucial factor that seemed to preclude engagement of the global control mechanism in those 

studies, namely use of a small set of biased items that enabled participants to minimize 

interference for most items in the list by relying on stimulus-response associations (Bugg & 

Chanani, 2011). Consistent with the Associations as Antagonists to Top Down Control account 

(Bugg, 2014), when the size of the biased item set was increased (from two to four items) such 

                                                      
2 Some studies refer to such items as “transfer” items and/or refer to biased items as “inducer” items. 



that participants could not reliably predict responses on incongruent trials, evidence for global 

control was consistently observed—the Stroop effect was smaller for critical items in the MI list 

compared to the MC list (Bugg, 2014). There are now multiple reports from different labs of list-

wide PC effects for critical items, supporting the global control account (Bugg & Chanani, 2011; 

Gonthier et al., 2016; Hutchison, 2011; see also Bugg et al., 2011; Funes et al., 2010; Torres-

Quesada et al., 2013; Wühr et al., 2015). We re-analyzed three such datasets (Bugg, 2014, 

Experiments 1a & 2b; Gonthier et al., 2016, Experiments 1a & 1b; Hutchison, 2011) for 

purposes of examining whether a different global mechanism (temporal learning) provides a 

compelling alternative account of the list-wide PC effect (we use the term list-wide PC effect 

here and hereafter exclusively to refer to a list-wide PC effect for frequency and PC matched 

[i.e., critical] items that cannot be explained by item-specific control or contingency learning).  

The Temporal Learning Account 

Currently, the list-wide PC literature is grappling with another account that posits an 

alternative mechanism that is purported to operate globally, and thus may be able to explain the 

list-wide PC effect. The account is referred to as temporal learning (Schmidt, 2013a; 2013b). In 

contrast to the global control account, it does not posit a role for context-sensitive modulations of 

attention in the list-wide PC effect. Instead, it recasts the list-wide PC effect as an effect of 

participants learning and then adopting global response rhythms (i.e., retrieving expectancies 

about when to respond) in each list. According to Schmidt (2013a; 2013b), the MC list produces 

a globally fast rhythm of responding that selectively benefits responses on fast (i.e., congruent) 

trials in that context, producing a large congruency effect (incongruent – congruent RT). In 

contrast, the MI list produces a globally slow rhythm of responding that selectively benefits 



responses on slow (i.e., incongruent) trials in that context, producing a small congruency effect.3 

For a visual depiction of this account, see Figure 1.  

A major source of evidence for the temporal learning account stems from Schmidt 

(2013a), who used RT on trial n - 1 as a proxy for participants learning a temporal deadline of 

when to respond in a particular list. This was based on his findings of a main effect of prior RT 

on current RT and a significant (negative) prior RT by congruency interaction (the faster the 

prior RT, the larger the congruency effect) using linear mixed-effects modeling. Most 

importantly for present purposes, Schmidt assessed the congruency by PC interaction (the 

statistical manifestation of the list-wide PC effect); if temporal learning fully explains the list-

wide PC effect, this interaction should become non-significant because once temporal learning is 

accounted for, the purported signature of control should no longer be observed. However, 

Schmidt did not find that the congruency by PC interaction was eliminated. Instead he found 

only that the interaction coefficient declined (from β = .059 without indices of temporal learning 

to β = .051 with indices of temporal learning), a pattern he assumed to reflect use of a poor and 

noisy measure of temporal learning (i.e., prior RT), an assumption that we consider in Section 3.  

Schmidt (2013a) concluded that the critical contribution of his study was the “cautionary 

demonstration that the list-level PC effect cannot be taken as strong evidence for conflict 

adaptation without further controls.” (p. e82320). The implication is that temporal learning 

represents a serious alternative to the global control account of the list-wide PC effect, and in so 

much as researchers want to make claims based on global control (i.e., global [pathway-based] 

                                                      
3 However, in the same report, Schmidt (2013a) found that the effect of the list-wide PC manipulation was primarily 

in the incongruent trials, and noted that his initial explanation was “a bit oversimplified…The reason for a larger 

effect for incongruent relative to congruent trials in both the modelling and participant data probably has to do with 

the fact that temporal learning has more time to affect processing on incongruent trials.” (p. e82320). Thus, it is 

unclear whether the temporal learning account predicts movement in both congruent and incongruent trials or an 

effect primarily, or more strongly, on the incongruent trials. 



conflict adaptation; Botvinick et al., 2001), they must incorporate additional experimental 

controls to account for temporal learning. As reviewed above, this is not unfamiliar territory for 

researchers investigating the list-wide PC effect (or cognitive control more generally; see e.g., 

Awh, Belopolsky, & Theeuwes, 2012). Indeed, we and others have advocated for design changes 

that enable researchers to isolate global control from other mechanisms that could masquerade as 

global control (e.g., Blais & Bunge, 2010; Blais et al., 2007; Bugg, 2014; Bugg, 2017; Bugg & 

Chanani, 2011; Bugg et al., 2008; Hutchison, 2011). However, these recommendations were 

supported by strong and consistent evidence demonstrating that mechanisms such as item-

specific control and contingency learning could indeed produce the list-wide PC effect 

independent of global control (e.g., Blais & Bunge, 2010; Blais et al., 2007; Bugg et al., 2008). It 

is not yet clear if the evidence for temporal learning is similarly strong or consistent—examining 

this question is of critical importance should the temporal learning account be considered a 

serious alternative to the global control account and guide future research on the list-wide PC 

effect (e.g., design, choice of “necessary” controls, etc.). This article addresses this question, and 

thereby fills a critical gap in the literature. 

Our specific goals were twofold: first, we set out to examine the temporal learning 

account using multiple datasets in which the list-wide PC effect was observed and attributed to a 

global control mechanism. These datasets were collected in different labs using different 

experimental designs but had in common the inclusion of critical items within a list-wide PC 

paradigm. In service of this goal, we replicated the analyses from Schmidt (2013a) based on the 

Hutchison (2011) dataset, and we applied those same analyses to two other datasets (Bugg, 2014; 

Gonthier et al., 2016). Our second goal was evaluating and expanding the analyses conducted by 

Schmidt to provide a more comprehensive and rigorous test of the temporal learning account. 



Our general approach is detailed below, and then specific analyses and interpretation follow in 

three separate sections addressing: (1) Effects of RT transformations, (2) Evaluation of the 

change in the critical congruency by PC interaction, and (3) Measurement of the construct of 

temporal rhythm. We conclude with a section outlining implications for the study of list-wide PC 

effects, including recommendations for future research. 

General Approach 

We used three datasets for our analyses4. The first was Hutchison (2011), which Schmidt 

(2013a) analyzed previously. In the study by Hutchison, 226 participants5 completed 180 trials 

each in either an MC or one of two MI list contexts (single versus mixed filler items; collapsed 

for the purposes of these analyses). Critical items (N = 120 per participant) were the same across 

both lists and consisted of a set of MC items (67% congruent) and two sets of MI items (high- 

and low-contingency, both 33% congruent). The second dataset we analyzed was Experiments 1a 

and 2b combined from Bugg (2014), in which a total of 72 participants completed 320 trials 

each. She too held constant the PC of critical items (50% congruent in her study, N = 96 trials 

per participant) and compared the congruency effect between groups for whom list-wide PC 

differed (MC or MI). The third dataset was Experiments 1a and 1b combined from Gonthier et 

al. (2016), in which a total of 93 participants completed a within-groups PC design, including 

384 trials in an MC list and 384 trials in an MI list. As in Bugg, the PC of critical items was 50% 

congruent (N = 96 trials in each PC list context per participant). In all three studies, there was a 

significant congruency by PC interaction for critical items (i.e., list-wide PC effect). These three 

studies constitute a substantial portion of the evidence for the global control account. 

                                                      
4 Data from Hutchison (2011) are available upon request to the author; data from Bugg (2014) and Gonthier et al. 

(2016) are on the Open Science Framework site: https://osf.io/z2rmw and https://osf.io/b9zyv/, respectively. 
5 These are the same participants analyzed by Schmidt (2013a), who reported N = 230. This discrepancy is due to a 

reporting error in his original paper (J. Schmidt, personal communication, August 4, 2017). 

https://osf.io/z2rmw
https://osf.io/b9zyv/


As a preliminary step, RT data for each of the three datasets were treated as in Schmidt’s 

(2013a) re-analysis of Hutchison (2011). First, current and prior RTs were inverse transformed (-

1000/RT) for normalization. The inverse transformation helped normalize the RT from all three 

datasets (see Figure 2 for the q-q plots). Trials on which the current or prior RT was faster than 

300ms were eliminated. Also, trials on which the current or prior (n – 1) response was errant 

were eliminated, as were filler (non-critical, or inducer) trials. Finally, trials on which prior color 

or word matched the current color or word were excluded. Congruency and PC were dummy 

coded. For congruency, congruent trials were coded as 0 and incongruent trials were coded as 1. 

For PC, trials from MI lists were coded as 0 and trials from MC lists were coded as 1. Prior RT 

was centered with the grand mean to avoid a spurious correlation with current RT.  

Following Schmidt (2013a), we conducted linear mixed-effects modeling using the Lme4 

package (Bates, Mächler, Bolker, & Walker, 2014) in R software. For the primary analyses of 

each dataset, two models were tested. In both, subject number and color-word combinations (as 

well as experiment, for Bugg, 2014, and Gonthier et al., 2016) were included as random effect 

factors. Congruency, PC, and prior trial RT were included as fixed effect factors. First, the 

simple model tested the effects of congruency, PC, and the interaction of congruency and PC (RT 

~ congruency + PC + congruency:PC + (1|subject) + (1|color-word combinations)). The simple 

model is considered a baseline for the subsequent model. Second, the temporal learning model 

was examined where the temporal learning indices were added to the simple model (RT ~ 

congruency + PC + congruency:PC + prior RT + priorRT:congruency + (1|subject) + (1|color-

word combinations)). The main interest was the change in the congruency by PC interaction 

coefficient (β) from the simple model to the temporal learning model. Specifically, an 

elimination of the interaction coefficient would constitute strong evidence that temporal learning, 



and not global control, is responsible for the list-wide PC effect. At present, only a reduction in 

the interaction coefficient has been observed in prior work (Schmidt, 2013a). 

