
Neuron

Article

Frequency-Independent Synaptic Transmission
Supports a Linear Vestibular Behavior
Martha W. Bagnall,1,3 Lauren E. McElvain,1,3 Michael Faulstich,3 and Sascha du Lac1,2,3,*
1Neurosciences Graduate Program, 9500 Gilman Drive, University of California, San Diego, San Diego, CA 92093, USA
2Howard Hughes Medical Institute
3Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
*Correspondence: sascha@salk.edu

DOI 10.1016/j.neuron.2008.10.002
SUMMARY

The vestibular system is responsible for transforming
head motion into precise eye, head, and body move-
ments that rapidly stabilize gaze and posture. How
do central excitatory synapses mediate behavioral
outputs accurately matched to sensory inputs over
a wide dynamic range? Here we demonstrate that
vestibular afferent synapses in vitro express fre-
quency-independent transmission that spans their
in vivo dynamic range (5–150 spikes/s). As a result,
the synaptic charge transfer per unit time is linearly
related to vestibular afferent activity in both projec-
tion and intrinsic neurons of the vestibular nuclei.
Neither postsynaptic glutamate receptor desensiti-
zation nor saturation affect the relative amplitude or
frequency-independence of steady-state transmis-
sion. Finally, we show that vestibular nucleus neu-
rons can transduce synaptic inputs into linear
changes in firing rate output without relying on one-
to-one calyceal transmission. These data provide
a physiological basis for the remarkable linearity of
vestibular reflexes.

INTRODUCTION

The nervous system serves to transform sensory inputs into

motor outputs via cellular and synaptic processes that are spe-

cialized for the behaviors they support. In this study, we examine

the transformation from presynaptic to postsynaptic firing rate in

the well-defined brainstem circuit of the vestibular system to

identify the physiological underpinnings of a fast, linear behavior.

Head movements trigger vestibular reflexes that produce

rapid and precise compensatory movements of the eyes,

head, and body. During the vestibulo-ocular reflex (VOR), the

eyes are directed contraversive to head motion in order to main-

tain a stable retinal image. The VOR exhibits two remarkable

characteristics: first, the latency from onset of head motion to

onset of eye movement is <10 ms (Huterer and Cullen, 2002;

Minor et al., 1999); and second, eye velocity accurately compen-

sates for head velocity over a broad dynamic range in a variety of

species, including goldfish, frogs, rodents, cats, and primates
(Faulstich et al., 2004; Furman et al., 1982; Pastor et al., 1992;

Pulaski et al., 1981; Robinson, 1976; Straka and Dieringer, 2004).

These twin demands of speed and accuracy must be met by

the supporting neuronal circuitry. The VOR relies on a trisynaptic

pathway: information about head movement originates in the

inner ear and is carried via vestibular nerve afferents to the brain-

stem vestibular nuclei; from there it travels to oculomotor nuclei

(Figure 1A). The brevity of this circuit keeps reflex times short.

What qualities of the circuit ensure that eye velocity is precisely

matched to head velocity over a wide dynamic range?

Vestibular afferents code primarily for head velocity (reviewed

in Highstein et al., 2005), as do their postsynaptic targets, vestib-

ular nucleus neurons (Beraneck and Cullen, 2007; Lisberger and

Miles, 1980; Scudder and Fuchs, 1992). Given that the VOR

operates accurately across a wide range of head velocities,

transmission at the excitatory synapse from vestibular afferents

onto vestibular nucleus neurons would be expected to be linear.

However, transmission at most glutamatergic synapses is non-

linear: both the probability of transmitter release and the efficacy

of postsynaptic response to that transmitter depend heavily on

the recent history of the synapse (Zucker and Regehr, 2002). If

the vestibular afferent synapse were to operate in this way, its

ability to transmit precise signals about head velocity could be

compromised.

We sought to determine whether synaptic transmission at the

vestibular afferent synapse could succeed in linear information

transfer. In this study, we record in voltage and current clamp

from neurons in the vestibular nucleus while stimulating vestibu-

lar afferents in mouse brainstem slices. The results define the

synaptic properties that produce a linear transformation from

presynaptic to postsynaptic firing rates.

RESULTS

The performance of the VOR was assessed by rotating awake

mice back and forth on a turntable in the dark while a video

camera captured their eye movements. Eye motion was similar

in amplitude and opposite in direction to head motion, as evident

in sinusoidal plots of head and eye velocity (Figure 1B). Remark-

ably, eye velocity was linearly matched to head velocity over

a 40-fold range of peak head velocities, from 4� to 157�/s (Fig-

ure 1C). Across all head velocities tested, the VOR successfully

compensated for 80% of head motion (in the light, visual reflexes

compensate for the remainder [Faulstich et al., 2004]). The
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mouse VOR is therefore linear over a wide dynamic range of

head motion.

The brainstem circuit for the VOR is outlined in Figure 1A. Ves-

tibular information about rotational head velocity, derived from

fluid movement in the semicircular canals, is carried via fibers

of the VIIIth nerve to neurons in the vestibular nuclei. The medial

vestibular nuclei (MVN), which process head motion in the hori-

zontal plane, control the muscles for horizontal eye movement

via projections to the oculomotor and abducens nuclei. Informa-

tion about head velocity must be transformed into matched oc-

ulomotor responses through this circuit. How can head velocity

be accurately converted into eye velocity across glutamatergic

synapses, which are typically thought of as nonlinear elements

(Abbott and Regehr, 2004)?

