
Abstract We propose an alternative statistical method,
logistic growth curve analysis, for the analysis of associa-
tive learning data with two or more comparison groups.
Logistic growth curve analysis is more sensitive and eas-
ier to interpret than previously published methods such as
χ2 or ANOVA, which require the data to be collapsed into
individual total scores or proportion of responses over
time. Additionally, this type of analysis better fits the typ-
ical graphical representation of associative learning data.
An analysis is presented where associative learning data
from honeybees are analyzed using the three techniques,
and the accessibility and power of the logistic growth
curve analysis is highlighted.
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Introduction

The goal of many learning and memory experiments is to
identify and characterize trends in cognitive skills for
groups of individuals. One of the commonest paradigms
used in such studies is classical conditioning (reviewed by
Menzel 1999). Classical conditioning studies use a re-
peated exposure to a conditioned stimulus (CS) that orig-
inally had no obvious biological significance to the tested
subjects, coupled with a biologically relevant uncondi-
tioned stimulus (US). Repeated exposures to the coupled

CS-US result in increased performance on the tested
learning criterion (usually an acquired behavioral re-
sponse to the CS).

The data from these studies are a sequence of re-
sponses and non-responses for each animal. In previous
reports, some authors scored the number of responses and
did a t-test to evaluate the difference between groups;
other authors calculated proportions of responses at each
time point for each group and did a χ2-test on the differ-
ence between groups at each time point. Both methods ad-
dress some aspects of the phenomenon, but ignore others.
We advocate a third approach, logistic growth curve
analysis, and argue its advantages. To illustrate the theory,
we analyzed a single data set using the three different
methods for comparative purposes.

Methods

Data set

Ben-Shahar et al. (in press) trained 56 honey bees to associate odor
A (geraniol) with a sugar reward in a sequence of six odor expo-
sures. If the bees learned to associate odor A with a reward, the
proportion of bees responding would increase with time. The re-
sulting data for each bee is a sequence of responses (R) and non-
responses (N). For example, the response sequence of a bee to odor
A of N-R-N-R-R-R would suggest that the bee had learned the as-
sociation.

Bees were collected from two different behavioral groups,
group X (n=32), and group Y (n=24), to determine whether they
perform differently in this learning assay. The raw proportion of
responses to odor A is plotted in Fig.1. Visually, there appears to
be a trend in the plots: bees from group X learn more quickly than
bees from group Y. Initially, they respond more frequently, and
reach the maximum level of learning by the third learning trial.
The bees from group Y do not catch up with the bees from group
X until the fifth learning trial.

The three analytic methods

Method 1: t-test on scored data

The data can be analyzed by collapsing the data to form either one
observation per subject or one observation per time point. In order
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to create one observation per subject, the data from each subject
were converted to the total number of responses (e.g., Bitterman et
al. 1983; Bhagavan et al. 1994; Pelz et al.1996; Gerber et al. 1998).

Information is lost, however, when the data are collapsed in
this way. For example, in an experiment with six trials, both the re-
sponse sequences R-N-R-N-R-N and N-N-N-R-R-R give a score
of three responses. The first case appears to be a random fluctua-
tion, but the second case is suggestive of learning. In fact, in an ex-
periment with six trials, there are 20 different ways that a subject
can achieve a total of three responses.

A t-test of the difference in total number of responses per bee
in groups X and Y was performed. Both X and Y groups had bees
whose response totals ranged from zero to six.

Method 2: χ2-test on proportional data

These data can also be analyzed by converting the data to propor-
tions of responses per group in each odor exposure (e.g., Ray and
Ferneyhough 1997, 1999). Proportions were analyzed by using 
χ2-tests (with 1 df) for each odor exposure separately. A Fisher’s
exact test was used when an entry in the table had n≤5.

Here, again, information is lost. Suppose there is an experiment
with ten animals. Two out of ten animals respond initially, six dif-
ferent animals respond on the last trial, and there were random
fluctuations in the middle. Overall, it appears the group of animals
learned to respond because the proportion of responses increased.
But there is no evidence of individual learning because different
animals responded at different times. Additionally, there is diffi-
culty in interpreting learning dynamics as a time-dependent pro-
cess since each time point is analyzed as a discrete unit.