Replication of Schmidt’s (2013a) Primary Analyses 

As shown in the “transformed RT” column in Table 1, the simple model showed a 

significant interaction between congruency and PC for all three datasets, β = .0576 for Hutchison 

(2011), β = .099 for Bugg (2014), and β = .064 for Gonthier et al. (2016). In the temporal 

learning model, the indices of temporal learning (prior RT and the prior RT by congruency 

interaction) were significant, and the beta corresponding to the congruency by PC interaction 

decreased to β = .049 for Hutchison, β = .084 for Bugg, and β = .058 for Gonthier et al., 

reductions of 0.008, 0.015, and 0.006, respectively. Replicating Schmidt (2013a), in all datasets 

the reductions were small7, and critically, the congruency by PC interaction remained significant 

in the temporal learning model. These patterns motivated the analyses reported in the next three 

sections that provide a more comprehensive and rigorous test of the temporal learning account.  

Section 1: RT Transformations8 

 Reaction time is one of the most commonly-used metrics of cognition, yet it also has the 

notoriously challenging statistical property of strong positive skew. One common way 

researchers have handled this skew, particularly within the linear mixed-effects modeling 

approach, is to perform an RT transformation (e.g., inverse RT: -1000/RT) that makes it more 

normal. The primary evidence that Schmidt (2013a) cited as support for the temporal learning 

                                                      
6 This beta value, and the beta corresponding to this interaction within the temporal learning model, are both slightly 

different from the betas Schmidt (2013a) reported (although our values were within .002 of his). This may be due to 

minor differences in rounding or models between his SPSS analyses and our R analyses.  
7 The tables in the current manuscript include 3 decimal places so that the changes are apparent when visually 

inspecting the results. 
8 We also examined the role of RT filtering because it varies across studies. Using multiple different RT cutoffs 

yielded the same overall patterns of small and inconsistent beta weight change in the congruency by PC interaction. 



account (i.e., the decrease in the congruency by PC interaction with the addition of indices of 

temporal learning) was taken from analyses on transformed RT (as reported in the Replication of 

Schmidt’s [2013] Primary Analyses section above). Although the transformation helps normalize 

RT (including in the three present datasets, see Figure 2 for the q-q plots), researchers have 

called attention to the problems associated with this transformation (Balota, Aschenbrenner, & 

Yap, 2013, Lo & Andrews, 2015). For example, the transformation alone can change the nature 

of observed interactions, making them smaller, eliminating them, or even reversing them (Balota 

et al., 2013). Furthermore, these transformations change the nature of the variable being 

explored; what was an analysis of raw RT (response time, what researchers are typically 

formulating predictions about, as in the case of Schmidt’s (2013a) predictions) becomes an 

analysis of response rate (a different DV) once transformed to inverse RT. As Lo and Andrews 

(2015) and Robidoux (2017) pointed out, researchers should take this into account when 

justifying a transformation that is appropriate for their predictions.  

As an initial step toward exploring the potential influence of the RT transformation on the 

results reported by Schmidt (2013a) and the corresponding results from the other two datasets, 

we performed the same “replication” analyses reported above but instead used untransformed 

(raw) RT (see the “untransformed RT” column in Table 1). As in Schmidt (2013a) and the 

replication analyses performed on transformed RT, prior RT was significant for all datasets. 

However, for untransformed RT, the prior RT by congruency interaction was not significant for 

Bugg (2014), and it was in the opposite direction than expected per the temporal learning 

account for Hutchison (2011) and Gonthier et al. (2016). The temporal learning account predicts 

a negative interaction, indicating that the congruency effect is larger the faster the prior RT, but 

we found a positive interaction in both cases. Most importantly for present purposes, for two of 



the three datasets, the results for the critical congruency by PC interaction in untransformed RT 

were inconsistent with the results in transformed RT: for Hutchison (2011) and Gonthier et al. 

(2016), the beta coefficient for the interaction in untransformed RT increased (by 3.665 and 

2.769, respectively)9 from the simple model to the temporal learning model (counter to the 

temporal learning account). Only in the Bugg (2014) dataset were the results in untransformed 

RT consistent with the transformed RT analyses, in that the congruency by PC interaction beta 

for untransformed RT decreased (by 1.125) in the temporal learning model. The increase in the 

interaction beta for two of the three datasets in untransformed RT contrasts with the decreasing 

beta observed for all three in transformed RT. 

This inconsistency highlights the interpretational challenges of relying either on 

transformed RT data, or on untransformed RT data that are skewed. It is arguably more 

appropriate to utilize generalized linear mixed effects modeling (GLMM) when dealing with 

skewed RT data, as advocated by Lo and Andrews (2015). They acknowledged the challenge 

researchers face in wanting to formulate hypotheses based on untransformed RT (cf. Robidoux, 

2017) but having to use transformed RT out of mathematical necessity, and they demonstrated 

that GLMM offers a reasonable alternative. GLMM is similar to linear mixed effects modeling, 

except it allows the researcher to specify the distribution of RTs, thus avoiding the pitfalls of 

violating the assumption of normality by using positively skewed untransformed RT or relying 

on potentially misleading transformed RT.  

We adopted the GLMM approach to analyzing untransformed RTs for present purposes 

of evaluating the temporal learning account. Following Lo and Andrews (2015), we specified the 

                                                      
9 Note that these are raw RTs, so although they appear to be much larger changes than the changes observed for 

transformed RT, they are still quite small considering the raw RT scale. The one dataset (Bugg, 2014) with results 

supporting the temporal learning account for both data types actually showed the smallest change. 



RT distribution as a gamma distribution because they showed it is a good fit for untransformed 

RTs and the link function as a one-to-one, identity link (i.e., direct link from the 

operationalization to the theoretical variable). In addition, we used a random intercept model to 

keep the same random effect structure as Schmidt (2013a)10. The residuals plot of this model 

showed random scatter instead of any systematic relations, indicating that this was an appropriate 

choice of RT distribution (see Figure 3). For each of the three datasets, we contrasted the simple 

model to the temporal learning model to see if the critical congruency by PC interaction 

decreased between the two models (see Table 2). The change from the simple model to the 

temporal learning model again was quite small and inconsistent, and the interaction remained 

significant in the temporal learning model across all three datasets. For the Bugg (2014) dataset, 

the interaction beta decreased (by 1.271). However, for the Hutchison (2011) and Gonthier et al. 

(2016) datasets, the interaction beta increased (by 2.673 and 2.481, respectively). Thus, we do 

not see a coherent pattern of influence of temporal learning despite using a technique that is 

arguably superior to transforming data in handling skew. It also merits mention that the 

congruency by prior RT interaction (a signature of temporal learning; Schmidt, 2013a) was not 

significant in the GLMM analyses for the Bugg (2014) dataset, p > .05, and it was again in the 

opposite direction as predicted by the temporal learning account for Hutchison (2011) and 

Gonthier et al. (2016). Collectively, the analyses within this section converge in demonstrating 

that the inverse RT transformation itself influenced some of the critical effects that were cited as 

evidence for temporal learning (Schmidt, 2013a; 2013b). In contrast, the signature of global 

control (i.e., congruency by PC interaction) remained significant in the temporal learning model 

for all three datasets regardless of the type of analysis performed (linear mixed-effects modeling 

                                                      
10 We did attempt a full random slope and intercept model, but the GLMM model often failed to converge (when it 

did converge, results were similar to the random intercept model). 



or GLMM) or type of data examined (transformed or untransformed RT) demonstrating that 

some effects are robust to of the influence of the transformation. In all analyses hereafter, we 

apply the GLMM approach on untransformed data (which we refer to in shorthand as 

“untransformed RTs”) in concert with the linear mixed effect modeling approach on transformed 

data (“transformed RTs”). 

Section 2: Evaluating change in the critical congruency by PC interaction 

Central to addressing the question of whether the list-wide PC effect reflects temporal 

learning and not global control is the change in the beta estimate for the critical congruency by 

PC interaction from the simple model to the temporal learning model. To date, appraisal of this 

change as being sufficient to entertain an interpretation based on temporal learning has been 

founded merely on visual inspection of beta weights (i.e., presence of a numerical reduction in 

the beta from the simple to the temporal learning model in the Hutchison, 2011, dataset; 

Schmidt, 2013a). However, this general approach is potentially problematic given issues with the 

practical interpretability of betas, and the fact that visual inspection is inherently vulnerable to 

subjectivity. In this case the decrease in the beta reported by Schmidt for the congruency by PC 

interaction appeared to be small (from β = .059 in the simple model to β = .051 in the temporal 

learning model for the Hutchison, 2011, dataset) and the interaction was not eliminated in the 

temporal learning model, patterns that we replicated in the Bugg (2014) and Gonthier et al. 

(2016) datasets. A better approach is to test whether the change is statistically significant, or 

otherwise meaningful (e.g., proportion of variance explained). We recognize that there is 

possibly no perfect method for doing so because all methods are limited in some way. Thus, we 

sought converging evidence across four methods with the assumption that a consistent pattern of 

results could not be attributed to limitations of any single approach (these analyses will be 



covered in turn, but for an overall summary of each analysis and whether it provided evidence 

for or against the temporal learning account, see Table 3). The four methods were: (1) 

considering the percentage of variance explained by the congruency by PC interaction, with and 

without indices of temporal learning in the statistical model, (2) comparing model fit AIC and 

BIC statistics for the congruency by PC interaction with and without taking into account indices 

of temporal learning, (3) examining the three-way interaction of congruency by PC by prior RT, 

and (4) using analyses to statistically compare the change in R2 for the congruency by PC 

interaction with and without taking into account indices of temporal learning. 

First, we looked at the percentage of variance explained by the congruency by PC 

interaction, before and after the addition of the indices of temporal learning into the statistical 

model (see Table 4) 11. Although this measure is also vulnerable to subjective interpretation, like 

beta change, it arguably provides a more meaningful sense of how much the critical interaction 

changed with the introduction of the indices of temporal learning. A decrease in the percentage 

of variance explained by the critical interaction would support the temporal learning account. 

The percentage of variance explained by the congruency by PC interaction sometimes decreased 

(Bugg, 2014, transformed RT and Gonthier et al., 2016, transformed and untransformed RT). 

However, in other cases it increased from the simple model to the temporal learning model 

(Hutchison, 2011, transformed and untransformed RT, and Bugg, 2014, untransformed RT), 

                                                      
11 One might observe upon examination of Table 4 that the magnitude of the congruency by PC interaction, and the 

percentage of variance explained by that critical interaction, are sometimes small (although always significant). The 

reader should be reminded that the list-wide PC effect indexed by this interaction is independent of any contribution 

of other factors (contingencies, item-specific effects, etc.) due to the use of critical items; moreover, the statistical 

analyses additionally control for other factors (e.g., color or word repetitions) that may further weaken the 

magnitude of the list-wide PC effect. 



counter to the account. Thus, the changes in percentage of variance explained were inconsistent 

and at least partially incompatible with the temporal learning account.12 

Next, we took a somewhat different approach to modeling change in the congruency by 

PC interaction without indices of temporal learning (as in the simple model) and with indices of 

temporal learning (as in the temporal learning model) by using AIC and BIC model fit statistics. 