To address this question, we electrically stimulated vestibular

afferents while recording from MVN neurons in slice preparations

of the brainstem. Whole-cell patch-clamp recordings were

targeted to fluorescently labeled neurons in two transgenic

mouse lines that label complementary neuronal distributions in

the MVN: the YFP-16 line (Feng et al., 2000), which labels glyci-

nergic and glutamatergic premotor projection neurons; and the

GIN line (Oliva et al., 2000), which highlights a subset of local

GABAergic neurons (Bagnall et al., 2007; Epema et al., 1988;

Holstein, 2000; see also Experimental Procedures).

Stimulation of the vestibular nerve elicited synaptic currents in

the majority of vestibular nucleus neurons, consistent with data

suggesting that the vestibular nerve contacts most MVN neurons

(Babalian et al., 1997; Goldberg and Fernandez, 1971; Lewis

et al., 1989; Straka and Dieringer, 1996). Increases in stimulation

intensity led to increases in excitatory postsynaptic current

(EPSC) amplitude, indicating that each neuron receives input

from multiple vestibular afferent fibers (Figure 2A). The maximal

Figure 1. Linear Relationship between Head Velocity and Compen-

satory Eye Velocity

(A) The basic circuitry of the vestibulo-ocular reflex; the vestibular nerve

afferent synapse onto vestibular nucleus neurons (shaded) is the focus of

this study.

(B) In the dark, mice were rotated sinusoidally in the horizontal plane at a

frequency of 1 Hz. An example of eye and head velocity in one mouse is

shown. Instantaneous eye velocity is shown in gray, with sinusoidal fit in black.

(C) Summary data for six mice showing that eye velocity was a linear function

of head motion at 1 Hz over a wide range of velocities. Error bars represent SD

and in most cases are smaller than the symbols.
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synaptic currents elicited in YFP-16 neurons ranged as high as

6 nA, while those in GIN neurons were typically less than 1 nA

(Figure 2B; p < 0.0001, Wilcoxon unpaired test). In both YFP-16

and GIN neurons, EPSCs exhibited rapid rise and fall kinetics

(Figures 2C and 2D). These data demonstrate that MVN neurons

receive multiple fast synaptic inputs, with a larger maximum

conductance in premotor than in local-projecting neurons,

consistent with anatomical data (Huwe and Peterson, 1995;

Sato and Sasaki, 1993).

In vivo, mouse vestibular afferents fire at �30–70 spikes/s in

the absence of head motion, and modulate above and below

those firing rates during head motion (Lasker et al., 2008; Yang

and Hullar, 2007). To evaluate the short-term dynamics of the

synaptic response to repetitive activity, we stimulated presynap-

tic afferents with trains of 20 pulses at frequencies from 0.1 to

200 Hz. The paired-pulse ratio, measured as the ratio of the

amplitude of the second EPSC to the first (Figure 2E), was

remarkably stable across these frequencies in both YFP-16

and GIN neurons. At the longest interval (10 s), no facilitation or

depression was observed in either population; at intervals from

5 ms to 1 s, the paired-pulse ratio was �0.85 in both types of

neurons (Figure 2F). This represents an unusual history-indepen-

dent response, in contrast to the frequency-dependent trans-

mission at many other types of synapses.

Over the course of 20-stimulus trains, EPSC amplitudes de-

pressed during the first 5–10 stimuli and then reached a plateau

of about 60% of their initial value for the remainder of the train

(Figure 3A, EPSCs recorded in a YFP-16 neuron during vestibu-

lar nerve stimulation at 20 and 100 Hz; Figure 3B, the same for

a GIN neuron). The number of stimuli, rather than the time course

of their delivery, defined the rate of depression, as can be seen in

plots of normalized EPSC amplitude relative to stimulus number

(Figure 3C). The absolute level of steady-state depression varied

among neurons from 25%–85%, but within any given neuron

it was constant across a wide range of stimulus frequencies

(Figure 3D). Therefore, in the steady state, EPSC amplitude is

independent of afferent activity rates.

Given that the vestibular nerve fires action potentials at rates

linearly related to head velocity (Highstein et al., 2005), the syn-

aptic charge transfer over a given unit of time should be linearly

related to the head motion signal, i.e., the presynaptic firing rate.

A recent study on synapses from vestibular nucleus neurons

onto cerebellar granule cells in anesthetized mice found a linear

relationship between head velocity and charge transfer, over

a range of EPSC frequencies from �15–45 Hz (Arenz et al.,

2008). To calculate charge transfer at the vestibular afferent syn-

apse, EPSCs evoked during the plateau phase (pulses 11–20)

were averaged, integrated, and normalized to the integral of

the first EPSC in the train. The resulting value for each stimulus

was multiplied by the stimulus rate to obtain the total charge

transfer during 1 s of steady-state activity. As shown in Figure 3E,

a linear relationship between the rate of stimulation and the total

synaptic charge transfer per unit time was evident in both

YFP-16 and GIN neurons, for frequencies ranging from 5 to

100 Hz (Figure 3E).

Frequency-independent synaptic transmission must derive

from one of two possibilities: either presynaptic release probabil-

ities and postsynaptic glutamate sensitivity are constant across
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Figure 2. EPSCs from Vestibular Afferents Exhibit Rapid Kinetics and Little Paired-Pulse Modulation

(A) Example EPSCs resulting from increasing stimulation intensities of the vestibular nerve in slice preparation, recorded from neurons labeled in the YFP-16 line

(left) and the GIN line (right). Stimulation artifacts are blanked for clarity. T = threshold stimulation intensity.