Method 3: logistic growth curve analysis

A common and intuitive way of presenting learning and memory
data is to form „learning curves“ by plotting the proportion of re-
sponses at each trial for a group of subjects as in Fig.1 (e.g.,
Bitterman et al. 1983; Bhagavan et al. 1994; Gerber et al. 1996;
Pelz et al. 1996). The learning curves from several experimental
groups are frequently plotted on a single graph to allow visual
comparison. Although the papers cited here presented learning
curves, none of them used all the data from the curves to test the
magnitude of the difference between the tested groups. Logistic
growth curve analysis precisely tests the difference between sev-
eral learning curves. It retains the structure of the responses, both

on the individual and group level, and results in a statistical com-
parison of predicted curves resembling the empirical learning
curves.

The data addressed in this paper (Fig.1) consist of repeated
measures of the same subject, where a measurement is a response
or a non-response (coded 1 for response and 0 for non-response).
In an attempt to estimate the curves seen in Fig.1, the inclination
may be to fit a line or curve to the data using linear regression. But
a linear regression of these data violates several assumptions of the
linear regression model. First, the proportions of responses to be
modeled fall only between zero and one (equivalently, between 0
and 100%), so the assumption that a line or a polynomial can fit
the data is incorrect because anything but a flat line will eventually
cross either one or zero. Secondly, knowing the response of a sub-
ject at one trial gives a better idea of what its response will be at a
later trial. That is, each consecutive response of a single subject is
dependent on previous responses. For instance, if a subject were
above average, we would expect it to stay above average.
Statistically speaking, the responses of a single subject are corre-
lated.

Logistic growth curve analysis, the combination of logistic re-
gression and growth curve analysis, incorporates non-linearity and
correlation into the analysis. Logistic regression models the proba-
bility of response over time, and its sigmoid curve lies between
zero and one (Fig.2). Similarly to linear regression, it contains a
slope parameter and an intercept parameter. The ratio of the inter-
cept to the slope marks the point in time where half the subjects
have responded. The slope parameter indicates the steepness of the
curve. A slope between zero and one flattens the curve, and a slope
of zero indicates no predicted change over time.

Growth curve analysis assigns a correlation structure to the
data, allowing a positive correlation for observations from the
same individual, while maintaining the observations from different
individuals as independent. This correlation structure means that
observations from a single subject are more related to each other
than they are to observations from a different subject. The correla-
tion estimate is then used to calculate the logistic regression pa-
rameters and their standard errors (Dunlop 1994; Littell et al.
1996).

We performed logistic growth curve analysis using PROC
GENMOD in SAS, version 6.11 (Littell et al. 1996; see Appendix).
A logistic curve fit to the data and then the correlation structure for
each individual bee was estimated with generalized estimating
equations, or GEE (for more information on correlation structure
estimates see Littell et al. 1996, SAS 6.12 manual). Finally, the cor-
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Fig.1 Learning curves. Proportion of trials with responses to an
odor by 32 bees in group X and 32 bees in group Y. Logistic
growth curve analysis uses a logistic curve (sigmoid curve be-
tween zero and one) to model these two curves and statistically
compare them, after adjusting for positive correlation between ob-
servations from the same bee

Fig.2 Typical logistic curve plot. This curve serves as a model 
for learning: an animal initially does not respond, and gradu-
ally becomes highly responsive. The formula for the curve is
f(x)=1/(emx+b+1). The point at which the curve turns upward corre-
sponds to the intercept of the curve (b), and the rate with which the
curve increases after it turns corresponds to the slope of the curve
(m)



relation estimate was used to adjust the logistic regression esti-
mates.