We considered model fit statistics because they are easy to interpret (reductions in AIC/BIC 

values indicate better model fit), and reward parsimony by considering the number of parameters 

in the model. One criticism of the inclusion of prior RT is that adding any extra variable that 

produces a robust main effect may decrease the betas of other main effects or interactions in the 

model. The indices of temporal learning (e.g., prior RT) may be just such variables, as they are 

strongly correlated with current RT.13 This potential issue is mitigated by using AIC/BIC values 

because adding variables penalizes the model fit. The specific approach we took was to compare 

two changes in AIC/BIC values across 4 different models (see Table 5). The first change was 

from model 1 (PC, congruency) to model 2 (PC, congruency, congruency by PC), to isolate the 

congruency by PC interaction without the influence of indices of temporal learning. The second 

change was from model 3 (PC, congruency, prior RT, prior RT by congruency) to model 4 (PC, 

congruency, prior RT, prior RT by congruency, congruency by PC) to isolate the congruency by 

PC interaction with the influence of indices of temporal learning. This approach of incrementally 

                                                      
12 A potential peculiarity of this analysis is that in several cases, the beta for the critical interaction decreased 

(including for transformed RT from Hutchison, 2011, and untransformed data from Bugg, 2014), but the percentage 

of variance explained by that interaction increased. One possible explanation for this is that the minute and 

seemingly random differences are attributable to noise in the data. The other possibility is that although the beta 

decreased, the estimate of the interaction got more precise in the temporal learning model (due to the decrease in 

standard error that occurs when the overall model is improved, as often occurs when additional factors are added to 

the model); in fact, standard errors did decrease for that interaction term from the simple model to the temporal 

learning model. 
13 The temporal learning model did have significantly higher R2 values than the simple model, as demonstrated by χ2 

tests, all ps < .05. This is consistent with the suggestion that adding variables that have a high correlation with the 

dependent measure increases model fit; however, this approach does not provide information about what happens to 

the critical congruency by PC interaction from the simple to temporal learning model. 



adding parameters and comparing model fit statistics is commonly used in other disciplines (e.g., 

see Raftery, 1995).  

Considering first transformed RT, for all three datasets, the AIC and BIC values for the 

isolated congruency by PC interaction got better (i.e., decreased) when temporal learning indices 

were included (decreased by 9 for AIC, 10 for BIC in Hutchison, 2011, and by 15 for AIC, 16 

for BIC in Bugg, 2014, and by 13 for AIC and BIC in Gonthier et al., 2016); changes of strong to 

very strong magnitude according to Raftery (1995). These findings strongly support the temporal 

learning account. However, this conclusion is tenuous because several of the analyses using 

untransformed RT showed a different pattern. That is, the AIC and BIC values for the isolated 

congruency by PC interaction got poorer (i.e., increased) or stayed the same when temporal 

learning indices were included (increased by 6 for AIC and BIC in Hutchison, 2011, and 

increased by 9 for AIC and BIC in Gonthier et al., 2016). In contrast, the Bugg (2014) 

untransformed data showed a pattern consistent with the transformed data: a better fit 

(decreasing AIC/BIC values) when temporal learning indices were in the model versus not, but 

the effect size was much smaller—magnitude of only 3 and 4, a weaker “positive” effect size 

(Raftery, 1995). These analyses indicate that the best model fit for the isolated congruency by PC 

interaction includes the temporal learning indices for all three datasets for transformed RT, but 

does not include these indices for two of the three datasets for untransformed RT.  

Next, we turned to the question of statistical significance. As discussed earlier, evidence 

for the temporal learning account comprised visual inspection of the critical interaction beta, 

which declined in the temporal learning model (Schmidt, 2013a). This approach, as well as the 

approaches taken above, still lack statistical analysis of the congruency by PC interaction as prior 

RT changes. To mitigate this issue, we began with the simplest statistical approach-- examining 



the three-way interaction (congruency by PC by prior RT; see Table 6). One possibility is that a 

three-way interaction would be found indicating that the congruency by PC interaction changed 

significantly as a function of prior RT, which seemingly would lend support to the temporal 

learning account. However, Schmidt (2013a) has contested this approach, suggesting that the 

three-way interaction is “hypothesis irrelevant” (p. e82320). At the same time, though, there is 

precedence for examining the three-way interaction in other time-based accounts, such as the 

Adaptation to the Statistics of the Environment (ASE) theory (Kinoshita, Mozer, & Forster, 

2011; cf. Kinoshita, Forster, & Mozer, 2008; Mozer, Kinoshita & Davis, 2004). The ASE theory 

attributes PC effects in masked priming to a response initiation mechanism that adapts to the 

difficulty of recent trials (as reflected in prior RT). Drawing on prior research demonstrating that 

the conditions that produce a PC effect are those where the RTs on easy (i.e., congruent) items 

are more sensitive to the difficulty of the recent trials (prior RT) than the RTs on hard (i.e., 

incongruent) items (i.e., prior RT by congruency interaction), Kinoshita et al. (2011) predicted 

and found a three-way congruency by PC by prior RT interaction. Consistent with the 

assumptions of the ASE theory, the nature of the three-way interaction was such that the prior 

RT by PC interaction was observed for congruent but not incongruent trials. Because the three-

way interaction is clearly not hypothesis-irrelevant in other timing-based accounts, and it is a 

simple way to test whether the PC by congruency interaction changes when prior RT is added to 

the model, examination of the three-way interaction seemed valuable in the present context. 

With more than 15,000 observations in the Hutchison (2011) dataset, 5,000 observations 

in the Bugg (2014) dataset, and 14,000 observations in the Gonthier et al. (2016) dataset, there 

should be sufficient power to detect a three-way interaction if it exists. The three-way interaction 

was significant for transformed RT only in the Gonthier et al. (2016) dataset but was significant 



in all three datasets for untransformed RT. 14 The fact that the three-way interaction is sometimes 

significant and sometimes not suggests that any effect of prior RT on the list-wide PC effect is 

inconsistent and/or subtle. However, given that Schmidt (2013a) took issue with this approach, 

we explored one additional method of statistically evaluating the predictions from the temporal 

learning account to seek converging evidence for this conclusion.   

Last, we conducted analyses to again examine comparisons in the change in R2 from one 

model to another; however, now we used 95% confidence intervals to determine whether the 

change was statistically significant (see Table 7). Like the AIC/BIC analyses above, we 

constructed models designed to isolate the critical interaction without the influence of temporal 

learning indices [change in R2 from model 1 (PC, congruency) to model 2 (PC, congruency, 

congruency × PC)] and to isolate the congruency by PC interaction with the influence of 

temporal learning indices [change in R2 from model 3 (PC, congruency, prior RT, prior RT by 

congruency) to model 4 (PC, congruency, prior RT, prior RT by congruency, congruency by 

PC)]15. Then we drew confidence intervals around the two changes in R2 by using a simulation 

approach in the r2glmm package in R (Jaeger, 2016) to examine whether the change in the 

isolated congruency by PC interaction was statistically significant. This is a conservative 

approach whereby non-overlapping CIs (in Table 7, darker gray fill) indicate that the difference 

between the two changes in R2 is statistically significant. When the change in R2 was smaller for 

                                                      
14 Although Schmidt (2013a) has deemed the three-way interaction hypothesis-irrelevant and thus has not made any 

predictions about the nature of this interaction, it is notable that three of the four significant three-way interactions 

observed here reflected a prior RT by PC interaction for incongruent trials, but not congruent trials (Gonthier et al., 

2016 transformed and untransformed; Hutchison, 2011, untransformed, although in this case the effect on 

incongruent trials was a trend [p < .10]). This differs from the three-way pattern predicted by and resulting from 

time-based processes a la the ASE account, which shows a prior RT by congruency interaction in congruent, but not 

incongruent trials. For the only other significant three-way (Bugg, 2014), there was neither an effect on congruent or 

incongruent trials. 
15 R2 difference tests and chi-squared likelihood ratio tests both indicated that models including the congruency by 

PC interaction (models 2 and 4) fit the data better than models without the congruency by PC interaction (models 1 

and 3, respectively). This is an indication that the theoretically meaningful congruency by PC interaction, regardless 

of whether it reflects control or other mechanisms, is an important part of the statistical model of the data. 



the model containing temporal learning indices, we interpreted such a result as being consistent 

with the temporal learning account.  

 As shown in Table 7, there were two cases in which confidence intervals were 

overlapping (Hutchison, 2011, transformed RT, and Bugg, 2014, untransformed RT), indicating 

that adding the temporal learning indices did not significantly change the critical congruency by 

PC interaction. In all other analyses, (Hutchison, 2011, untransformed RT; Bugg, 2014, 

transformed RT; and Gonthier et al., 2016, transformed and untransformed RT), the non-

overlapping confidence intervals suggested that the change in the congruency by PC interaction 

from a model without to a model with the indices of temporal learning was statistically 

significant. However, these comparisons indicated inconsistent effects of temporal learning on 

the critical interaction. Specifically, for the Bugg (2014) and Gonthier et al. (2016) transformed 

RT analyses, the isolated congruency by PC interaction was smaller with the addition of 

temporal learning indices, consistent with what the temporal learning account might predict. The 

opposite was true for Hutchison (2011) and Gonthier et al. (2016) using untransformed RT, in 

which the isolated congruency by PC interaction was larger with the addition of temporal 

learning indices. These findings indicate that the changes in the critical interaction with the 

addition of measures purported to reflect temporal learning are small, and only transformed RT 

analyses provide (albeit inconsistent) statistical support for the temporal learning model. 

To summarize this section, multiple approaches to evaluating the meaningfulness and/or 

significance of the change in the critical congruency by PC interaction pointed to small and 

inconsistent effects of temporal learning (see Table 3 for summary of all analyses and evidence 

for/against the temporal learning account). Much of the evidence that was supportive of the 

temporal learning account occurred in only one or two of the datasets at a time, and usually in 



transformed RT. However, there were cases in transformed RT, in addition to untransformed RT, 

where results ran counter to the predictions of the temporal learning account. Collectively, this 

fuller set of analyses provides at best sporadic support for the temporal learning account of the 

list-wide PC effect. The inconsistency of the results suggests that we may be capturing noise and 

random fluctuations in the models rather than true change in the congruency by PC interaction 

attributable to temporal learning. 