(B) The maximum EPSC amplitude that could be elicited in YFP-16 neurons was 3-fold higher than that in GIN neurons (p < 0.0001). Two YFP-16 neurons had

maximal EPSCs of 5–6 nA (not shown for graphical clarity).

(C) EPSC 10%–90% rise times are rapid in both YFP-16 neurons and GIN neurons.

(D) EPSC 90%–10% decay times (see Experimental Procedures) are also swift in YFP-16 and GIN neurons. Kinetics were usually measured at 1.5–33 the

threshold stimulation intensity. Horizontal bars represent medians.

(E) Paired pulse. Examples of EPSCs elicited at a 10 ms interval in a YFP-16 (left) and GIN (right) neuron are shown.

(F) Summary of paired-pulse ratios (100*EPSC2/EPSC1) across interstimulus intervals from 5 ms to 10 s. EPSCs in both YFP-16 and GIN neurons depressed to

�85% of their original values at stimulus intervals from 5 ms to 1 s, with no history dependence visible at intervals of 10 s. n = 3–10 cells per data point. Data are

shown as mean ± SEM.
the relevant frequency domain, or nonlinearities of release are

perfectly masked by corresponding nonlinearities of glutamate

sensitivity. We tested in turn the two primary candidates for

postsynaptic nonlinearities on this timescale, AMPA receptor

desensitization and saturation (von Gersdorff and Borst, 2002).

At the homologous synapse in the auditory system, the

endbulb of Held, postsynaptic AMPA receptor desensitization

is responsible for some of the observed paired-pulse depression

(Isaacson and Walmsley, 1996; Trussell et al., 1993; Yang and

Xu-Friedman, 2008). Desensitization might conceal an increase

in vesicular release from vestibular afferents at higher rates of

presynaptic activity (Wong et al., 2003). We tested this possibility

by applying the desensitization antagonist cyclothiazide (100 mM)

while recording EPSCs in the vestibular nuclei (Figure 4A). Both

decay times and peak amplitudes of synaptic currents were sig-

nificantly increased by cyclothiazide (n = 6: decay time, mean

84% ± 27% increase; peak amplitude, 39% ± 11% increase;

both p < 0.05, Wilcoxon paired test), while rise times were insig-

nificantly lengthened (21% ± 9% increase) (Figure 4C). However,

steady-state synaptic depression was unaffected by cyclothia-

zide (Figure 4B; 50 Hz data shown). These data indicate that

AMPA receptor desensitization does not contribute to short-

term plasticity at this synapse.

Receptor saturation is another possible cause of changes in

postsynaptic glutamate sensitivity (Foster et al., 2002; Harrison

and Jahr, 2003). We reduced saturation by applying the low-
affinity glutamate receptor competitive antagonist g-D-glutamyl

glycine (g-DGG, 2 mM; Figure 4D) (Foster et al., 2005; Liu et al.,

1999). As expected, g-DGG reduced EPSC amplitude (to 28% ±

3% of original value, p < 0.05, Wilcoxon paired test, n = 6), while

leaving synaptic kinetics intact (Figures 4D and 4F). However,

there was no change in the amplitude of steady-state depression

(Figure 4E; 50 Hz data shown). Together, these data demonstrate

that neither saturation nor desensitization has a significant effect

on frequency-independent steady-state depression at the ves-

tibular afferent synapse, suggesting that postsynaptic receptor

sensitivity to glutamate is steady across a wide range of presyn-

aptic activity rates, and that the rate-invariance of this synapse is

due to unusually stable presynaptic release probabilities.

In vivo, changes in head velocity are encoded as modula-

tions of vestibular afferent firing rate. How is vestibular synaptic

transmission affected by changes in afferent activity rates? To

examine whether the afferent steady-state depression exhibited

any sensitivity to transitions between input frequencies, we

stimulated the vestibular nerve with two patterns of trains: 20

stimuli at 10 Hz to achieve steady-state transmission followed

by 20 stimuli at 50 Hz, or vice versa. In the example neuron

shown (Figure 5A) , EPSCs depressed to about half the initial

amplitude during the first 20 stimuli, and did not recover or de-

press further when the stimulation rate was changed in either

direction. These findings are reflected in the group data (Figures

5B and 5C).
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Figure 3. Trains of Stimuli Evoke Frequency-Independent Steady-

State Depression

(A) EPSCs measured in a YFP-16 neuron during vestibular nerve stimulation at

10 Hz (top) or 100 Hz (bottom).

(B) Same as (A), but with a GIN neuron. In both examples, EPSCs rapidly

achieve a steady-state plateau of �60% of the initial value, regardless of

stimulation frequency.

(C) (Upper panel) Population data from both YFP-16 (n = 8) and GIN neurons

(n = 11) with trains of 20 stimuli elicited at 10 Hz. (Lower panel) Population

data from YFP-16 (n = 7) and GIN neurons (n = 8) with trains of 20 stimuli

elicited at 100 Hz.

(D) Summary of the magnitude of steady-state depression, defined as the

average of EPSC11–20 divided by EPSC1, across stimulation frequencies

from 0.1 to 200 Hz. In the steady state, EPSC amplitude does not depend

on stimulation frequency from 5 to 100 Hz in either YFP-16 or GIN neurons.