Performance in this assay is indicated by a combination of the
intercept and the slope of the logistic curve. Because learning is al-
most immediate and equal in all groups tested (there is almost al-
ways at least one bee responding on the second odor exposure in
each group), the intercept parameter should be approximately the
same for all the groups. We therefore set the intercept to be the
same in both groups. This allows the difference in slope between
the two groups to represent the difference in learning between
them. When the difference in slope is statistically significant, the
difference between learning rates is statistically significant.

Results

The t-test calculates a mean score of 4.97 for group X (SD
1.20) and a mean score of 4.38 for group Y (SD 1.56).
The p-value for a significant difference between the two
groups is not significant at 0.11. The six χ2-test results
presented in Table 1 are harder to interpret. At each odor
exposure, group Y has a lower proportion of responses
than group X, but none of these are significant, so no sta-
tistically valid conclusions can be drawn.

The results of the logistic regression are seen in Fig.3
and Table 2. The parameters of the estimates construct a
line, modeling the logit of the proportion of bees that have

learned (the log of the proportion that have learned minus
the log of the proportion that have not learned). The inter-
cept parameter corresponds to the point at which the lo-
gistic curve turns upward, the trial parameter corresponds
to the rate at which the bees from group X learn, and the
trial×forager parameter corresponds to the difference be-
tween the rate of learning in both groups. The P values are
the probabilities that the corresponding parameters are ac-
tually zero. The significant negative parameter trial×be-
havior (P=0.03) indicates that bees from group Y learn
significantly more slowly than bees from group X in this
data set (α=0.05).

The adequacy of the logistic model was determined by
comparing the estimated to the observed proportions, 
using the standard error of the estimated proportions

, where p is the observed proportions). Except
for odor exposure 6, the observed proportions predomi-
nately fall within 1 SE of the predicted values and all fall
in the standard 95% confidence interval around the pre-
dicted values. Thus the model is accepted as adequate.

Discussion

The above example demonstrates the power of logistic
growth curve analysis to detect differences in learning
curves as compared to a t-test or χ2-test. Situations exist
where the t-test or χ2-test is significant and the logistic
growth curve is not. But difference in total number of re-
sponses might not reflect differences in overall trends. If
the scores from the two groups fluctuate between time
points, an analysis may show significant differences be-
tween the two groups at one or more of the time points (by
using χ2 analysis), without a difference in overall trend.
Since associative learning is a process over time, looking
at a trend is a better reflection of this process than a total
score or a proportion of correct responses.

Another advantage of the logistic growth curve analy-
sis is that it is more flexible. Learning can be defined in
several ways by fixing either the intercept or the slope pa-
rameter. More parameters can be added if more than one
effect is researched, or confounding variables are sus-
pected.

Logistic growth curve analysis is not the only statisti-
cally sound approach to analyzing associative learning
data. Any statistical technique that both adjusts for the in-
herent correlation structure and accounts for both the di-
chotomous data and the pattern of learning over time is
appropriate. Essentially, this includes „growth curve“
analyses with asymptotic, increasing or decreasing func-

(1 )p p−
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Table 1 Results from method 2: χ2 analysis on proportional data
(each odor exposure was analyzed separately)

Odor exposure % Response

Group X Group Y P

1 34.4 16.7 0.24
2 78.1 66.7 0.51
3 96.9 79.2 0.07
4 96.9 87.5 0.30
5 96.9 95.8 1.00
6 93.8 91.7 1.00

Fig.3 A fit of regression curves to learning data. Proportion of tri-
als with responses to an odor and the estimated logistic regression
growth curves. The curves are significantly different from one an-
other (P=0.03)

Table 2 Results from method 3: logistic growth curve analysis

Parameter Estimate SE P

Intercept –1.50 0.63 0.02
Trial 1.51 0.41 0.00
Trial×behavior (learning parameter) –0.62 0.29 0.03



tions. The reason we chose to present logistic growth
curve analysis is because it is available in many statistical
packages without having to use any sophisticated pro-
gramming.