Section 3: Measuring temporal rhythm 

 A key assumption of the temporal learning account is that the temporal rhythm of MC 

and MI lists can be operationalized as prior RT, that is, the RT on the immediately preceding 

trial (n – 1) centered to the grand mean of all RTs (Schmidt, 2013a). However, Schmidt 

ultimately concluded that “[p]revious [prior] RT is simply a very poor measure of temporal 

learning that will only explain a small fraction of the variance due to temporal learning 

processes” (p. e82320). When discussing the fact that including prior RT reduced but did not 

eliminate the list-wide PC effect, he reminded the reader that prior RT may be a “very weak 

proxy of temporal expectancy” and specifically noted that “temporal expectancies are likely 

based on more than just the previous trial” and “noisiness in temporal expectancies will further 

reduce the explanatory power of previous RT” (pp. e32320-e32321). The implication is that a 

better measure of temporal learning may provide stronger support for the temporal learning 

account—that is, such a measure may fully eliminate the congruency by PC interaction when 

added to the model. To evaluate this possibility, we developed an alternative way of 

operationalizing temporal learning based on multiple prior RTs centered to the grand mean rather 

than a single prior RT. We posited that the average of three prior RTs (Mthree prior RTs)
16, an 

                                                      
16 We created this measure based on three trials back in part because of a suggestion in Schmidt (2013a): “previous 

response time can be regarded only as a weak proxy of temporal expectancy (e.g., participants inevitably account for 



“extended” measure of temporal learning, would be less noisy and therefore a potentially better 

measure than prior RT (cf. deBettencourt, Norman, & Turk-Browne, 2017, who found the 

average of three prior RTs to be a stable and predictive measure of performance in a different 

paradigm). This accords with Schmidt’s (2013b) sentiment that temporal expectancy likely takes 

into account more than just the previous trial.  

First, we asked the question of whether an extended temporal learning model that utilizes 

Mthree prior RTs provides a better model fit than the original temporal learning model that was based 

on a single prior RT. Because these models are non-nested, the likelihood ratio test was not 

appropriate. Instead we statistically compared the extended and original temporal learning 

models based on simulations using the r2glmm package (Jaeger, 2016) in R. To accommodate 

the new operationalization, we had to filter trials on which any of the three prior trials had RTs 

less than 300ms or errant responses, eliminating on average, 10% of trials from each dataset. In 

all cases (for transformed RT and untransformed RT in all three datasets), this analysis showed 

that the R2 for the extended model was greater than that of the original temporal learning model 

(see Table 8), suggesting that the extended model has a better model fit compared to the original 

model.  

Having demonstrated that a model including the extended measure of temporal learning 

provides a better fit of the data than the original temporal learning model, we then examined 

whether the list-wide PC effect would be eliminated or (numerically) more strongly reduced 

when the extended measure of temporal learning is added to the simple model. To address this 

                                                      
more trials than just the most recent one)”, p.619. However, recognizing that three trials may seem arbitrary and to 

be comprehensive, we also explored up to five trials back (i.e., two, four, and five in addition to the three reported 

here). The results were somewhat variable when incorporating more RTs back, but the overall conclusions did not 

differ from the analysis using three trials back (and in every case, the congruency by PC interaction remained 

significant after adding the prior RT measure(s)). Thus, we report three trials back, as a balance between parsimony 

and reliability. 



question, we again replicated Schmidt’s (2013a) primary analyses albeit replacing the original 

indices of temporal learning (prior RT and the prior RT by congruency interaction) with the 

extended indices (Mthree prior RTs and the Mthree prior RTs by congruency interaction) and again 

adjusting the filtering to accommodate the new operationalization (see Table 9). 

 For transformed RT, the beta for the critical congruency by PC interaction decreased 

from the simple model to the extended temporal learning model in all three datasets (decreases of 

0.001 for Hutchison, 2011, 0.023 for Bugg, 2014, and 0.011 for Gonthier et al., 2016), as 

expected per a temporal learning account. These magnitudes were nominally greater than the 

decreases observed from the simple model to the original temporal learning model for the Bugg 

(2014) and Gonthier et al. (2016) datasets.17 Most importantly, however, for all three datasets the 

beta changes were again relatively small and the congruency by PC interaction remained highly 

significant in the extended temporal learning model. For untransformed RT, the results were 

mixed. For Bugg (2014) the critical interaction beta decreased by 1.974 from the simple to the 

extended temporal learning model but for the Hutchison (2011) and Gonthier et al. (2016) 

datasets, the beta increased (magnitudes of 0.081 and 3.344, respectively). These patterns are 

similar to those we observed when comparing the simple model to the original temporal learning 

model (see Section 1).18 Most critically, in no case was the critical interaction eliminated, 

including for the Bugg (2014) dataset that provided the most consistent evidence (across 

transformed and untransformed RT) in favor of the extended temporal learning model. 

In the extended temporal learning operationalization presented above, the influence of 

prior trials was equally weighted. It is possible, however, that a better operationalization of 

temporal learning weights the influence of preceding trials in proportion to their distance from 

                                                      
17 This was true regardless of whether the original filtering or the extended filtering was applied to the model. 
18 Again, this was true regardless of whether the original filtering or the extended filtering was applied to the model. 



the current trial (cf. Mozer, Kinoshita, & Shettel, 2007, for a sophisticated computational model 

of the exponentially-decaying influence of prior RT on several aspects of cognitive 

performance).19 To address this possibility, we examined a weighted extended RT composite to 

approximate an exponentially decaying function of the influence of prior RTs, with the first trial 

back contributing the most weight (60%), the second trial back contributing less weight (30%), 

and the third trial back contributing the least weight (10%). As shown in Table 8, this weighted 

extended temporal learning model also provided a better model fit to the data than the original 

temporal learning model (Schmidt, 2013a) though it fit the data less well than the (unweighted) 

extended temporal learning model presented above (in terms of R2, see Table 9). Of most 

importance, the results from this weighted extended temporal learning model were similar to the 

extended temporal learning model: for transformed RT, the beta for the critical congruency by 

PC interaction decreased from the simple model to the weighted extended temporal learning 

model in all three datasets (decreases of 0.014 for Hutchison, 2011, 0.020 for Bugg, 2014, and 

0.010 for Gonthier et al., 2016; as predicted by a temporal learning account, see Table 9). For 

untransformed RT, consistent with the extended temporal learning model analyses, the beta for 

the critical congruency by PC interaction decreased from the simple model to the weighted 

extended temporal learning model for only Bugg (2014), a decrease of 1.465, whereas it 

increased for Hutchison (2011) and Gonthier et al. (2016), by 2.198 and 3.177, respectively. In 

sum, in all three datasets and for both transformed and untransformed RT analyses, the beta 

changes were again relatively small and critically, the congruency by PC interaction remained 

highly significant even after the weighted extended temporal learning measure was added to the 

analyses. 

                                                      
19 We are grateful to Sachiko Kinoshita and James Schmidt for this suggestion. 



In conclusion, it may be true that prior RT is not an optimal measure of temporal 

learning; however, using evidentially more robust measures of temporal learning (simple or 

weighted mean of three prior RTs [see also Footnote 16] rather than one prior RT) did not yield 

results bolstering the temporal learning account.20 That is, the congruency x PC interaction still 

only decreased slightly (and actually increased in several cases) and was always highly 

significant in the extended and weighted temporal learning models. Therefore, we conclude that 

even with a better operationalization of temporal learning, the evidence for temporal learning 

remains weak and inconsistent. It is of course still possible that a superior measure of temporal 

learning exists that might provide solid evidence for the temporal learning account. For example, 

one might argue that we simply did not get the weights “right” in the weighted temporal learning 

model. However, considering the collective set of analyses we performed (extended temporal 

learning measure, weighted extended temporal learning measure, and analyses referenced in 

Footnote 16), we in fact evaluated evidence for temporal learning for first trial weights ranging 

from 20% to 100%. For this reason, and because the temporal learning account does not make a 

precise prediction about the weights, another viable candidate measure is not obvious.  It is also 

noteworthy that the technique of using just one prior RT (n – 1) as an index of time-based 

learning processes has been used in the context of the ASE theory to examine the locus of PC 

effects in other domains (e.g., Kinoshita et al., 2011), and one prior RT has proven not to be too 

noisy or inaccurate to observe predicted interaction effects of prior RT on a PC effect in that 

literature. All things considered, the clearest interpretation is that prior RT (or a better measure 

                                                      
20 For comprehensiveness, we also examined the efficacy of the extended operationalization of temporal learning 

(unweighted, since it explained more variance than the weighted version) by conducting all analyses reported in 

Section 2 after replacing prior RT with the mean of the three prior RTs. Results were largely consistent with those 

obtained using the original temporal learning model, and like the analyses we report in full in this section, did not 

provide further support for the temporal learning account. 



of temporal learning) does not eliminate the congruency by PC interaction in the Stroop task 

because temporal learning fails to explain the list-wide PC effect or has only a very small 

influence on this effect.  

General Discussion 

This article aimed to fill an important gap in the literature by critically evaluating the 

temporal learning account of the list-wide PC effect (Schmidt, 2013a; 2013b). To the extent that 

evidence for temporal learning is strong and consistent, this account could potentially supplant 

the global control account. Analyses were performed on three published datasets in which list-

wide PC effects were observed on critical trials, consistent with the global control account 

(Bugg, 2014; Hutchison, 2011; Gonthier et al., 2016). These analyses included replications of 

those originally reported by Schmidt (2013a) for the Hutchison (2011) dataset, and multiple 

additional analyses for purposes of providing a rigorous and comprehensive test of the temporal 

learning account across all three datasets (summary in Table 3). We found that the evidence for 

the temporal learning account was neither strong nor consistent. Moreover, the list-wide PC 

effect remained highly significant in all attempts to control for temporal learning, including with 

use of better measures than one prior RT. Therefore, we do not currently consider the temporal 

learning account to be a robust competitor to the global control account of the list-wide PC 

effect. The most serious limitations of the temporal learning account that our analyses uncovered 

are as follows: 

a) Conclusions regarding the critical signature of the list-wide PC effect, the congruency by 

