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Manganese (Mn) is an essential trace element that acts as a metal co-factor in
diverse biochemical and cellular functions. However, chronic environmental exposure
to high levels of Mn is a well-established risk factor for the etiology of severe, atypical
parkinsonian syndrome (manganism) via its accumulation in the basal ganglia, pallidum,
and striatum brain regions, which is often associated with abnormal dopamine, GABA,
and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure
at levels that are below the risk for manganism can still cause behavioral, cognitive, and
motor dysfunctions via poorly understood mechanisms at the molecular and cellular
levels. Furthermore, in spite of significant advances in understanding Mn-induced
behavioral and neuronal pathologies, available data are primarily for human and rodents.
In contrast, the possible impact of environmental Mn exposure on brain functions
and behavior of other animal species, especially insects and other invertebrates,
remains mostly unknown both in the laboratory and natural habitats. Yet, the effects
of environmental exposure to metals such as Mn on insect development, physiology,
and behavior could also have major indirect impacts on human health via the long-term
disruptions of food webs, as well as direct impact on the economy because of the
important role insects play in crop pollination. Indeed, laboratory and field studies
indicate that chronic exposures to metals such as Mn, even at levels that are below
what is currently considered toxic, affect the dopaminergic signaling pathway in the
insect brain, and have a major impact on the behavior of insects, including foraging
activity of important pollinators such as the honey bee. Together, these studies highlight
the need for a better understanding of the neuronal, molecular, and genetic processes
that underlie the toxicity of Mn and other metal pollutants in diverse animal species,
including insects.
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INTRODUCTION

Manganese (Mn) is an essential trace element that acts as a metal co-factor in diverse
biochemical and cellular functions (Mertz, 1981; Santamaria and Sulsky, 2010). However, chronic
environmental or occupational exposures to high levels of Mn are often neurotoxic, and a
well-established risk factor for severe, atypical parkinsonian syndrome (manganism) in humans
(Lucchini et al., 2009; Racette, 2014; Dorman, 2017). The exact cellular and molecular mechanisms
that mediate the specific neurotoxic effects of Mn exposure to neuronal pathways associated
with motor and cognitive functions are still not well understood. However, studies in humans,
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and in primate and rodent animal models suggest that chronic
Mn exposure leads to its accumulation in the basal ganglia,
pallidum, and striatum regions of the mammalian brain, with
subsequent neurotoxic effects on the dopaminergic, GABAergic,
and glutamatergic signaling pathways (Olanow, 2004; Fordahl
et al., 2010; Peneder et al., 2011; Karki et al., 2013; Sidoryk-
Wegrzynowicz and Aschner, 2013). Surprisingly, more recent
studies have indicated that chronic exposures to Mn at levels that
are below the known risk threshold for manganism, could still
cause behavioral, cognitive, and motor dysfunctions in humans,
non-human primates, and rodents (Schneider et al., 2006; Claus
Henn et al., 2010; Al-Lozi et al., 2017). Yet, whether these effects
are mediated by the same neuroanatomical regions and neural
signaling pathways that induce manganism remains somewhat
unresolved (Gwiazda et al., 2002; Khalid et al., 2011; Li et al.,
2017).

Although much of the research focus on metal biology
in general, and Mn neurotoxicity in particular, has been in
mammalian models, emerging data indicate that invertebrate
species such as the worm C. elegans and insects such as
the fruit fly Drosophila melanogaster, the honey bee Apis
mellifera, and others are also highly sensitive to Mn toxicity,
with negative impacts on behavior and higher brain functions
(Orgad et al., 1998; Ben-Shahar et al., 2004; Mogren and
Trumble, 2010; Chen et al., 2015a,b; Horning et al., 2015;
Søvik et al., 2015, 2017). Nonetheless, in spite of significant
advances in understanding the direct impact of environmental
Mn exposure on human health, its environmental impact on
neural functions and behavior of other animals, especially
invertebrates, remains mostly unexplored. Consequently, the
long-term effects of environmental Mn on food webs via its
impact on the physiology of plants and pollinators are likely to
play an important role in the health of ecosystems (Gall et al.,
2015).