Studies using this analysis can draw strong and precise
conclusions concerning differences in learning perfor-
mance between tested groups by comparing statistical pa-
rameters that correspond to learning rates. The technique
is a statistical extension of a standard visual presentation
of learning performace data.
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Appendix

SAS code for logistic growth curve analysis

This program is to run a logistic growth curve analysis on
the difference between two groups: group X and group Y.
The data set contains the following variables:

1. num – identification number for each individual. These
do not need to be sequential. They do, however, need
to be numeric.

2. response – takes on values 0 or 1 representing whether
the animal responded at that trial.

3. trial – trial number.
4. groupX – takes on values 0 or 1 indicating member-

ship in group X.

Option one for data entry

data new;
input num response trial group;
cards;
*Insert data with the variables ordered in the above order.
Variables should be separated by spaces. In this case, the
responses for a single animal must be entered in separate
lines, according to the trial;
run;

Option two for data entry

data first;
input num colony respons1 respons2 respons3 respons4
respons5 respons6 groupX;
cards;
*Insert data with the variables ordered in the above order,
variables should be separated by spaces. Here, re-
spons1–response6 represent the responses for animal
“num” in trials 1–6 respectively;
run;
data one;
set first;

response=respons1;
trial=1;
keep num response trial groupX colony;
run;
data two;
set first;
response=respons2;
trial=2;
keep num response trial groupX colony;
run;
data three;
set first;
response=respons3;
trial=3;
keep num response trial groupX colony;
run;
data four;
set first;
response=respons4;
trial=4;
keep num response trial groupX colony;
run;
data five;
set first;
response=respons5;
trial=5;
keep num response trial groupX colony;
run;
data six;
set first;
response=respons6;
trial=6;
keep num response trial groupX colony;
run;
data new;
set one two three four five six;
run;
(end of data entry)

Beginning of regression

proc genmod data=new;
class num;
model response= trial trial*groupX / d=b;
repeated subject=num /type=mdep(5) /*may also use
ar(1) or cs */;
run;

Note on interpretation of results

SAS gives two sets of regression parameters: use the sec-
ond set. They are the adjusted estimates from generalized
estimating equations (GEE). The first set of parameters is
not adjusted for the correlation structure.

188



References

Ben-Shahar Y, Thompson CK, Hartz SM, Smith BH, Robinson
GE (in press) Performance on a reversal learning test is associ-
ated with division of labor in the honey bee, Apis mellifera.
Anim Cogn

Bhagavan S, Benatar S, Cobey S, Smith BH (1994) Effect of geno-
type but not of age or caste on olfactory learning performance
in the honey bee, Apis mellifera. Anim Behav 48:1357–1369

Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical con-
ditioning of proboscis extension in honeybees (Apis mellifera).
J Comp Psychol 97:107–119

Dunlop DD (1994) Regression for longitudinal data: a bridge from
least squares regression. Am Stat 48:299–303

Gerber B, Geberzahn N, Hellstern F, Klein J, Kowalski O,
Wustenberger D, Menzel R (1996) Honey bees transfer olfac-
tory memories established during flower visits to a proboscis
extension paradigm in the laboratory. Anim Behav 52:1079–
1085

Gerber B, Wustenberg D, Schutz A, Menzel R (1998) Temporal
determinants of olfactory long-term retention in honeybee clas-
sical conditioning: nonmonotonous effects of the training trial
interval. Neurobiol Learn Mem 69:71–78

Littell RC, Miliken GA, Stroup WW, Wolfinger RD (1996) SAS
System for Mixed Models. SAS Institute, Cary

Menzel R (1999) Memory dynamics in the honeybee. J Comp
Physiol A 185:323–340

Pelz C, Gerber B, Menzel R (1996) Odorant intensity as a deter-
minant for olfactory conditioning in honeybees: roles in dis-
crimination, overshadowing and memory consolidation. J Exp
Biol 200:837–847

Ray S, Ferneyhough B (1997) The effects of age on olfactory
learning and memory in the honey bee Apis mellifera. Neuro-
report 8:789–793

Ray S, Ferneyhough B (1999) Behavioral development and olfac-
tory learning in the honeybee (Apis mellifera). Dev Psychobiol
34:21–27

189