(E) Total charge transfer per second during steady-state transmission in-

creases linearly with increasing stimulation frequency (R2 = 1 for both neuron
346 Neuron 60, 343–352, October 23, 2008 ª2008 Elsevier Inc.
The data presented thus far suggest that during physiological

head movements, each vestibular afferent action potential

evokes a fixed amount of transmitter release and postsynaptic

current. This was examined more directly by challenging vestib-

ular afferents with a naturalistic pattern of stimuli derived from

combining measurements of mouse head movement (Beraneck

et al., 2008) with vestibular afferent firing rates and sensitivity to

head motion (Lasker et al., 2008; Yang and Hullar, 2007; see also

Experimental Procedures). In response to a 5 s naturalistic stim-

ulus, shown in Figure 5D, EPSC amplitudes depressed rapidly to

a plateau of 60% of the initial value for the duration of the stim-

ulus (Figure 5E). Within the steady state, evoked EPSC amplitude

did not depend on stimulus interval (Figure 5F). These data stand

in contrast to findings at the hippocampal CA3 to CA1 synapse,

where physiological patterns of activity drive rapid synaptic facil-

itation, resulting in small EPSCs during periods of quiescence

but large responses during bursts of activity (Klyachko and Ste-

vens, 2006). Instead, during physiological modulation of vestib-

ular afferent firing rates, synaptic amplitudes are rate invariant.

Given the high constant firing rates of vestibular afferents, the

responses to trains of constant and naturalistic stimuli indicate

that afferent synapses operate within a regime of steady-state

depression. If transmission were to recover rapidly from depres-

sion, EPSC amplitude would no longer be constant. To examine

the time course of recovery from depression, vestibular afferents

were stimulated with 20-pulse conditioning trains at 10, 50, or

100 Hz, followed by a test pulse some variable time later (Fig-

ure 6A). At long intervals (>200 ms), EPSC recovery was best

fit by a single exponential with a time constant of�2 s for all three

conditioning trains (Figure 6B). However, over shorter intervals

(10–100 ms), EPSCs did not recover in amplitude (Figure 6C;

50 Hz conditioning train). Furthermore, although EPSC recovery

at many synapses includes a fast component that is diminished

by additional slow Ca2+ buffering (Dittman and Regehr, 1998;

Yang and Xu-Friedman, 2008), application of 100 mM EGTA-

AM had no effect on EPSC recovery at any interval (Figures 6C

and 6D).

The data presented thus far demonstrate that the synaptic

charge transfer per unit time at the vestibular nerve synapse

onto different types of vestibular nucleus neurons is linearly

related to presynaptic activity rates. While it is known that the

relationship between injected current and firing rate is linear in

MVN neurons (du Lac and Lisberger, 1995; Figure 7A), it is not

known whether synapses are also capable of driving linear

increases in firing rate in the face of changes in postsynaptic

driving force. To evaluate the relationship between presynaptic

and postsynaptic firing rates, responses of MVN neurons to 1 s

of synaptic stimulation over a range of frequencies were re-

corded in current clamp. DC depolarizing or hyperpolarizing cur-

rent was injected into MVN neurons to maintain a baseline firing

rate of�10 spikes/s, simulating the low end of in vivo firing rates

(Beraneck and Cullen, 2007). As shown in Figure 7B for an exam-

ple neuron, synaptic stimulation at 20 and 100 Hz for 1 s evoked

types). Charge transfer was calculated as the average integrated area under

the EPSC in steady state (EPSC11–20), normalized to initial EPSC amplitude,

and multiplied by the rate of stimulation.

Data are shown as mean ± SEM.
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Figure 4. Postsynaptic Receptor Desensiti-

zation and Saturation Do Not Affect

Short-Term Plasticity

(A) Example EPSC elicited by vestibular nerve

stimulation in a YFP-16 neuron (black). Cyclothia-

zide (100 mm; gray) increased EPSC amplitude and

slowed its decay, as is evident in the experimental

trace peak-scaled to control (dotted line).

(B) No difference is seen in steady-state depres-

sion of synaptic currents in the presence of cyclo-

thiazide at 50 Hz (shown) or other frequencies

tested (n = 6).

(C) Summary of kinetics and steady-state depres-

sion across the population. The peak EPSC ampli-

tude and the 80%–20% decay time were both

significantly increased by cyclothiazide (n = 6;

p < 0.05). Steady-state depression, quantified as

EPSC11–20/EPSC1, was unaffected.

(D) Example EPSC elicited in a YFP-16 neuron.

g-DGG (2 mM; gray) reduced EPSC amplitude

without significantly affecting kinetics (scaled

trace, dotted line).

(E) Reducing receptor saturation does not affect

short-term depression at 50 Hz (shown) or other

frequencies tested (n = 6).

(F) Summary of kinetics and steady-state depres-

sion across the population. EPSC amplitude was

significantly reduced (p < 0.05) while other

parameters were unaffected.

Data are shown as mean ± SEM.
increases in postsynaptic spiking, with the associated firing rates

plotted in Figure 7C. Over all afferent stimulation rates tested,

this MVN neuron responded to increases in synaptic input fre-

quency with linear increases in firing rate, up through presynaptic

stimulation rates of 150 Hz (Figure 7D).