MANGANESE AND INSECT BIOLOGY

Like vertebrates, all insects require Mn as a metal co-factor for
the catalytic actions of diverse enzymes (Burnell, 1988; Schramm,
2012), including the universal mitochondrial Mn-superoxide
dismutase (Holley et al., 2012). In addition to its more general
role as an enzymatic metal co-factor, Mn also plays a direct
role in various molecular and physiological processes specifically
associated with insect development and behavior. One of the first
studies to describe the effect of Mn on insect physiology was the
description of increased melanism in moth larvae exposed to food
laced with Mn (Harrison, 1928). Later studies of the chemical
composition of the insect cuticle revealed that in some species,
Mn and zinc (Zn) constitute up to 10% of the total dry weight of
the cuticle (Eric Hillerton et al., 1984; Quicke et al., 1998; Morgan
et al., 2003; Broomell et al., 2008). Studies of the process of
cuticle sclerotization in these species revealed that Mn and Zn are
required for the formation of mechanically hard cuticular regions
in the ovipositor of females, the female organ used for egg laying,
which helps them penetrate hard plant materials such as fruit
skins, as well as for development of the abrasion-resistant cutting

edge of chewing mandibles in insects that feed on hard-to-chew
foods such as dry seeds (Eric Hillerton et al., 1984; Cribb et al.,
2008; Andersen, 2010).

Although essential, chronic dietary exposure to Mn is often
toxic and detrimental to the fitness of most arthropod species,
including insects, via effects on embryonic development, feeding
behaviors, reproduction, immunity, and general survivability
(Olsén, 2011; Kula et al., 2014; Ternes et al., 2014; de Barros
et al., 2017; Martinek et al., 2018). For example, the collembolan
Folsomia candida is highly sensitive to Mn in its diet (Kuperman
et al., 2004). However, other arthropods, such as the fly Megaselia
scalaris, show few adverse effects of Mn exposure, even at levels
as high as 2,600 mg Mn/kg (Sorensen et al., 2009). While the
exact mechanisms that affect the sensitivity threshold of insects
to Mn exposure are mostly unknown, studies suggest that some
species can actively avoid the consumption of Mn-contaminated
foods (Rokytova et al., 2004), while others evolved mechanisms
for efficient excretion of dietary Mn and/or its sequestration in
specific body parts (Kula et al., 2014; Martinek et al., 2017, 2018).

To date, the majority of formal environmental risk
assessments of toxic exposures to metals such as Mn have been
characterized in the contexts of inhaled particles under specific
human occupational conditions and practices, or controlled
laboratory inhalation exposure studies by using mammalian
animal models (Tjalve and Henriksson, 1999; Dorman et al.,
2002; Antonini et al., 2006; Elder et al., 2006; Erikson et al.,
2007; Bailey et al., 2017; Bevan et al., 2017). However, emerging
data indicate that metal exposure via drinking water and its
accumulation in aquatic environments represents a considerable
risk as well (Kavcar et al., 2009; Bouchard et al., 2011). Yet, the
possible broader ecological neurotoxic impact of Mn exposure
either via inhaled or oral pathways on animal physiology,
behavior, and overall fitness, remains mostly unknown.