PC interaction, were based solely on modeling inverse-transformed RT data from 

Hutchison (2011). While this transformation normalizes RT, others have demonstrated it is 

potentially problematic (Balota et al., 2015; Lo & Andrews, 2015). In line with these 



concerns, across three datasets (Bugg, 2014; Gonthier et al., 2016; Hutchison, 2011), we 

found disparate results when untransformed RT (based almost exclusively on the GLMM 

approach) was used as an alternative to the inverse transformation. As Table 3 illustrates, 

analyses of untransformed RT using GLMM were clearly less consistent with the temporal 

learning account than analyses of transformed RT; however, analyses of transformed RT 

also yielded inconsistent results;21 

b) The change in the congruency by PC interaction, when prior RT was added to the (simple) 

model as an index of temporal learning, was small and inconsistent across datasets and data 

analysis types (transformed or untransformed RT). For some datasets the interaction effect 

decreased, consistent with the temporal learning account, but in other cases the effect did 

not change, or even increased. Importantly, there was not a single instance in which the 

congruency by PC interaction was eliminated when indices of temporal learning were 

added; 

c) The temporal learning account of the list-wide PC effect was in part based on observing a 

change in the interaction (beta) when indices of temporal learning were added to the simple 

model (Schmidt, 2013a). There was not an objective assessment of the meaningfulness 

and/or statistical significance of the change in the congruency by PC interaction. We 

tackled this concern via multiple approaches as described in Section 2. Across analyses the 

change was neither consistently significant nor consistently in the direction predicted by 

the temporal learning account; and 

                                                      
21 Furthermore, although not the primary focus of the present analyses because this two-way interaction alone does 

not inform theoretical mechanisms underlying the list-wide PC effect, it was also the case that the prior RT by 

congruency interaction was either non-significant or in the opposite direction as predicted by a temporal learning 

account when examined using untransformed RT GLMM analyses. 



d) The temporal learning account was developed based on the assumption that temporal 

rhythm could be operationalized as prior RT, which Schmidt (2013a) ultimately deemed a 

poor and noisy measure that limited the ability to observe an elimination of the list-wide 

PC effect once prior RT was added to the model. We developed two new (extended) 

measures of temporal learning based on a simple or weighted average of three prior RTs 

that we anticipated might be better and less noisy (cf. Schmidt, 2013b). Although the 

extended and weighted extended temporal learning models fit the data better than the 

original temporal learning model, critically, there was still not a single instance in which 

the congruency by PC interaction was eliminated when the extended or weighted extended 

indices of temporal learning were added to the simple model. 

 

These observations are not intended to suggest that we found no evidence in support of 

the temporal learning account. As is apparent from Table 3, some results were consistent with 

the account. For instance, considering transformed RT, the beta for the congruency by PC 

interaction did decrease after accounting for temporal learning indices and the AIC/BIC statistics 

supported the temporal learning account in all three datasets, suggesting that temporal learning 

contributes to the list-wide PC effect. However, the changes in the critical interaction were small 

and not always statistically significant. Consequently, we cannot reject the possibility that even 

in these cases the change in the critical interaction may be capturing noise and random 

fluctuations in the model rather than true signal. It is therefore our conclusion that the global 

control account of the list-wide PC effect is not currently undermined by the temporal learning 

account.  

Moving Forward: Modeling Approaches 



We have criticized the temporal learning account of the list-wide PC effect on empirical 

and conceptual grounds. However, that is not to suggest that temporal learning or other timing-

related processes are wholly irrelevant to performance in a list-wide PC paradigm but rather to 

emphasize that there is very clearly a strong list-wide PC effect that survived systematic attempts 

to control for such processes. Indeed, what was remarkably consistent amidst a great deal of 

inconsistency was the list-wide PC effect. Across all three datasets, both data types (transformed 

and untransformed), and all analyses, the congruency by PC interaction was highly significant 

and never eliminated after controlling for temporal learning, consistent with the global control 

account.  

Our criticisms of the temporal learning account by no means suggest that the baby should 

be thrown out with the bath water. We recognize that future research may identify a time-based 

account that does in fact undermine the global control account of the list-wide PC effect 

provided that the following key patterns can be demonstrated: 1) consistent evidence for an 

effect of the time-based process on the congruency effect (i.e., significant main effect of prior RT 

[or another measure] on current RT and significant prior RT by congruency interaction that are 

in the direction anticipated by the account), 2) consistent evidence that the change in the critical 

congruency by PC interaction (from the simple to temporal learning model) is statistically 

significant, and 3) consistent evidence for a reduction in the beta associated with the list-wide PC 

effect (i.e., congruency by PC interaction) to a non-significant level (i.e., no list-wide PC effect) 

when indices of time-based processes are added to the model. Were only the first and second 

criteria supported, this would imply that the time-based process does make a significant 

contribution to the list-wide PC effect, but the list-wide PC effect nevertheless survives after 

controlling for that process. Without additionally demonstrating support for the third criterion, it 



cannot be concluded that the global control account is invalid. Evidence supporting all three 

criteria would constitute strong motivation for researchers to change the list-wide PC design or 

routine analytic strategies to potentially enable examination of global control independent of 

temporal learning. 

One might ask whether the ASE theory (e.g., Kinoshita et al., 2011; cf. Kinoshita et al., 

2008; Mozer et al., 2004) represents a time-based account of the list-wide PC effect that meets 

these criteria. As described earlier, the ASE also uses prior trial RT to represent its time-based 

process, however, prior RT is a proxy for the difficulty of recent trials. The assumption is that 

response initiation is adapted to difficulty, which can vary across list contexts. Given that we 

modeled prior RT to test the temporal learning account (Schmidt, 2013a; 2013b) but did not find 

evidence suggesting a strong and consistent contribution of prior RT to the list-wide PC effect, 

one might be inclined to conclude that the current results may also be taken as evidence against 

the ASE theory. However, we are reluctant to draw this conclusion because the ASE theory is an 

account of PC effects in masked priming. That is, the ASE theory was proposed as an alternative 

to an extant account that was based on the utility of the prime, which was presumed to be higher 

in a mostly related (congruent) context. As Kinoshita et al. (2011) pointed out, it is unclear how 

prime utility could affect performance in a masked priming paradigm. The ASE theory is not an 

account of PC effects in unmasked priming, where a prime utility explanation is perfectly 

plausible. The Stroop task is more similar to unmasked than masked priming in that the word and 

color (or picture) are fully visible on each trial and therefore the congruency of a given trial can 

be registered by participants. As such, it is unclear whether the ASE theory would attempt to 

explain the list-wide PC effect. 



Future attempts to examine potential time-based accounts of the list-wide PC effect may 

also benefit from the following observation gleaned from the present study. An account that is 

based largely on a single approach (e.g., examining change in interaction beta from simple to 

temporal learning model) to modeling data from a single study may lead to premature 

conclusions. If one examines Table 3, it is apparent that a more comprehensive and rigorous 

approach to analyzing the transformed data, or analysis of the untransformed data, of Hutchison 

(2011) would not have yielded consistent support for the temporal learning account of the list-

wide PC effect. In striking contrast, if a researcher had analyzed only transformed data from 

Gonthier et al. (2016), s/he would have found consistent support for the temporal learning 

account.22 Yet, our analyses of all three datasets indicate that this conclusion too would have 

been weakly informed. With respect to future modeling attempts aimed at examining 

contributions of time-based processes to the congruency by PC interaction, we concur with 

Balota et al. (2014) in suggesting that “…at the very least, one needs to explore both the raw data 

and the transformed data when making inferences about how variables combine to influence 

performance.” (p. 1570).  

Moving Forward: Experimental Approaches 

 One might criticize the current study by arguing that we have over-emphasized the 

modeling results and ignored relevant experimental work on the temporal learning account. 

However, we would argue that we have not misrepresented the quality of the current evidence 

                                                      
22 In contrast to Bugg (2014) and Hutchison (2011), Gonthier et al. (2016) used a picture-word Stroop task and a 

within-subject manipulation of list-wide PC. There is no a priori reason why picture-word Stroop should be more 

subject to temporal learning influences, but temporal learning may have a more robust effect in a within-subjects 

design wherein participants perform both MC and MI lists and are relatively faster (slower) in one list. If future 

research confirms this speculation, then for researchers who are interested in targeting global modulations of control 

with use of the list-wide PC manipulation, a clear suggestion would be to avoid within-subject PC manipulations. 



favoring the temporal learning account by taking this approach because there are serious 

limitations with extant experimental work testing the temporal learning account (as detailed 

below). Furthermore, considering all the relevant experimental evidence and not solely those 

studies designed to test the temporal learning account, there are findings that are accommodated 

by the global control account but are not readily explained by temporal learning processes. For 

example, Entel, Tzelgov, and Bereby-Meyer (2014) and Bugg, Diede, Cohen-Shikora, and 

Selmeczy (2015) showed list-wide PC effects for lists equated in PC but differing in instructions 

provided in advance of the lists. In this case, global control worked to configure attention in a 

context-sensitive manner; in contrast, it is unclear how temporal rhythms would explain this 

pattern because all item types were equated across conditions (i.e., there were no biased trials to 

set differential rhythms across lists). Additionally, Wendt et al. (2012) found that the global 

likelihood of conflict on flanker trials in MC and MI lists affected performance on interspersed 

visual search trials (comprising different stimuli and responses). The key pattern supporting a 

global control account was that search times were longer when the search target appeared in a 

position corresponding to the flanker stimuli relative to the target stimulus, and this slowing was 

exacerbated in the MI list where participants were presumably engaging a global control setting 

involving the perceptual filtering of (mostly conflicting) flanker stimuli. For the temporal 

learning account to explain this pattern, it would have to assume rhythms are task-general (i.e., 

individuals automatically apply the rhythm from one task to another regardless of the degree of 

stimulus/response overlap) and can reflect very different mean RTs, in addition to specifying 

which task is dominant in establishing the rhythms within a given list, which it presently does 

not do. As a final example, Hutchison (2011) found modulations of the list-wide PC effect as a 

function of factors related to control (i.e., working memory capacity and PC of the specific items 



within the list) and not speed, that are accommodated by a global control account (see Hutchison, 

2011, p. 858), but are not predicted or well explained by a temporal learning account.  

Regarding the extant experimental work that was designed to directly test the temporal 

learning account, two approaches have been pursued: (1) manipulating timing in tasks without 

conflict or control demands to examine whether an effect analogous to a list-wide PC effect is 

observed (Schmidt, 2014), and (2) controlling the temporal rhythms across MC and MI contexts 

and tracking changes in the PC effect (Schmidt, 2017). Adopting the first approach, Schmidt 

(2014) manipulated the proportion of high- versus low-contrast trials between lists in a letter 

identification task and found a pattern similar to the list-wide PC effect: letters in the high-

contrast condition (faster, analogous to an MC condition) produced larger contrast effects than 

did letters in the low-contrast condition (slower, analogous to an MI condition). Based on these 

patterns, Schmidt (2014) concluded that a “conflict adaptation account is entirely ruled out.” 