Stimulation of vestibular afferents onto both YFP-16 and GIN

neurons elicited highly linear firing rate responses across stimu-

lation rates ranging from 20 to 150 Hz (YFP-16, median R2 =

0.948; GIN, 0.978) (Figure 7E). At 200 Hz, there was typically

a slight to moderate drop in response amplitude, as predicted

from the greater synaptic depression observed at that stimulation

frequency in voltage clamp (Figure 3D). The synaptic gain was

variable across neurons as expected, due to differences in syn-

apse amplitude, depression profile, and postsynaptic membrane

properties (YFP-16, median = 0.17 spikes/Hz; GIN, 0.09; p = 0.09,

Wilcoxon unpaired test) (Figure 7F). Blocking NMDA receptors

with D-APV had no effect on synaptic gain (post/pre = 1.04) or lin-

earity (post/pre = 0.96; data not shown, n = 3 YFP-16 neurons). In

all but one cell tested, the gain was less than 1, indicating that

several postsynaptic potentials summed temporally in a linear

fashion, regardless of the frequency of afferent stimulation.

Thus, vestibular nerve activity can drive linear increases in firing

rate in both GABAergic and nonGABAergic neurons without rely-

ing on one-to-one calyceal connections.

DISCUSSION

This study demonstrates that the excellent performance of the

VOR is supported by a linear transformation from presynaptic

to postsynaptic firing rate at the first central synapse in the
vestibular system. Vestibular afferent stimulation evoked EPSCs

in vestibular nucleus neurons that depressed rapidly to a main-

tained steady-state amplitude which, within the behaviorally

relevant range of afferent firing rates, did not depend on stimulus

frequency or pattern. As a consequence, charge transfer across

vestibular afferent synapses scaled linearly with stimulus fre-

quency. The linearity evidenced at the synaptic level was pre-

served postsynaptically by linear current summation and spike

generation. Neither postsynaptic desensitization nor receptor

saturation affected the initial depression or steady-state trans-

mission, pointing to a remarkable capacity for frequency-inde-

pendent transmitter release by vestibular nerve afferent synap-

ses. These results show that vestibular afferent synapses are

well-tuned to meet the demands of the stabilization system, in

which head motion must be linearly matched by compensatory

eye and body movement.

Rapid Synaptic Kinetics
The short latency of the VOR depends on rapid information trans-

fer within a trisynaptic circuit. EPSCs from vestibular afferents

exhibit swift rise and fall times (Figure 2), resulting in no apprecia-

ble summation of synaptic currents arriving at intervals as brief as

10 ms (Figures 2 and 3). The absence of effect of D-APV on post-

synaptic firing responses to afferent stimulation indicates that

NMDA-receptor-mediated current, which would broaden the

EPSC, plays little role at mature ages. Thus, the majority of syn-

aptic transmission at this site appears to be mediated by AMPA

receptors. Rapid EPSC rise and fall times help keep postsynaptic

depolarization brief, allowing for fast modulation of postsynaptic

firing rate and rapid processing of sensory information.
Neuron 60, 343–352, October 23, 2008 ª2008 Elsevier Inc. 347
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Figure 5. The Amplitude of Steady-State

Transmission Is Not Affected by Changes

in Stimulation Rate

(A) Example EPSCs recorded in a YFP-16 neuron

during vestibular afferent stimulation with

20 pulses at 10 Hz followed by 20 pulses at

50 Hz (left) and vice versa (right). Group data indi-

cate that EPSC amplitudes were not affected by

stimulus shifts from 10 Hz to 50 Hz ([B], n = 8) or

from 50 Hz to 10 Hz ([C], n = 9). (D) Naturalistic

stimulus train, displayed as instantaneous rate

versus time, that approximates the firing pattern

of a typical mouse vestibular afferent firing during

head movements (see Experimental Procedures).

(E) Average EPSC responses to the naturalistic

stimulus shown in (D) (n = 7). EPSC amplitude de-

creased rapidly to a steady-state level that was not

affected by instantaneous variations in stimulus

rate. (F) Replotting the data from (E) demonstrated

that EPSC amplitude did not depend on interstim-

ulus interval. The responses to the first five stimuli

have been omitted from this plot for clarity. Data

are shown as mean ± SEM.
Sustained History-Independent Release
Two features of the vestibular synaptic steady-state response

are noteworthy: its sustained function even at high frequencies,

and its fixed amplitude across a 30-fold range of firing rates. In

the brainstem and cerebellum, baseline firing rates often exceed

those of cerebral cortical regions, and several types of synapses

exhibit the capacity for prolonged high-frequency transmission,

such as the Purkinje cell output to target neurons in the deep cer-

ebellar nuclei (Telgkamp and Raman, 2002) and the mossy fiber

input to cerebellar granule cells (Saviane and Silver, 2006). At the

Purkinje cell synapse, multiple release sites with low release

probabilities permit robust transmission even at high frequencies

(Telgkamp et al., 2004). Vestibular afferents may express similar

specializations, although no studies have addressed this directly

(Sato and Sasaki, 1993).

The finding that steady-state vestibular synaptic amplitudes

are constant across a wide range of input frequencies contrasts

with findings at excitatory cortical synapses, in which depression

deepens as stimulation frequency increases (Abbott et al., 1997).

What is the basis of this unusual property of vestibular transmis-

sion? We find that postsynaptic changes in glutamate sensitivity,

in the form of AMPA receptor saturation and desensitization,

contribute to neither the profile of short-term synaptic depression

nor its frequency-independence (Figure 4). Activity-dependent

relief of polyamine block at Ca-permeable AMPA receptors

(Rozov and Burnashev, 1999) is unlikely to contribute to depres-

sion because vestibular afferent synaptic properties are un-

changed after �1 hr patch recording without intracellular

polyamines (data not shown). These results indicate that

steady-state transmission derives from the ability of presynaptic

terminals to release a constant quantity of transmitter following

each action potential.