Evaluating true environmental risks for insects is further
complicated by of the microscale features of their ecological
niches, and their diverse feeding ecologies and complex life cycles.
Nevertheless, although the direct sources of Mn accumulation
in aquatic and terrestrial environments are often unknown,
geographical proximity to anthropogenic activities associated
with metal mining and processing, and the commercial use
of Mn-containing fertilizers, is a well-established risk factor.
Subsequently, because the salt forms of Mn, and similarly toxic
metals, are often water soluble, they readily enter food chains via
their accumulation in both marine and fresh water environments.
Not surprisingly, several studies have found that aquatic insects
exhibit rapid uptake and tissue accumulation of Mn and other
divalent metal ions present in their environment (Poteat et al.,
2012), which often have a direct negative effect on their fitness
(Hernroth et al., 2004; Krång and Rosenqvist, 2006; Oweson
et al., 2008). Although it is reasonable to assume that, due
to its solubility, the toxic impact of Mn on insects and other
invertebrates is primarily restricted to aquatic environments;
data suggest that Mn exposure of insects with an aquatic larval
stage could still carry fitness costs in the terrestrial adult phase.
Furthermore, insects with a complex life cycle could bridge
the negative impacts of metal exposure across the aquatic and
terrestrial ecosystems and their associated food webs (Custer
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et al., 2008; Dittman and Buchwalter, 2010; Kraus et al.,
2014).

Natural and anthropogenic sources of environmental Mn
could also have direct negative impacts on terrestrial insects.
Because many insects seem to have no aversive behavioral
response to the presence of Mn and other metals in their
food (Mogren and Trumble, 2010), one possible oral path to
exposure is presented by the accumulation of specific metals
in plants and their subsequent consumption by phytophagous
insects (Devkota and Schmidt, 2000; Rodrigues et al., 2008).
These exposure risks are further amplified in insect pollinators,
which seem to be highly sensitive to metals (Ben-Shahar et al.,
2004; Moroń et al., 2012; Vanbergen and Initiative, 2013; Søvik
et al., 2015), most likely via the consumption of nectar and pollen
by adult insects (Behmer et al., 2005), as well as throughout
development in bee species that provision their larvae with
pollen and nectar (Somerville and Nicol, 2002; Moroń et al.,
2014). Because metals can accumulate in the nectar of flowering
plants, insect pollinators seem to be especially sensitive to
environmental metals, including Mn (Haarmann, 1998; Meindl
and Ashman, 2013; Søvik et al., 2015). This particular concern
is alarming because of the increase in global pollinator duress
due to the negative pressure of various pathogens (Cox-Foster
et al., 2007; Naug, 2014), parasites (Martin et al., 2012), and
possibly insecticides (Woodcock et al., 2016; McArt et al.,
2017), which together lead to major costs in pollinator fitness,
which could carry major economic and ecological consequences
(Khoury et al., 2011). Metal toxicity is further amplified in social
pollinators, such as the honey bee, which consume nectar in
the form of concentrated honey, which leads to a significant
accumulation of contaminants such as heavy metals in both
honey and bee tissues via prolonged exposure throughout
development (Leita et al., 1996; Hladun et al., 2016; Herrero-
Latorre et al., 2017; Klein et al., 2017).

MANGANESE AND INSECT BEHAVIOR

The recognition that excessive exposure to metals such as
Mn could also have an impact on insect neurophysiology and
behavior is not new. For example, some of the early laboratory
studies of insect muscle physiology revealed that the membrane
of these cells is highly permeable to Mn2+ and other divalent
metal cations, possibly via the action of Ca2+ channels (Fukuda
and Kawa, 1977). Specifically, several studies demonstrated that
increased levels of Mn2+ in the extracellular bath significantly
reduced the excitability and contractility of visceral muscles
in diverse insect species (Deitmer, 1977; Cook and Mark
Holman, 1979). However, whether under natural conditions,
environmental exposure to Mn negatively affects the fitness
of individual insects via its impact on muscle physiology and
associated flight-related behaviors remains mostly unexplored.