(p.375). However, we would argue that while such patterns provide potential evidence for a role 

of temporal learning in producing effects that manifest similarly to control phenomena, just 

because a pattern of data looks like another pattern, it does not mean that the underlying 

mechanisms are necessarily the same. In other words, a global control mechanism may operate in 

a task that includes conflict such as the Stroop task but not in a conflict-free task (indeed, there 

would be no input to guide its operation).  

Adopting the second approach, Schmidt (2017) used a prime-probe direction task 

(participants press a button corresponding to the direction of the probe which can match 

[congruent] or mismatch [incongruent] the prime). Temporal rhythm was controlled by having 

participants withhold responses to probes for a set time on select trials to equate the timing of 

congruent and incongruent trials. When participants were subjected to a very short wait 



condition, a congruency effect was observed, and the typical list-wide PC effect was found. In 

contrast, when participants were subjected to a longer wait condition, there was not a congruency 

effect (i.e., congruent and incongruent response times were equated), and the list-wide PC effect 

was eliminated. As Schmidt (2017) acknowledged, while this finding supports the temporal 

learning account, there are also several limitations. One is that theories about global control were 

developed based on performance in the Stroop task (i.e., list-wide PC effects on critical items) 

and not the prime-probe task he employed (and this criticism applies equally to the evidence 

from Wendt et al., 2012, reviewed above). Second, introducing a long wait time may have 

hindered conflict detection and/or the application of cognitive control. To this point, there was no 

congruency effect in the longer wait condition that eliminated the list-wide PC effect. This may 

suggest that the typical signals of conflict that inform global control are minimal or absent in that 

condition. Still, we see experiments like this as a strong step in the right direction and believe 

future experiments aimed at examining the role of temporal learning in the list-wide PC effect in 

Stroop tasks will be theoretically informative.  

One clear advantage of experimentation is that it offers a straightforward means of 

examining predictions of the temporal learning account without having to rely on complicated 

models, which themselves suffer from the limitations discussed herein (interpretability, reliance 

on transformations that may change the nature of what is being studied [DV] and interactions of 

interest, assessing statistical significance of changes). A second advantage is that 

experimentation circumvents problems pertaining to the construct validity of temporal learning 

indices. That is, even if future research were to obtain the modeling evidence detailed above that 

would provide strong statistical support for the temporal learning account, it would still be 

vulnerable to the criticism that prior RT (or an alternative measure) may be reflecting some 



process other than temporal learning that could produce a similar set of effects. As noted earlier, 

Kinoshita et al. (2011) interpreted prior RT as an indicator of prior trial difficulty. Without 

independent validation of these constructs, it seems that an account of prior RT (or another 

measure) based on temporal learning is on no stronger footing than one based on some other 

process, including learning-related (e.g., Abrahamse, Braem, Notebaert, & Verguts, 2016) or 

other (e.g., cautiousness; extent of word processing) processes that may inform or coincide with 

cognitive control.  

For these reasons, continued experimentation seems fruitful for seeking converging 

evidence and potentially characterizing, as has been done in the item-specific PC literature (see 

e.g., Bugg, Jacoby, & Chanani, 2011; Bugg, 2015), conditions under which mechanisms other 

than control such as temporal learning may contribute to the list-wide PC effect. We currently 

have several experiments in progress to further assess the validity of the temporal learning 

account, specifically addressing some of the concerns raised above with respect to prior 

experimental work: We are using the Stroop task and controlling temporal rhythm to look for 

changes in indices of global control. 

Conclusion 

The contingency account (Schmidt & Besner, 2008) and item-specific control account 

(Blais et al., 2007; Bugg et al., 2008) were influential in spurring developments in the cognitive 

control literature with respect to experimental design (e.g., controlling contingencies or item-

specific PC) and theory (e.g., regarding mechanisms that underlie list-wide PC effects). These 

developments were grounded in firm evidence demonstrating that contingency and/or item-

specific control could produce the list-wide PC pattern independent of any contribution of global 

control. The current study considered whether the temporal learning account may be similarly 



influential, potentially affirming Schmidt’s (2013a) conclusion that the critical contribution of 

his study was “the cautionary demonstration that the list-level PC effect cannot be taken as 

strong evidence for conflict adaptation without further controls.” (p. e82320). We applied 

multiple statistical methods to the transformed and untransformed data from three previously 

published studies that had yielded a list-wide PC effect and found that a) the statistical evidence 

for the temporal learning account was neither strong nor consistent, and b) there was a highly 

significant list-wide PC effect that survived multiple, systematic attempts to control for temporal 

learning. Therefore, we conclude that the temporal learning account is not currently a robust 

competitor to the global control account of the list-wide PC effect. Accordingly, we cannot 

justify recommending that researchers adopt additional controls to account for temporal learning 

when investigating list-wide PC effects. Examination of the list-wide PC effect for critical items 

(as is currently the gold standard) effectively controls for those mechanisms that clearly have 

been demonstrated to be viable confounds if left uncontrolled (i.e., contingency learning and 

item-specific control).  
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Table 1 

Analyses of Congruency × PC interaction for the Simple Model and Temporal Learning Model, 

Using Transformed and Untransformed RT, in the Hutchison (2011), Bugg (2014), and Gonthier 

et al. (2016) Datasets 

Note. Est. = estimate of regression coefficient; SE = standard error; t = t-value; p = significance. 

 
 Transformed RT, LME  Untransformed RT, LME 

Variable Est. SE t p  Est. SE t p 

H
u

tc
h

is
o

n
 (

2
0
1

1
) 

Simple 

model 

Intercept -1.663 0.027 -61.666 <.001   633.058 15.500 40.843 <.001 

Congruency 0.237 0.024 9.935 <.001   112.683 15.029 7.498 <.001 

PC -0.006 0.028 -0.215 .830   -4.087 13.114 -0.312 .756 

Congruency × 

PC 
0.057 0.009 6.202 <.001   25.171 5.217 4.825 <.001 

Temporal 

Learning 

model 

Intercept -1.673 0.025 -66.796 <.001   630.349 14.820 42.534 <.001 

Congruency 0.247 0.023 10.698 <.001   115.300 14.785 7.798 <.001 

PC 0.011 0.024 0.485 .628   0.597 11.555 0.052 .959 

Prior RT 0.193 0.008 23.897 <.001   0.113 0.008 13.521 <.001 

Congruency × 

PC 
0.049 0.009 5.345 <.001   28.836 5.215 5.530 <.001 

Congruency × 

Prior RT 
-0.101 0.012 -8.308 <.001   0.049 0.013 3.655 <.001 

B
u
g
g
 (

2
0
1
4
) 

1
a 

&
 2

b
 Simple 

model 

Intercept -1.698 0.035 -48.545 <.001   610.789 15.827 38.592 <.001 

Congruency 0.197 0.025 7.995 <.001   83.171 12.766 6.515 <.001 

PC -0.052 0.041 -1.269 .209   -19.068 16.948 -1.125 .264 

Congruency × 

PC 
0.099 0.013 7.458 <.001   38.258 5.951 6.429 <.001 

Temporal 

Learning 

model 

Intercept -1.709 0.032 -53.394 <.001   607.900 14.906 40.783 <.001 

Congruency 0.205 0.025 8.239 <.001   83.885 12.961 6.472 <.001 

PC -0.031 0.036 -0.860 .393   -13.476 14.936 -0.902 .370 

Prior RT 0.208 0.015 14.234 <.001   0.135 0.015 9.012 <.001 

Congruency × 

PC 
0.084 0.013 6.318 <.001   37.133 5.957 6.233 <.001 

Congruency × 

Prior RT 
-0.153 0.020 -7.827 <.001   -0.024 0.021 -1.167 .243 

G
o

n
th

ie
r 

et
 a

l.
 (

2
0

1
6
) 

1
a 

&
 1

b
 

Simple 

model 

Intercept -1.488 0.026 -58.121 <.001  699.477 15.539 45.013 <.001 

Congruency 0.154 0.021 7.337 <.001   87.699 13.525 6.484 <.001 

PC -0.039 0.005 -7.444 <.001   -18.784 3.378 -5.561 <.001 

Congruency × 

PC 
0.064 0.008 8.369 <.001   27.986 4.913 5.696 <.001 

Temporal 

Learning 

model 

Intercept -1.496 0.023 -64.046 <.001   696.609 14.729 47.295 <.001 

Congruency 0.158 0.021 7.583 <.001   87.085 13.499 6.451 <.001 

PC -0.023 0.005 -4.335 <.001   -13.551 3.374 -4.017 <.001 

Prior RT 0.179 0.009 20.515 <.001   0.115 0.010 11.402 <.001 

Congruency × 

PC 
0.058 0.008 7.560 <.001   30.755 4.901 6.266 <.001 

 
Congruency × 

Prior RT 
-0.080 0.011 -6.934 <.001   0.045 0.014 3.248 .001 



Table 2 

Analyses of Congruency × PC interaction for the Simple Model and Temporal Learning Model, 

Untransformed RT using GLMM, in the Hutchison (2011), Bugg (2014), and Gonthier et al. 

(2016) Datasets 

Note. Est. = estimate of regression coefficient; SE = standard error; t = t-value; p = significance. 

 

 

 
 

Untransformed RT, GLMM  

(gamma distribution, identity link) 

Variable Est. SE t p 

H
u

tc
h

is
o

n
 (

2
0
1

1
) 

Simple 

model 

Intercept 672.855 2.840 236.934 <.001 

Congruency 84.325 7.299 11.552 <.001 

PC -1.727 2.532 -0.682 .495 

Congruency × PC 22.316 2.540 8.786 <.001 

Temporal 

Learning 

model 

Intercept 670.270 1.999 335.283 <.001 

Congruency 87.861 1.953 44.997 <.001 

PC 3.213 2.613 1.230 .219 

Prior RT 0.115 0.008 14.876 <.001 

Congruency × PC 24.989 2.345 10.657 <.001 

Congruency × Prior 

RT 
0.040 0.013 3.082 0.002 

B
u
g
g
 (

2
0
1
4
) 

1
a 

&
 2

b
 Simple 

model 

Intercept 633.611 7.218 87.788 <.001 

Congruency 74.710 15.707 4.756 <.001 

PC -18.932 5.976 -3.168 .002 

Congruency × PC 39.090 4.909 7.963 <.001 

Temporal 

Learning 

model 

Intercept 630.142 7.162 87.984 <.001 

Congruency 74.228 5.965 12.443 <.001 

PC -13.380 7.292 -1.835 .067 

Prior RT 0.136 0.014 9.677 <.001 

Congruency × PC 37.819 4.422 8.553 <.001 

Congruency × Prior 

RT 
-0.032 0.020 -1.583 .113 

G
o

n
th

ie
r 

et
 a

l.
 (

2
0

1
6
) 

1
a 

&
 1

b
 

Simple 

model 

Intercept 725.373 2.411 300.890 <.001 

Congruency 71.795 2.512 28.580 <.001 

PC -16.550 1.654 -10.000 <.001 

Congruency × PC 30.593 1.993 15.350 <.001 

Temporal 

Learning 

model 

Intercept 720.472 2.770 260.094 <.001 

Congruency 73.567 2.189 33.613 <.001 

PC -11.771 1.686 -6.983 <.001 

Prior RT 0.125 0.009 13.239 <.001 

Congruency × PC 33.074 1.933 17.112 <.001 

 
Congruency × Prior 

RT 
0.034 0.013 2.510 .012 



 

Table 3 

Overview of Key Analyses Examining Temporal Learning Account with Transformed and 

Untransformed RT, in the Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) Datasets 

 

Note. ‘yes’ (lighter fill) indicates a given analysis output was consistent with temporal learning account 

and ‘no’ (darker fill) indicates the output was not consistent with temporal learning account. † In this 

comparison, the percentage of variance explained by the critical congruency by PC interaction decreased 

when prior RT was added to the model (supportive of the temporal learning account), but the actual beta 

of the congruency by PC interaction increased (not supportive of the temporal learning account). * 

indicates that a significant three-way interaction was observed, and while we interpret a significant 

interaction here as being generally supportive of the temporal learning account, the direction (form) this 

interaction should take is unclear so our interpretation (“yes” vs. “no”) does not consider the direction 

(please see Footnote 14 for detailed information about the direction of the interaction). 