How does the range of frequency-independent release corre-

spond to in vivo firing rates? Vestibular afferents encode head ve-
348 Neuron 60, 343–352, October 23, 2008 ª2008 Elsevier Inc.
locity via modulations around baseline firing rates (Goldberg and

Fernandez, 1971). The high sensitivity and relatively low baseline

firing rate of some mouse vestibular afferents make them suscep-

tible to cutoff, or periods of no firing, during head movements that

exceed 100�/s (Lasker et al., 2008; Yang and Hullar, 2007). How-

ever, estimations of head movement statistics in freely running

mice from video (Beraneck et al., 2008) and gyroscopic (J. Moore

and S.d.L., unpublished data) analyses indicate that such rapid

head velocities occur infrequently and typically last no more

than 200 ms, equivalent to a rate of �5 spikes/s. Although the

most sensitive afferent fibers exhibiting the highest spontaneous

rates could increase firing rates transiently up to 200 Hz during

rapid head movements, firing rates of the majority of afferents

would typically remain below 100 spikes/s. Thus, under behavior-

ally relevant conditions, the predominant firing rate range of

vestibular afferents is 5–100 Hz, which matches the frequency-

independent range of synaptic transmission.

Within the physiologically relevant regime of maintained affer-

ent discharge, our results indicate that each action potential

evokes the same amount of transmitter release. Multiple presyn-

aptic factors control transmitter release, including magnitude of

Ca2+ influx, sensitivity of the release machinery to Ca2+, and

vesicle availability (Zucker and Regehr, 2002). After prolonged

periods of silence (which do not normally occur in vivo), presyn-

aptic release exhibits a high initial amplitude, which then dimin-

ishes rapidly in the face of repeated stimuli. This short-term

depression could reflect changes in Ca2+ influx, Ca2+-triggered

biochemical changes, or depletion of a slowly replenished pool

of vesicles. Consistent with the latter hypothesis, synaptic ampli-

tude recovers with a slow time course after stimulus trains (Fig-

ure 6). At both the climbing fiber synapse and the calyx of Held,

recovery from depression is best described by a combination of

fast and slow processes, with the fast process being sensitive to

application of EGTA-AM (Dittman and Regehr, 1998; Yang and
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Xu-Friedman, 2008). In contrast, recovery from depression at the

vestibular afferent synapse is well described by a single expo-

nential and does not occur at all for short intervals of <100 ms

(Figure 6). Furthermore, synaptic responses at all intervals

were resistant to the effects of buffering residual Ca2+ with intra-

cellular EGTA. In the simplest model for steady-state transmis-

sion consistent with our results, each afferent action potential

triggers influx of a fixed amount of Ca2+, which evokes a cycle

of coordinated vesicle release and replenishment before being

Figure 6. Recovery of EPSC Amplitudes from Depression Is Slow
and Monoexponential

(A) Vestibular afferents were stimulated with conditioning trains of 20 pulses at

10, 50, or 100 Hz, followed by a test pulse at a variable time afterwards.

(B) Recovery from depression was best fit with a single exponential. The tau of

recovery was similar across the three conditioning frequencies of 10, 50, and

100 Hz (2.2, 2.5, and 1.9 s, respectively; n = 5).

(C) EPSCs did not recover in amplitude during shorter intervals (10–100 ms, all

tested with 50 Hz conditioning train). Application of 100 mM EGTA-AM for 5 min

had no effect on recovery (n = 4).

(D) EGTA-AM had no effect on the time course of recovery for longer test

intervals (conditioning train, 50 Hz; n = 7).

Data are shown as mean ± SEM.
rapidly cleared from the presynaptic terminal. Given the main-

tained high firing rates at this synapse and the energetic costs

of vesicle recycling, we suggest that vestibular afferents contain

multiple release sites, each with low probability of release, such

as has been observed at Purkinje cell synapses (Telgkamp et al.,

2004). Ultrastructural studies of the vestibular afferent synapse

will be useful in evaluating this hypothesis.

Linear Signal Processing throughout
the Vestibular System
Eye movements compensate almost perfectly for head move-

ments in the mouse (Figure 1) as in other species (Robinson,

1981). Notably, each stage of VOR processing examined thus

far has been shown to be linear, including the transformation

Figure 7. Injected and Synaptic Currents Can Each Drive Linear

Increases in MVN Firing Rates

(A) The firing rate of an example YFP-16 neuron during 1 s steps of depolarizing

somatic current injection of varying amplitudes (inset). Neuronal firing rates,

averaged over the 1 s step, were linearly related to injected current.

(B) Synaptic stimulation for 1 s drives increases in firing rate in the same neuron

shown in (A). Somatic current injection was used to maintain a stable baseline

firing rate of �5 Hz.

(C) The postsynaptic firing rate in this neuron at the two synaptic stimulation

rates shown (20 and 100 Hz).

(D) Linear input to firing rate relationship for the neuron shown in (C). The slope

is less than 1, indicating the linear synaptic summation of input currents over

time.

(E) Summary of goodness of linear fits in response to stimuli that ranged from

20 to 150 Hz rates in the population of YFP-16 and GIN neurons.