Exposure to Mn can also have direct effects on the behavior
of insects. Although some insect species seem to be able to
detect toxic levels of Mn, and therefore behaviorally avoid
the consumption of tainted foods, most insects seem to be
unable to sense the presence of metals, and some increase the

consumption of foods and water that contain harmful levels of
some metals (Ben-Shahar et al., 2004; Mogren and Trumble,
2010; Søvik et al., 2015, 2017). Although the direct impact of
Mn on insect behavior has been studied in just a few species,
data suggest that Mn exposure affects general locomotion, as
well as innate behaviors associated with feeding drive and food
choices. One of the first clues that Mn might be involved
in innate food choices in insects came from forward genetic
screens for food choice behaviors in the fruit fly Drosophila
melanogaster. One of the genes identified is the solute carrier
Malvolio (Mvl), which contributes to the decision of flies to
consume high sugar foods (Rodrigues et al., 1995). Subsequently,
it was shown that Mvl is a divalent metal transporter homologous
to the mammalian NRAMP transporters, and that supplementing
standard fly food with Mn is sufficient to rescue abnormal
food choices in adult flies (Orgad et al., 1998; D’Souza et al.,
1999; Southon et al., 2008). Similarly, studies in the honey bee
revealed that the brain expression of Mvl increases with the
age-dependent division of labor exhibited by workers in honey
bee colonies, and is associated with age-dependent decrease
in the appetitive response threshold to sugar. Furthermore,
feeding young bees with Mn resulted in a dose-dependent
lowering of their response threshold to sugar, and a precocious
transition from in-hive behaviors to foraging (Ben-Shahar et al.,
2004). A follow up study revealed that Mn-treated bees were
also poor foragers with shorter foraging career than untreated
controls, further indicating that Mn exposure could lead to
neurodevelopmental and cognitive deficits in pollinators (Søvik
et al., 2015). Consequently, studies by us and others have
shown that exposure of honey bees and other pollinators
to Mn and other toxic metals could affect their behavioral
responsiveness to sucrose, foraging activity, and possibly increase
their foraging on metal-contaminated nectars due to abnormally
low appetitive response thresholds (Ben-Shahar et al., 2004;
Hladun et al., 2012, 2013, 2016; Meindl and Ashman, 2013;
Søvik et al., 2015). Although the specific molecular and cellular
mechanisms that mediate the effects of environmental exposure
to Mn on the behavior of insect pollinators remain mostly
understudied, we describe some recent insights into the cellular
and molecular bases for its effects on the nervous systems of
insects.

CELLULAR AND MOLECULAR TARGETS
OF MANGANESE IN THE INSECT
NERVOUS SYSTEM

Although the specific molecular and cellular mechanisms by
which Mn exposure leads to abnormal behaviors are not
completely understood (Racette et al., 2012; Andruska and
Racette, 2015), human pathology and laboratory studies in
rodent models indicate that environmental or occupational
exposure to high levels of Mn are often associated with
the symptoms of an atypical parkinsonian syndrome (Chen
et al., 2014; Andruska and Racette, 2015). As in the classic
Parkinson’s Disease (PD), these studies clearly demonstrate that
exposure to high levels of Mn leads to the specific loss of
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dopaminergic neurons and associated signaling pathways in the
mammalian striatum (Chen et al., 2006, 2014, 2015a; Zhao
et al., 2009; Andruska and Racette, 2015). However, why Mn
is specifically neurotoxic to these neuronal populations is not
yet understood. Previous studies indicated that Mn directly
interacts with the neurotransmitter dopamine (Parenti et al.,
1988; Prabhakaran et al., 2008), which may explain, at least in
part, the specificity of Mn neurotoxicity. At the subcellular level,
several studies have suggested that Mn could affect dopaminergic
neurons by directly interacting with PD-related proteins such
as α-Synuclein and PARK9 (Gitler et al., 2009). Other studies
in mammalian models suggested that Mn exposure leads to
dopaminergic cell death via the upregulation of mitochondrial-
derived oxidative stress (Kitazawa et al., 2002; Erikson et al.,
2004; Ávila et al., 2014). Recently, increased oxidative stress
in response to Mn exposure has also been identified in the
insectDrosophilamelanogaster (Mohandas et al., 2017). However,
why this mechanism would specifically affect dopaminergic
neurons is not clear. Mn is also likely to affect the dopaminergic
system indirectly via its impact on the production of reactive
oxygen species (ROS) in non-neuronal microglia (Zhang et al.,
2009). Other indirect mechanisms include the inhibition of
glutamate uptake by astrocytes, which subsequently could lead
to dopaminergic excitotoxicity (Karki et al., 2014; Streifel
et al., 2014; Sidoryk-Wegrzynowicz and Aschner, 2015), or the
possibility of Mn-dependent epigenetic modifications (Tarale
et al., 2017). Overall, these findings suggest that chronic exposure
to high levels of Mn disrupts dopaminergic signaling, possibly by
modulating the homeostatic relationship between excitatory and
inhibitory neurotransmission pathways (Sidoryk-Wegrzynowicz
and Aschner, 2013).