 

 

 

 Transformed RT, LME  Untransformed RT, GLMM  

 
Hutchison 

(2011) 

Bugg  

(2014) 

1a &2b 

Gonthier et al. 

(2016) 

1a &1b 

 
Hutchison 

(2011) 

Bugg  

(2014) 

1a &2b 

Gonthier et al. 

(2016) 

1a &1b 

Beta changes  

in Congruency x PC  
yes yes yes  no yes no 

% of variance explained by 

Congruency × PC  
no yes yes  no no yes† 

AIC / BIC yes yes yes  no yes no 

Three-way  

Congruency × PC × Prior RT  
no no yes*  yes* yes* yes* 

Adjusted R2  no yes yes  no no no 

Non-significant Congruency × 

PC interaction after controlling 

for temporal learning 

no no no  no no no 



Table 4 

Analyses of Percentage of Variance Explained by the Congruency × PC Interaction in the 

Simple Model and Temporal Learning Model Using Transformed and Untransformed RT, in the 

Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) Datasets 

  Transformed RT, LME Untransformed RT, GLMM  

  Estimate t p 

% of 

variance 

explained 

Estimate t p 

% of 

variance 

explained 

Hutchison 

(2011) 

Simple 0.057 6.202 <.001 6.11% 22.316 8.786 <.001 9.22% 

Temporal 

learning 
0.049 5.345 <.001 6.32% 24.989 10.657 <.001 29.47% 

Bugg 

(2014)  

1a &2b 

Simple 0.099 7.458 <.001 7.57% 39.090 4.909 <.001 8.68% 

Temporal 

learning 
0.084 6.318 <.001 7.42% 37.819 8.553 <.001 15.16% 

Gonthier 

et al. 

(2016)  

1a & 1b 

Simple 0.064 8.369 <.001 7.22% 30.593 15.35 <.001 23.02% 

Temporal 

learning 
0.058 7.560 <.001 6.81% 33.074 17.112 <.001 19.62% 

Note. Estimate = regression coefficient; SE = standard error; t = t-value; p = significance. 

  



Table 5 

Analyses of Changes in AIC and BIC Model Fit Statistics by Adding the Congruency × PC 

Interaction, With and Without Prior RT, in the Hutchison (2011), Bugg (2014), and Gonthier et 

al. (2016) Datasets 

Note. Cong = congruency effect; Cong:PC = Congruency × PC interaction; Negative signs for 

difference in Δ AIC/BIC indicate that the degree to which the model fit improved by adding the 

Congruency × PC interaction is smaller when Prior RT and Prior RT × Congruency are already 

included in the model, supporting temporal learning account. 

  
Fixed effect factors 

Transformed RT, LME Untransformed RT, GLMM  

   AIC Δ AIC  BIC Δ BIC  AIC Δ AIC  BIC Δ BIC 

Hutchison 

(2011) 

Model 

1 
Cong + PC 4143 

36 

4189 

29 

192763 

23 

192808 

15 
Model 

2 

Cong + PC + 

Cong:PC 
4107 4160 192740 192793 

Model 

3 

Cong + PC + Prior 

RT + Prior RT: Cong 
3563 

27 

3624 

19 

192393 

29 

192454 

21 
Model 

4 

Cong + PC + Prior 

RT + Prior RT: Cong 

+ Cong:PC 

3536 3605 192364 192433 

Difference in Δ AIC/BIC 

(Model 4 – Model 3) vs. (Model 2 – Model 1) 
 -9  -10  +6  +6 

           

Bugg 

(2014) 

1a &2b 

Model 

1 
Cong + PC 360 

53 

406 

47 

63789 

49 

63835 

43 
Model 

2 

Cong + PC + 

Cong:PC 
307 359 63740 63792 

Model 

3 

Cong + PC + Prior 

RT + Prior RT: Cong 
151 

38 

210 

31 

63670 

46 

63729 

39 
Model 

4 

Cong + PC + Prior 

RT + Prior RT: Cong 

+ Cong:PC 

113 179 63624 63690 

Difference in Δ AIC/BIC 

(Model 4 – Model 3) vs. (Model 2 – Model 1) 
 -15  -16  -3  -4 

           

Gonthier 

et al. 

(2016) 

1a & 1b 

Model 

1 
Cong + PC -1780 

68 

-1727 

61 

167852 

49 

167905 

42 
Model 

2 

Cong + PC + 

Cong:PC 
-1848 -1788 167803 167863 

Model 

3 

Cong + PC + Prior 

RT + Prior RT: Cong 
-2251 

55 

-2183 

48 

167521 

58 

167589 

51 
Model 

4 

Cong + PC + Prior 

RT + Prior RT: Cong 

+ Cong:PC 

-2306 -2231 167463 167538 

Difference in Δ AIC/BIC 

(Model 4 – Model 3) vs. (Model 2 – Model 1) 
 -13  -13  +9  +9 



Table 6 

Analyses of Congruency × PC × Prior RT Interaction using Transformed and Untransformed 

RT, in the Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) Datasets 

Note. Est. = estimate of regression coefficient; SE = standard error; t = t-value; p = significance. 

 

 

 
 Transformed RT, LME  Untransformed RT, GLMM  

Variable Est. SE t p  Est. SE t p 

H
u
tc

h
is

o
n

 (
2

0
1

1
) 

 

Intercept -1.673 0.025 -66.724 <.001  669.745 3.356 199.564 <.001 

Congruency 0.246 0.023 10.536 <.001  87.677 3.151 29.681 <.001 

PC 0.011 0.024 0.485 .628  3.099 3.151 0.983 .325 

Prior RT 0.185 0.011 17.579 <.001  60.089 2.629 22.853 <.001 

Congruency × PC 0.048 0.009 5.276 <.001  24.816 2.857 8.686 <.001 

Congruency × Prior 

RT 
-0.091 0.016 -5.745 <.001  5.852 2.330 2.511 .012 

PC × Prior RT 0.020 0.016 1.214 .225  -3.742 2.686 -1.393 .164 

Congruency × PC × 

Prior RT 
-0.026 0.025 -1.048 .295  9.555 3.974 2.404 .016 

B
u
g
g
 (

2
0
1
4
) 

1
a 

&
 2

b
 

 

Intercept -1.708 0.032 -53.402 <.001  631.124 5.206 121.240 <.001 

Congruency 0.204 0.025 8.181 <.001  73.781 5.149 14.329 <.001 

PC -0.031 0.036 -0.859 .393  -12.698 5.623 -2.258 .024 

Prior RT 0.189 0.021 8.968 <.001  52.389 3.917 13.374 <.001 

Congruency × PC 0.084 0.013 6.326 <.001  36.371 4.005 9.081 <.001 

Congruency × Prior 

RT 
-0.121 0.028 -4.335 <.001  -14.760 4.483 -3.292 .096 

PC × Prior RT 0.038 0.029 1.285 .199  7.306 4.382 1.667 <.001 

Congruency × PC × 

Prior RT 
-0.063 0.039 -1.622 .105  -11.740 4.985 -2.355 .019 

G
o

n
th

ie
r 

et
 a

l.
(2

0
1

6
) 

1
a 

&
 1

b
 Intercept -1.496 0.023 -63.874 <.001  719.642 2.410 298.662 <.001 

Congruency 0.156 0.021 7.444 <.001  74.667 2.374 31.452 <.001 

PC -0.023 0.005 -4.357 <.001  -10.748 1.952 -5.506 <.001 

Prior RT 0.163 0.012 13.706 <.001  66.943 2.132 31.393 <.001 

Congruency × PC 0.057 0.008 7.530 <.001  29.953 2.349 12.755 <.001 

Congruency × Prior 

RT 
-0.032 0.016 -1.972 .049  28.011 2.265 12.366 <.001 

PC × Prior RT 0.031 0.016 1.980 .048  0.100 2.122 0.047 .963 

Congruency × PC × 

Prior RT 
-0.096 0.023 -4.184 <.001  -39.918 2.727 -14.639 <.001 



Table 7 

Analyses of Changes in R2 by Adding the Congruency × PC Interaction, With and Without Prior 

RT, in the Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) Datasets 

Note. The 95% CI of difference in R2 was calculated based on a simulation approach by using the package 

r2glmm (Jaeger, 2016) in R. Gray fill indicates comparison between difference of 95% CIs; darker fill 

indicates non-overlapping CIs and lighter fill indicates overlapping CIs.  