(F) Summary of firing response gains across the same population. Of the eight

GIN and ten YFP-16 neurons tested, only one fired action potentials with every

presynaptic stimulus (gain = 1).
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from head velocity to firing rates in both vestibular nerve and ves-

tibular nucleus neurons (Goldberg and Fernandez, 1971; Shi-

mazu and Precht, 1965), as well as between oculomotor neuro-

nal activity and eye velocity (Skavenski and Robinson, 1973). A

recent study of the vestibular afferent synapse in frog suggests

that it also exhibits some linear characteristics, although circuit

processing and intrinsic properties may contribute to nonlinear-

ities of transmission (Pfanzelt et al., 2008). In primates, the firing

range of vestibular afferents is double that in mice (Lasker et al.,

2008; Yang and Hullar, 2007). Limitations in rate-invariant trans-

mission might account for some of the nonlinearities observed in

the primate VOR during rapid accelerations of the head (Minor

et al., 1999).

Because our data provide a plausible physiological framework

for linear synaptic transmission, we suggest that EPSC ampli-

tudes may also be rate invariant at other connections in the

vestibular system, such as those from vestibular nucleus neu-

rons to oculomotor neurons. Indeed, recent work supports this

prediction at the vestibular nucleus neuron synapse onto granule

cells in the cerebellum. At this synapse, EPSC frequency, but not

amplitude, is modulated during head movement such that the

total charge transfer is linearly related to head velocity (Arenz

et al., 2008). Interestingly, the short-term dynamics of mossy

fiber synapses are affected by blockers of saturation and desen-

sitization (Saviane and Silver, 2006), in contrast to the dynamics

of primary afferent synapses onto vestibular nucleus neurons

(Figure 4). It remains to be determined whether these mechanis-

tic differences compromise the ability of granule cells to fire

linearly over a wide range of mossy fiber input rates (Figure 7).

Ongoing Activity Promotes Linearity
A salient property of vestibular circuits is that neurons fire contin-

uously even in the absence of head motion. Operating around

high baseline firing rates confers three advantages. First, sen-

sory stimuli can be encoded as modulations in firing rate, provid-

ing an opportunity for bidirectional encoding of information—in

this case, both increases and decreases in head velocity. Sec-

ond, postsynaptic neurons do not need to be depolarized from

a hyperpolarized resting membrane potential, but instead are

maintained in a voltage range close to threshold, minimizing

the latency from synaptic input to postsynaptic firing. Third,

silent neurons often exhibit nonlinearities in synaptic summation,

because small inputs may not affect postsynaptic firing while

large inputs may drive dendritic and somatic spiking (e.g., Carter

et al., 2007; Gasparini and Magee, 2006). Maintaining high firing

rates may be one measure by which vestibular circuit neurons

avoid these nonlinearities.

Functional Implications
At synapses that exhibit reliable transmission, such as auditory

afferents or the neuromuscular junction, a flood of neurotrans-

mitter release guarantees a successful postsynaptic spike.

Vestibular afferents do not achieve linearity through one-to-one

connections such as these, but instead rely on a combination

of frequency-independent release and linear postsynaptic pro-

cessing (Figure 7). Why? We suggest that the major advantage

of the vestibular solution is its flexibility. Calyceal transmission

necessarily limits the prospects for modifiability. Vestibular nu-
350 Neuron 60, 343–352, October 23, 2008 ª2008 Elsevier Inc.
cleus neurons integrate information from visual and propriocep-

tive sources, in addition to direct and indirect vestibular sensory

inputs (Angelaki and Cullen, 2008). Furthermore, the VOR is bidi-

rectionally plastic throughout life, and one candidate locus of

memory storage is the vestibular afferent input (Broussard and

Kassardjian, 2004; Gittis and du Lac, 2006). It will be of great in-

terest to determine whether the synaptic strengths of vestibular

afferents can be altered without compromising their distinctive

frequency-independence.

EXPERIMENTAL PROCEDURES

Behavioral Testing

Linearity of the VOR was assessed in six C57/Bl6 mice at ages of 2–4 months

as detailed (Faulstich et al., 2004). Mice were secured in a padded restraining

tube with a post which had been affixed surgically to the head 3 days prior. The

restraining tube was held in the middle of a turntable (Biomedical Engineering,

New York) such that the midpoint of the interaural axis was centered and tilted

to align horizontal semicircular canals with earth horizontal (Calabrese and

Hullar, 2006; Vidal et al., 2004). Eye movements were acquired with an infrared

video camera mounted on the turntable which measured pupillary position and

size and corneal reflection (RK-726I; Iscan). Pupil dilation was minimized with

a 0.5% physostigmine solution applied 30–60 min prior to recordings. The

VOR was evoked by rotating the turntable sinusoidally at a frequency of

1 Hz with peak-to-peak amplitudes ranging from 1.25� to 50�, resulting in

peak stimulus velocities from 3.9� to 157�/s. Eye movements were evoked in

complete darkness, sampled at 60 Hz, and calibrated as described (Stahl,

2002; Stahl et al., 2000). Analyses of eye movements were performed in the

velocity domain after digitally differentiating table and eye position traces,

removing saccadic intrusions with a velocity threshold algorithm, and manually

excluding traces with motion artifacts. Peak velocities were calculated from

sinusoidal fits to table and eye velocity.