Similarly to humans and rodents, studies in insect models
such as the fruit fly and the honey bee have indicated that
chronic exposure to Mn is toxic to flies in a dose-dependent
manner (Mohandas et al., 2017). Furthermore, these studies
demonstrated that Mn accumulates in brain tissues even at
sub-lethal exposure levels (Ben-Shahar et al., 2004; Søvik
et al., 2015, 2017). However, in contrast to the effects of
exposure to high levels of Mn, chronic exposure to low
levels are associated with a surprising increase in brain levels
of dopamine in flies and bees, as well as a transcriptional
upregulation of the rate-limiting enzymes in the biosynthesis
pathways of dopamine (Søvik et al., 2015). A broader analysis
of the brain neurogenomic response to chronic Mn exposure,
at levels that are sufficient to induce precocious foraging in
honey bees, revealed a unique transcriptional response that was
different from that induced by other known pharmacological
inducers of foraging behavior such as cGMP (Whitfield et al.,
2006).

Furthermore, in vivo knockdown of the Mn2+transporter
Malvolio specifically in dopaminergic neurons leads to dramatic
changes in the neural architecture of the dopaminergic
circuit, which can be rescued by feeding flies Mn2+ (Søvik
et al., 2017). Because the effects of Mn on dopaminergic
signaling seem to be conserved across insects and mammals,
future genetic studies in Drosophila and other insect models
will likely reveal important mechanistic insights into the

impact of Mn exposure on neurobiological functions
across animals, including humans. Together, the findings
that Mn-induced changes in insect brain gene expression
patterns represent a unique transcriptional network
indicate that the effects of Mn on neuronal and behavioral
phenotypes is not due to general neurotoxicity (Sinha et al.,
2006).

CONCLUSION

Emerging data indicate that although high and low levels of
chronic Mn exposure can lead to negative neurological and
behavioral outcomes associated with dopaminergic functions,
the cellular and molecular mechanisms that mediate their
respective phenotypic outcomes are very different. Nonetheless,
whether environmental exposure to Mn represents a broad
and acute environmental risk for insects and related ecological
networks remains mostly anecdotal. Yet, it is very unlikely that
insects in affected habitats would not be negatively impacted
by the presence of metals. Therefore, further studies of the
impact of metals such as Mn on the behavior, physiology,
and neural functions of insects would serve several important
functions. First, although the specific molecular and cellular
processes that are affected by the disruption of Mn homeostasis
in the insect brain remain poorly understood, the apparent
specific effects of both Mn depletion and saturation on
dopaminergic signaling and its associated behavioral phenotypes
suggest that this specific, highly conserved neuromodulatory
network is key for understanding the role Mn is playing in
regulating brain functions and behavior in health and disease in
insects, with direct mechanistic implications for other animals,
including humans. Therefore, insect models should be used
to improve our general mechanistic understanding of the
impact of Mn exposure on neural functions at the cellular
and molecular levels. Second, understanding better the effects
of Mn on insect behavior and physiology could be used for
effective biomonitoring of Mn in affected habitats. Finally,
studies of the biological impact of Mn exposure on insect
behavior and physiology will help us understand better the
broader ecological and environmental costs associated with
anthropogenic environmental accumulation of metals, and their
indirect impact on human society and health by negatively
affecting insect pollinators and other important nodes of key food
webs.
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