 

  

  
Fixed effect 

factors 

Transformed RT, LME Untransformed RT, GLMM  

  
Adj.R2 

[95 % CI] 

Difference 

[95 % CI] 

Adj.R2 

[95 % CI] 

Difference 

[95 % CI] 

Hutchison 

(2011) 

Model 

1 
Cong + PC 

0.123 

[0.114, 0.133] 0.00070 

[0.00058, 

0.00091] 

0.099 

[0.090, 0.108] 0.00021 

[0.00016, 

0.00036] Model 

2 
Cong + PC + 

Cong:PC 
0.124 

[0.114, 0.133] 

0.099 

[0.090,0.108] 

Model 

3 

Cong + PC + 

Prior RT + Prior 

RT: Cong 

0.165 

[0.155, 0.175] 
0.00070 

[0.00044, 

0.00104] 

0.130 

[0.120, 0.140] 
0.00112 

[0.00099, 

0.00135] Model 

4 

Cong + PC + 

Prior RT + Prior 

RT: Cong + 

Cong:PC 

0.166 

[0.156, 0.176] 

0.131 

[0.121, 0.141] 

       

Bugg 

(2014) 

1a &2b 

Model 

1 
Cong + PC 

0.143 

[0.126,0.160] 0.00563 

[0.00532, 

0.00620] 

0.131 

[0.115, 0.148] 0.00454 

[0.00433, 

0.00503] Model 

2 
Cong + PC + 

Cong:PC 
0.148 

[0.132,0.166] 

0.135 

[0.119,0.153] 

Model 

3 

Cong + PC + 

Prior RT + Prior 

RT: Cong 

0.183 

[0.165, 0.201] 
0.00407 

[0.00353, 

0.00479] 

0.156 

[0.139, 0.174] 
0.00534 

[0.00499, 

0.00596] Model 

4 

Cong + PC + 

Prior RT + Prior 

RT: Cong + 

Cong:PC 

0.187 

[0.169, 0.206] 

0.161 

[0.145, 0.180] 

       

Gonthier 

et al. 

(2016) 

1a & 1b 

Model 

1 
Cong + PC 

0.098 

[0.089, 0.108] 0.00291 

[0.00283, 

0.00310] 

0.082 

[0.073, 0.091] 0.00151 

[0.00148,  

0.00167] Model 

2 
Cong + PC + 

Cong:PC 
0.101 

[0.092, 0.111] 

0.083 

[0.075, 0.092] 

Model 

3 

Cong + PC + 

Prior RT + Prior 

RT: Cong 

0.137 

[0.126, 0.147] 
0.00251 

[0.00234, 

0.00278] 

0.110 

[0.101, 0.120] 
0.00284 

[0.00273,  

0.00307] Model 

4 

Cong + PC + 

Prior RT + Prior 

RT: Cong + 

Cong:PC 

0.139 

[0.129, 0.150] 

0.113 

[0.103, 0.123] 



Table 8 

Analyses of Changes in R2 for the Original Temporal Learning Model, Extended Temporal 

Learning Model, and Weighted Extended Temporal Learning Model, Using Transformed and 

Untransformed RT, in the Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) Datasets 

  Transformed RT, LME  Untransformed RT, GLMM 

  Adj.R2 

R2 Difference 

From Original TL 

model 

 Adj.R2 

R2 Difference 

From Original TL 

model 
 Model [95 % CI] [95 % CI]  [95 % CI] [95 % CI] 

Hutchison 

(2011) 

Original 

TL model 

0.163 

[0.152,0.174] 
  0.133 

[0.123,0.144] 
 

Extended 

TL model 

0.219 

[0.207,0.231] 

0.055*** 

[0.055,0.056] 
 0.168 

[0.157,0.179] 

0.035*** 

[0.034,0.035] 

Weighted 

extended  

TL model 

0.203 

[0.192,0.215] 

0.040*** 

[0.039,0.041]  
0.162 

[0.151,0.173] 

0.029*** 

[0.028,0.029] 
       

Bugg 

(2014) 

1a &2b 

Original 

TL model 

0.198 

[0.177,0.222] 
  0.169 

[0.149,0.192] 
 

Extended 

TL model 

0.237 

[0.215,0.261] 

0.038*** 

[0.037,0.039] 
 0.204 

[0.183,0.228] 

0.035*** 

[0.033,0.036] 

Weighted 

extended 

TL model 

0.229 

[0.207,0.253] 

0.030*** 

[0.029,0.031] 
 

0.196 

[0.175,0.220] 

0.027*** 

[0.026,0.028] 
       

Gonthier 

et al. 

(2016) 

1a & 1b 

Original 

TL model 

0.136 

[0.125,0.147] 
  0.111 

[0.101,0.121] 
 

Extended 

TL model 

0.171 

[0.160,0.183] 

0.035*** 

[0.034,0.036] 
 0.138 

[0.127,0.149] 

0.027*** 

[0.026,0.028] 

Weighted 

extended 

TL model 

0.162 

[0.151,0.174] 

0.026*** 

[0.026,0.027] 
 

0.132 

[0.122,0.143] 

0.022*** 

[0.021,0.022] 

Note. TL = temporal learning; Original and Extended TL models are non-nested and therefore 

statistical testing of comparison between those two models was based on simulation using 

r2glmm package (Jaeger, 2016) in R. Asterisks in Difference column indicate R2 for Extended or 

Weighted extended model is greater than that of Original TL model, suggesting better model fit.  

***: p <.001, *: p <.05. 



Table 9 

Analyses of Congruency × PC interaction for the Simple, Extended Temporal Learning, and Weighted Extended Temporal Learning Model, Using 

Transformed and Untransformed RT, in the Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) Datasets 

   Hutchison (2011)  Bugg (2014) 1a & 1b  Gonthier et al. (2014) 1a & 1b 

  Variable Est. SE t p  Est. SE t p  Est. SE t p 

Transformed 

RT, LME 

Simple 

Model 

Intercept -1.665 0.027 -67.687 <. 001  -1.697 0.035 -48.155 <. 001  -1.488 0.026 -58.190 <. 001 

Congruency 0.234 0.024 9.777 <. 001  0.195 0.025 7.870 <. 001  0.152 0.021 7.168 <. 001 

PC -0.006 0.028 -0.200 .842  -0.058 0.042 -1.392 .168  -0.040 0.006 -7.372 <. 001 

Congruency × PC 0.053 0.010 5.494 <. 001  0.105 0.014 7.468 <. 001  0.064 0.008 8.008 <. 001 

Extended 

TL model 

Intercept -1.664 0.027 -67.873 <. 001  -1.714 0.030 -57.663 <. 001  -1.501 0.022 -67.126 <. 001 

Congruency 0.234 0.024 9.827 <. 001  0.208 0.025 8.291 <. 001  0.158 0.021 7.551 <. 001 

PC -0.004 0.028 -0.141 .888  -0.024 0.031 -0.766 .446  -0.014 0.005 -2.474 .013 

Mean Prior RT 0.218 0.015 14.380 <. 001  0.373 0.022 16.906 <. 001  0.311 0.012 25.058 <. 001 

Congruency × PC 0.052 0.010 5.427 <. 001  0.082 0.014 5.918 <. 001  0.053 0.008 6.690 <. 001 

Congruency× Mean Prior RT  -0.167 0.026 -6.472 <. 001  -0.243 0.027 -9.005 <. 001  -0.135 0.015 -8.971 <. 001 

Weighted 

Extended 

TL model 

Intercept -1.677 0.025 -67.388 <. 001  -1.712 0.031 -55.842 <. 001  -1.501 0.023 -65.863 <. 001 

Congruency 0.245 0.025 10.023 <. 001  0.206 0.027 7.704 <. 001  0.158 0.021 7.489 <. 001 

PC 0.021 0.021 1.020 .309  -0.025 0.032 -0.783 .436  -0.016 0.005 -2.890 .004 

Mean Prior RT 0.326 0.011 28.784 <. 001  0.331 0.022 14.987 <. 001  0.275 0.011 24.027 <. 001 

Congruency × PC 0.039 0.010 4.134 <. 001  0.085 0.016 5.349 <. 001  0.054 0.008 6.880 <. 001 

Congruency× Mean Prior RT -0.146 0.016 -9.275 <. 001  -0.203 0.028 -7.231 <. 001  -0.117 0.014 -8.209 <. 001 

Untransformed 

RT, GLMM  

Simple 

Model 

Intercept 669.756 2.564 261.231 <. 001  634.861 7.265 87.390 <. 001  726.272 2.764 262.72 <. 001 

Congruency 84.387 3.245 26.002 <. 001  71.886 9.624 7.469 <. 001  69.930 2.419 28.91 <. 001 

PC 1.148 2.414 0.476 .634  -21.702 8.592 -2.526 .012  -17.045 1.676 -10.17 <. 001 

Congruency × PC 19.892 2.715 7.327 <. 001  43.362 4.994 8.683 <. 001  30.507 2.287 13.34 <. 001 

Extended 

TL model 

Intercept 668.934 2.951 226.711 <. 001  627.749 5.793 108.355 <. 001  719.302 4.449 161.665 <. 001 

Congruency 84.599 3.247 26.052 <. 001  72.856 5.091 14.311 <. 001  70.170 2.390 29.366 <. 001 

PC 8.053 2.957 2.723 .006  -11.647 5.448 -2.138 .033  -8.608 2.190 -3.931 <. 001 

Mean Prior RT 0.242 0.012 19.836 <. 001  0.254 0.235 10.835 <. 001  0.242 0.014 17.715 <. 001 

Congruency × PC 21.982 2.701 8.137 <. 001  41.602 5.244 7.934 <. 001  33.500 3.520 9.516 <. 001 

Congruency× Mean Prior RT  0.039 0.018 2.179 .029  -0.038 0.031 -1.237 .216  0.032 0.018 1.825 .068 

Weighted 

Extended 

TL model 

Intercept 664.471 2.269 292.903 <. 001  628.362 6.703 93.737 <. 001  719.676 8.001 89.954 <. 001 

Congruency 89.435 2.424 36.897 <. 001  72.882 6.873 10.604 <. 001  70.230 8.487 8.275 <. 001 

PC 8.117 2.636 3.080 .002  -12.094 7.325 -1.651 .099  -9.304 3.076 -3.025 .003 

Mean Prior RT 0.213 0.001 18.899 <. 001  0.225 0.021 10.496 <. 001  0.212 0.013 15.849 <. 001 

Congruency × PC 22.090 2.293 9.635 <. 001  41.897 4.925 8.507 <. 001  33.684 4.818 6.992 <. 001 

Congruency× Mean Prior RT 0.052 0.017 2.979 .003  -0.030 0.029 -1.039 .299  0.036 0.018 1.968 .049 

Note. Est. = estimate of regression coefficient; SE = standard error; t = t-value; p = significance; Mean Prior RT = average of three prior reaction times.
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Figure 1. From Schmidt (2013), visual depiction of the temporal learning account. 
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Figure 2. Q-Q plots of untransformed and transformed RT, using a cutoff of RTs > 300, from 

Hutchison (2011), Bugg (2014), and Gonthier et al. (2016) datasets 
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Figure 3. Residual plots of a full model (PC × Congruency × Prior RT with untransformed and 

transformed RT, using a cutoff of RTs > 300, from Hutchison (2011), Bugg (2014), and Gonthier 

et al. (2016) datasets.  

 