Physiology

Two transgenic lines of mice were used for synaptic physiology: YFP-16 (Feng

et al., 2000), in which glutamatergic and glycinergic neurons in the MVN are

fluorescently labeled; and GIN, in which a subset of GABAergic MVN neurons

are fluorescently labeled (Bagnall et al., 2007; Oliva et al., 2000). Anatomical,

physiological, and neurochemical evidence indicates that neurons labeled in

the YFP-16 line are projection neurons, while neurons labeled in the GIN line

are local neurons whose axons remain within the bilateral MVN (Bagnall

et al., 2007; Epema et al., 1988; Holstein, 2000). Mice aged 15–25 days post-

natal (mean, P21 ± 0.3) were deeply anesthetized with Nembutal and decapi-

tated. After rapid dissection in ice cold Ringer’s solution (124 mM NaCl, 5 mM

KCl, 1.3 mM MgSO4, 26 mM NaHCO3, 2.5 mM CaCl2, and 1 mM NaH2PO4),

250–400 mm thick slices were cut on a DSK DTK-1500E or Leica VT1000S

vibratome and allowed to recover at 34�C for 30 min. Slices rested at room

temperature before being transferred to a recording chamber and being

perfused with carbogenated Ringer’s containing 1–10 mM strychnine and

100 mM picrotoxin at 34�C. All experiments were carried out in accordance

with the standards of the Salk Institute IACUC.

Patch pipettes were pulled from flame-polished glass (Warner) with resis-

tances of �2–4 MU. Pipette internal solution contained 140 mM K gluconate,

10 mM HEPES, 8 mM NaCl, 0.1 mM EGTA, 2 mM Mg-ATP, and 0.3 mM

Na2-GTP. In the experiments involving application of g-DGG, the K gluconate

was replaced with Cs gluconate, and 1 mM QX-314 was added to the internal

solution. Neurons were visualized with epifluorescence through a GFP filter as

well as under infrared differential interference contrast illumination with Nomar-

ski optics. A bipolar concentric stimulating electrode (FHC, Maine) was placed

on the vestibular nerve lateral to the vestibular complex and controlled via two

Isoflex stimulus isolation units (AMPI, Israel). A biphasic pulse, consisting of two

100 ms pulses of opposite polarity with a 100 ms interval, was delivered to the

electrode to avoid charge buildup during high-frequency trains.

Data were acquired with a Multiclamp 700B low-pass filtering at 6–10 kHz

for voltage clamp and 10 kHz for current clamp. Data were digitized at
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40 kHz with an ITC-16 or 18 (InstruTECH). House-written code in Igor 5 was

used for acquisition and analysis. Recordings were discarded if series resis-

tance, tested with a small hyperpolarizing square pulse, exceeded 20 MU.

Five to ten sweeps (10–30 s interstimulus interval) of each stimulus train

were averaged together. Neurons were usually held in current clamp between

epochs of recording in voltage clamp; in two example traces (Figure 5) a small

(�25 pA) drift in holding current has been subtracted for display purposes.

Because vestibular nerve afferents are heterogeneous with respect to diam-

eter and myelination, conduction velocities vary across the afferent popula-

tion. As a result, in many EPSCs an inflection point was visible in the rise

and/or decay, representing the arrival of several different synaptic currents

at slightly different latencies. All such EPSCs were monosynaptic, based on

their latency (<2 ms) and on the fact that they did not disappear during manip-

ulation of external divalent ions intended to eliminate disynaptic activation

(to 1 mM Ca2+, 2.8 mM Mg2+; or to 4 mM Ca2+, 4 mM Mg2+; data not shown).

There was no clear relationship between stimulation intensity and the recruit-

ment of these longer- or shorter-latency EPSC components. Because of the

impossibility of studying these components systematically, we analyzed

EPSC decay kinetics with a 90%–10% or 80%–20% fall time measure rather

than with exponential fits. During recordings, stimulation intensity was ad-

justed to produce a reliable EPSC, normally in the range of 1.5 to 3 times the

threshold intensity. During voltage clamp, the postsynaptic cell was clamped

at �75 mV to isolate primarily an AMPA-mediated response. Firing rates are

reported as the average of the reciprocal of the interspike interval, and were

averaged across the entire 1 s of synaptic stimulation.

Statistical tests were done with KaleidaGraph 3.6 (Synergy Software) and

are reported as mean ± SEM except as noted. Synthesized Cs gluconate

was a gift of Dr. Court Hull. Chemicals were purchased from Sigma (St. Louis

MO), with the exception of g-DGG and cyclothiazide (Tocris, Bristol, UK) and

EGTA-AM (Invitrogen). EGTA-AM was dissolved in DMSO (final concentration

0.05%–0.1%). Following baseline trials, it was washed into the bath for 5 min

prior to testing.

Naturalistic Stimuli

Head velocity in freely locomoting mice was measured with a small head-

mounted gyroscope that detected yaw velocity with bandwidth of 80 Hz

(Analog Devices). Head movement signals were measured during 30 s epochs

while mice were running in their home cages. The statistics of the head velocity

data corresponded well with those reported during video analysis of mouse

head movement (Beraneck et al., 2008); head movements reaching velocities

in excess of 100�/s were observed less than 15% of the time, and epochs of

these fast head movements lasted <200 ms. A naturalistic stimulus was

constructed by scaling a representative 5 s head velocity trace by 0.2, the

average sensitivity of mouse regular and irregular type vestibular afferents,

and assuming a baseline firing rate of 36 Hz, near the average for irregular

afferents (Lasker et al., 2008; Yang and Hullar, 2007). This pattern was

developed to maximize the possibility of uncovering nonlinearities of synaptic

transmission in the low firing rate range.
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